环糊精/活性有机分子的配位包合与3-环己基苯丙氨酸的不对称合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环糊精及其衍生物是超分子化学中最重要的一类“主—客”体化学中的主体化合物,具有“内疏水,外亲水”的特殊结构及生物友好性、良好的水溶性和化学修饰性,可以在水溶液中装载各种活性客体分子形成主—客体分子包合物或超分子体系,形成分子胶囊,增强活性有机分子的水溶性、稳定性及生物利用度。因此,研究环糊精与活性有机分子的包合行为具有十分重要的意义。
     光学活性氨基酸是构筑肽类药物和许多天然产物分子的基本结构单元。由于不对称合成非天然氨基酸可以用于肽类药物的设计筛选和构效关系的研究,多年来一直受到有机化学家的关注。因此,设计合成可以探索支链构象的非天然氨基酸具有重要意义。
     本论文研究了环精对赤霉酸(GA3)及其衍生物(GA-13315和GA-13315CDO-4-MOBE)的包合行为,探讨了包合物的键合能力、化合物表征、溶解和稳定效应;同时,在Evans和Hruby的合成路线和方法基础上,以4(R/S)-4-苯基噁唑烷-2-酮为手性助剂对反应的立体选择性进行控制,设计合成一对Boc保护的β-环己基苯丙氨酸衍生物。
     本论文共分为五章。
     第一章主要综述了环糊精包合物的制备、表征、应用研究进展以及环糊精对活性有机分子(农业用类和药物用类)包合配位行为的近期研究。
     第二章制备了多种环糊精及其衍生物(α-CD, β-CD, γ-CD、HPβCD, SEBβCD和en(βCD)与赤霉酸(GA3)客体分子的包合物,通过粉末X-射线衍射、热分析、一维和二维核磁、紫外-可见光谱和扫描电镜等手段和方法,研究了这些环糊精与GA3分子之间的包合行为、包合能力以及化合物表征。研究结果显示,天然环糊精与GA3分子具有较强的键合能力,所形成的环糊精包合物能提高GA3的水溶性和稳定性。(Scheme1)
     第三章选择药学“安全”的β-CD环糊精及其衍生物(2-羟丙基-β-环糊精,HPβCD和磺丁基醚-β-环糊精,SBEβCD),制备了与具有肿瘤细胞毒活性的赤霉酸衍生物(GA-13315)客体分子形成的水溶性包合物。探讨了GA-13315环糊精包合物的键合能力、化合物表征、溶解和稳定效应。对包合物进行细胞毒性实验显示,包合物仍表现出抗肿瘤活性(Scheme2)。
     第四章制备了赤霉酸衍生物(GA-13315CDO-4-MOBE)与p-CD环糊精及其衍生物(磺丁基醚-β-环糊精,SBEβCD)的包合物,通过一维和二维核磁研究了环糊精与GA-13315CDO-4-MOBE分子之间的包合行为,探讨了主客体之间可能的包合模式,使用热分析和粉末X-射线衍射分析方法表征固体包合物的性能,研究结果显示,包合物大大提高了客体分子的水溶性和稳定性(Scheme3)。
     第五章以易得原料反式肉桂酸出发,在手性助剂(4(R/S)-4-苯基/噁唑烷-2-酮)立体选择性控制下,经过不对称Michael加成、直接叠氮化、氢化和氨基保护一锅法,再经碱性水解得到一系列活性中间体1a/b-4a/b和构象受阻的新颖手性α-氨基酸衍生物(3-环己基-2-叔丁氧碳酰胺苯丙酸)5a/5b,总产率为10-20%且de大于90%(Scheme4)。
Cyclodextrins and their derivatives (CDs) are the most important class of host compounds in host-guest chemistry in the area of supramolecular chemistry. They have many merits such as the unique structure of "hydrophobic interior hollow and hydrophilic outer surface", the biological affiliation, the good solubility in water and can be modified chemically. So CDs can encapsulate active molecules to form host-guest complexes or supramolecular species. This usually enhances and improves the water solubility, stability and bioavailability of the encapsulated active organic molecules. Therefore, it is of great importance to study the complex behaviors of active organic products with cyclodextrins.
     Optically active amino acids are fundamental building blocks for the preparation of peptide Pharmaceuticals and many natural product molecules. Due to the asymmetric synthesis of non-natural amino acids can be used for designing and screening peptide drugs and studying the structure-activity relationship, the organic chemists have paid great attentions to synthesize these compounds for years. Therefore, design and synthesis of non-natural amino acids that can explore their chain conformations have very important significance.
     This thesis describes studies towards the inclusion complexation behavior, binding ability, characterization, stabilization and solubilization effect of cyclodextrins (CDs) with gibberellin acid (GA3) and its derivatives (GA-13315and GA-13315CDO-4-MOBE). In addition, a pair of novel Boc protected β-branched non-natural amino acids were designed and synthesized by use of the chiral auxiliary4(R/S)-4-pheny1-oxazolidin-2-one according to the basic synthesis route and method of Evans and Hruby in this thesis.
     This thesis is composed of five chapters.
     In Chapters1, a review of the preparation, characterization and their applications of the cyclodextrin complexes is presented. The study on the complex behaviors of cyclodextrins with the active organic molecules in recent years is also reported.
     In Chapters2, several kinds of inclusion complexes between natural, modified cyclodextrins (a-CD, β-CD, γ-CD, HPβCD, SEBβCD and enβCD) and guest molecule gibberellin acid were prepared. The binding behavior, characterization and binding ability were investigated in both solution and the solid state by means of XRD, DSC,1H and2D NMR, SEM and UV-vis spectroscopy. The results showed that natural CDs possessed the higher binding constants, the water solubility and stabilization of GA3can be improved obviously after forming inclusion complex with cyclodextrins (Scheme1).
     In Chapters3, the water-soluble inclusion complexes formed by GA-13315, which is one of gibberellin derivatives possessed antitumor active, with β-cyclodextrin and its derivatives (2-hydroxypropyl-(β-cyclodextrin, HPβCD and sulfobuty ether-β-cyclodextrin, SBEpCD), which are safety in pharmacy, were researched. The binding ability, characterization, solubilization and stabilization effect of GA-13315with CDs were also studied (Scheme2).
     In Chapters4, the water-soluble inclusion complexes were prepared by the reaction of gibberellin derivative (GA-13315CDO-4-MOBE) with β-cyclodextrins and its derivatives (sulfobuty ether-β-cyclodextrin, SBEPCD). The inclusion mode was deduced according to the1D and2D NMR (ROESY) data. The characterization of inclusion complexes was carried out in the solid state by means of DSC, TG and XRD. The results showed that the water solubility and stability of GA-13315CDO-4-MOBE can be enhanced greatly after forming inclusion complex with cyclodextrins (Scheme3).
     In Chapters5, a series of active intermediates1a/1b-4a/4b and the novel chiral α-amino acid derivatives ((2R/3S) or (2S/3R)2-(tert-butoxycarbonylamino)-3-cyclo hexyl-3-phenylpropanoic)5a/5b with hindered conformation were synthesized. In the synthesis, easily available trans-cinnamic acid was used as starting material, and the reaction was controlled stereoselectively by use of chiral auxiliary. The synthetic process includes a series of key reactions, such as ammonolysis, asymmetric Michael addition reaction, direct azidation, one pot of hydrogenation and amine protection, as well as alkaline hydrolysis. The overall yields can reach10-20%and de90%(Scheme4).
引文
[1](a) Lehn, J. M. Cryptates:inclusion complexes of macropolycyclic receptor molecules [J] Pure Appl. Chem.1978,50,871-892; (b) Lehn, J. M. Supramolecular chemistry:receptors, catalysts and carriers [J] Science 1985,227,849-856.
    [2]Lehn, J. M. Supramolecular Chemistry:Concepts and Perspectives [M] Weinheim:VCH, 1995.
    [3](a) Szejtli, J. Introduction and general overview of cyclodextrin chemistry [J]. Chem. Rev. 1998,98,1743-1754; (b) Szejtli, J. Past, present, and future of cyclodextrin research [J] Pure Appl. Chem.2004,76,1825-1845.
    [4](a) Cram, D. J. The design of molecular hosts, guests, and their complexes [J] Angew. Chem. Int. Ed. Engl.1988,27,1009-1020; (b) Lehn, J. M. Supramolecular chemistry-scope and perspectives, molecules, supramolecules, and molecular devices [J] Angew. Chem. Int. Ed. 1988,27,89-112.
    [5](a) Pedersen, C. J. Cyclic polyethers and their complexes with metal salts [J] J. Am. Chem. Soc. 1967,89,2495-2496; (b) Pedersen, C. J. Cyclic polyethers and their complexes with metal salts [J] J. Am. Chem. Soc.1967,89,7017-7036; (c) Pedersen, C. J. The discovery of crown ethes [J] Angew. Chem. Int. Ed.1988,27,1021-1027.
    [6](a) Helgesen, R. C.; Koga, K.; Timko, J. M.; Cram, D. J. Complete optical resolution by differential complexation in solution between a chiral cyclic polyether and an α-amino acid [J] J. Am. Chem. Soc.1973,95,3021-3023; (b) Cram, D. J.; Cram, J. M. Host-guest chemistry [J] Science 1974,183,803-809; (c) Cram, D. J. Cavitands:organic hosts with enforced cavities [J] Science 1983,219,1177-1183.
    [7]Lehn, J. M. Cryptates:the chemistry of macropolycyclic inclusion complexes [J] Acc. Chem. Res.1978,11,49-57.
    [8]刘育;尤长城;张衡益超分子化学—合成受体的分子识别与组装,南开大学出版社,天津,2001.
    [9]Lehn, J. M. Supramolecular chemistry [J] Science 1993,260,1762-1763.
    [10]Lehn, J. M. Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization [J] Angew. Chem. Int. Ed. Engl.1990, 29,1304-1319.
    [11](a) Szejtli, J. Cyclodxtrins and their inclusion complexes [M] Akademiai Kiado:Budapest, 1982; (b) Szejtli, J.; Osa, T. Eds. Comprehensive supramolecular chemistry, Vol.3, Cyclodextrins; Atwood, J. L.; Davies, J. E. D.; MacNicol, D. D.; Vogtle, F. Eds. [M] Pergamon: Oxford,1996.
    [12](a) Gutsche, C. D. Calixarenes [M] The Royal Society of Chemistry, Cambridge, England, 1989; (b) Vicens, J.; Bohmer, V. Ed. Calixarenes, A Versatile Class of Macrocyclic Compounds [M] Kluwer, Academic Press, Dordrecht,1991; (c) Gutsche, C. D. Calixarenes: Revisited [M] The Royal Socieyt of Chemistry, Camridge, England,1998.
    [13](a) Roh, S. G; Park, K. M.; Park, G. J.; Sakamoto, S.; Yamaguchi, K.; Kim, K. Synthesis of a five-membered molecular necklace:a 2+2 approach [J] Angew. Chem. Int. Ed.1999,38, 637-641; (b) Kim, J.; Jung, I. S.; Kim, S. Y.; Lee, E.; Kang, J. K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. New cucurbituril homologues:syntheses, isolation, characterization, and x-ray crystal structures of cucurbit[n]uril (n= 5,7, and 8) [J] J. Am. Chem. Soc.2000,122.,540-541; (c) Fedin, V. P.; Grmlich, V; Worle, M.; Weber, T. Supramolecular assemblies based on cucurbituril adducts of hydrogen-bonded cubane-type molybdenum-nickel sulfide aqua complexes [J] Inorg. Chem.2001,40,1074-1077.
    [14](a) Starnes, S. D.; Rudkevich, D. M.; Rebek, J. Jr. A cavitand-porphyrin hybrid [J] Org. Lett. 2000,2,1995-1998; (b) Fukuzumi, S.; Imahori, H.; Yamada, H.; EI-Khouly, M. E.; Fujisuka, M.; Ito, O.; Guldi, D. M. Catalytic effects of dioxygen on intramolecular electron transfer in radical ion pairs of zinc porphyrin-linked fullerenes [J] J. Am. Chem. Soc.2001,123, 2571-2575; (c) Yeh, C. Y.; Chang, C. J.; Nocera, D. G. "Hangman" porphyrins for the assembly of a model heme water channel [J] J. Am. Chem. Soc.2001,123,1513-1514.
    [15](a) Qiu, X.; Wang, C; Zeng, Q.; Xu, B.; Yin, S.; Wang, H.; Xu, S.; Bai, C. Alkane-assisted adsorption and assembly of phthalocyanines and porphyrins [J] J. Am. Chem. Soc.2000,122, 5550-5556; (b) Martinez-Diaz, M. V; Rodriguez-Morgade, M. S.; Feiters, M. C; van Kan, P. J. M.; Nolte, R. J. M.; Stoddart, J. F.; Torres, T. Supramolecular phthalocyanine dimers based on the secondary dialkylammonium cation/dibenzo-24-crown-8 recognition motif [J] Org. Lett. 2000,2,1057-1060; (c) Sakakibara, Y.; Bera, R. N.; Mizutani, T.; Ishida, K.; Tokumoto, M.; Tani, T. Photoluminescence properties of magnesium, chloroaluminum, bromoaluminum, and metal-free phthalocyanine solid films [J] J. Phys. Chem. B.2001,105,1547-1553.
    [16](a) Ranganathan, D.; Haridas, V.; Karle, I. L. Cystinophanes, a novel family of aromatic-bridged cystine cyclic peptides:synthesis, crystal structure, molecular recognition, and conformational studies [J] J. Am. Chem. Soc.1998,120,2695-2702; (b) Kubik, S. Large increase in cation binding affinity of artificial cyclopeptide receptors by an allosteric effect [J] J. Am. Chem. Soc.1999,121,5846-5855; (c) Sanchez-Quesada, J.; Ghadiri, M. R.; Bayley, H.; Braha, O. Cyclic peptides as molecular adapters for a pore-forming protein [J] J. Am. Chem. Soc.2000,122,11757-11766; (d) Kennan, A. J.; Haridas, V.; Severin, K.; Lee, D. H.; Ghadiri, M. R. A de Novo designed peptide ligase:a mechanistic investigation [J] J. Am. Chem. Soc. 2001,123,1797-1803.
    [17](a) Xie, Q. S.; Huang, R. H.; Ichimura, A. S.; Phillips, R. C; Pratt, W. P., Jr.; Dye, J. L. Structure and properties of a new electride, Rb+(cryptand[2.2.2])e" [J]J. Am. Chem. Soc.2000, 122,6971-6978; (b) Lahann, J.; Hocker, H.; Langer, R. Synthesis of amino[2.2]paracyclophanes-beneficial monomers for bioactive coating of medical implant materials [J] Angew. Chem. Int. Ed.2001,40,726-728; (c) Jeon, W. S.; Kim, E.; Ko, Y. H.; Hwang, I.; Lee, J. W.; Kim, S. Y.; Kim, H. J.; Kim, K. Reductive N-alkylation of cyclo[8]pyrroles [J] Angew. Chem. Int. Ed.2005,44,87-91; (d) Yu, J.; Mathew, S.; Flavel, B. S.; Johnston, M. R.; Shapter, J. G. Ruthenium porphyrin functionalized single-walled carbon nanotube arrays-a step toward light harvesting antenna and multibit information storage [J] J. Am. Chem. Soc.2008,130,8788-8796.
    [18]Wenz, G. Cyclodextrins as building blocks for supramolecular structures and functional units [J]. Angew. Chem. Int. Ed. Eng.1994,33,803-822.
    [19](a) Harata, K. Structural aspects of stereodifferentiation in the solid state [J] Chem. Rev.1998, 98,1803-1828; (b) Saenger, W.; Jacob, J.; Gessler, K.; Steiner, T.; Hoffmann, D.; Sanbe, H.; Koizumi, K.; Smith, S. M.; Takaha, T. Structures of the common cyclodextrins and their larger analogues-beyond the doughnut [J] Chem. Rev.1998,98,1787-1802.
    [20]Connors, K. A. The stability of cyclodextrin complexes in solution [J] Chem. Rev.1997,97, 1325-1357.
    [21]王亚南,王洪权,窦媛媛.羟丙基-β-环糊精在药剂学中的应用与研究[J]食品与药品,2007,9,47-50.
    [22]李剑明,杨和平.羟丙基-β-环糊精应用研究进展[J]中国新医药,2004,3,63-65.
    [23]陈圆圆,刘佳佳,唐课文,张国丽.羟丙基-β-环糊精对荼普生的增溶及稳定作用[J]光谱实验室,2007,24,633-636.
    [24]陈国广,陈振华,刘伯成,李学明,韦萍.羟丙基-β-环糊精对黄芪甲苷包合作用的研究[J]时珍国医国药,2007,18,1457-1458.
    [25]Abe, K.; Lrie, T.; Uekama, K.; et al. Enhanced nasal delivery of luteinizing hormone releasing agonist buserelin by oleic acid solubilized and stabilized in hydroxypropyl-bata-cyclodextrin [J] Chem. Pharm. Bull.1995,43,2232-2237.
    [26]Qu, Q.; Tucker, E.; Christian, S. D. Sulfoalkyl ether-β-cyclodextrin derivatives:synthesis and characterizations [J] J. Incl. Phenom. Macrocycl. Chem.2002,43,213-222.
    [27]刘春冬,王建华,徐世荣.磺丁基醚-β-环糊精对药物的增溶作用[J]中国现代应用药学杂志,2006,23,742-745.
    [28]潘雪梅,房德敏.羟丙基-β-环糊精和磺丁基醚-β-环糊精应用进展[J]天津药学,2005,17,59-61.
    [29]郑筱萸,廖清江.药学前沿[M]北京:中国医药科技出版社,2002,46-47.
    [30]Jiao, A. C; Aungst, B. J.; Adeyeye, M. C. Development and in vivo evaluation of buccal tablets prepared using danazol-sulfobutylether 7-β-cyclodextrin (SBE7) complexes [J] J. Pharm. Sci.2002,91,1659-1668.
    [31]Savolainen, J.; Jarvinen, K.; Taipale, H.; Jarho, P.; Loftsson, T.; Jarvinen, T. Co-administration of a water-soluble polymer increase the usefulness of cyclodextrin in solid oral dosageforms [J] Pharm. Res.1998,15,1696-1701.
    [32]Kaukonen, A. M.; Kilpelainen, I.; Mannermaa, J. P. Water soluble βcyclodextrins in paediatric oral solutions of spironolactone:solubilization and stability of spironolactone in solutions of cyclodextrin derivatives [J] Int. J. Pharm.1997,159,159-170.
    [33]Schmid, G. Cyclodextrin glycosyltransferase production:yield enhancement by overexpression of cloned genes. [J] Trends Biotechnol.1989,7,244-248.
    [34]David, S. L.; Tao, J.; Michael, L. Self-assembling supramolecular complexes [J] Chem. Rev. 1995,95,2229-2260.
    [35]Connors, K. A.; Lipari, J. M. Effect of cycloamyloses on apparent dissociation by complex formation [J] J. Pharm. Sci.1976,65,379-383.
    [36]Gelb, R. A.; Schwartz, L. M.; Cardlino, B.; Fuhrman, H. S.; Johnson, R. F.; Laufer, D. A. Bindingmechanismsin cyclohexaamylose complexes [J] J. Am. Chem. Soc.1981,103, 1750-1757.
    [37](a) Ruppert, S.; Knittael, D.; Bushmann, H. J.; Wenz G; Schollmeyer, E. Fixierung von /β-cyclodextrin derivaten auf polyesterfasermaterial [J] Starch Starke,1997,49,160-164; (b)吴文娟,陈玉珍,谭载友.水溶性高聚物对药物-环糊精包合作用的影响[J]中国药学杂志,1999,34,99-101; (c) Li, S.; Purdy, W. C. Cyclodextrins and their applications in analytical chemistry [J] Chem. Rev.1992,92,1457-1470.
    [38]Fillet, M.; Becht, I.; Chip, P.; Hubert, P.; Crommen, J. Enantiomeric purity determination of propranolol by cyclodextrin-modified capillary electrophoresis [J] J. Chromatogr.1995,717, 203-309.
    [39]Wolbach, J. P.; Lloyd, D. K.; Wainer, I. W. Approach estoquantitative structure-enantioselectivity relationship modeling of chiral separations using capillary electrophoresis [J] J. Chromatogr, A 2001,914,299-314.
    [40]Torro, N. J.; Okabo, T.; Chung, C. J. Analysis of static and dynamic host-guest associations of detergents with cyclodextrins via photoluminescence methods [J] J. Am. Chem. Soc.1982,104, 1789-1794.
    [41]徐筱杰,陈丽蓉.化学及生物体系中的分子识别[J]化学进展,1996,8,189-201.
    [42]Saenger, W. Cyclodextrin inclusion compounds in research and industry [J] Angew. Chem. Int. Ed. Engl.1980,19,344-362.
    [43]Martin Del Valle, E. M. Cyclodextrins and their uses:a review [J] Process Biochem.2004,39, 1033-1046.
    [44]Song, L. X.; Bai, L.; Xu, X. M.; He, J.; Pan, S. Z. Inclusion complexation, encapsulation interaction and inclusion number in cyclodextrin chemistry [J] Coord. Chem. Rev.2009,253, 1276-1284.
    [45]何仲贵.环糊精包合物技术[M].北京:人民卫生出版社,2008.
    [46]周雅文,熊敏,韩富,徐宝财.特种表面活性剂和功能性表面活性剂(XII)一环糊精及其衍生物的制备与性能[J]日用化学工业,2011,4,,60-67.
    [47]董川,李俊芬,双少敏.环糊精包结物的形成及光谱表征[J]光谱实验室,2000,17,248-254.
    [48]Singh, R.; Bharti, N.; Madan, J.; Hiremath, S. N. Characterization of cyclodextrin inclusion complexes-A review [J]. J. Pharm. Sci. Tech.2010,2,171-183.
    [49]Cramer, F. D. Inclusion compounds. Rev. Pure Appl. Chem.1995,5,143-164.
    [50]Cramer, F.; Saenger, W.; Spatz, H. C. Inclusion compouns. XIX. la the formation of inclusion compounds of:α-cyclodextrin in aqueous solutions. Thermodymanics and kinetics [J] J. Am. Chem.Soc.1967,89,14-20.
    [51]Liu, Y.; Han, B. H.; Zhang, H. Y. Spectroscopic studies on molecular recognition of modified cyclodextrins [J] Curr. Org Chem.2004,8,35-46.
    [52]Liu, Y; Han, B. H.; Sun, S. X.; Wada, T.; Inoue, Y. Molecular recognition study on supramolecular systems.20. Molecular recognition and enantioselectivity of aliphatic alcohols by L-tryptophan-modified β-cyclodextrin [J] J. Org. Chem.1999,64,1487-1493.
    [53]刘育,尤长城,韩宝航.超分子体系中的分子识别研究(Ⅻ)-环糊精及环糊精双核铜配合物对4-取代苯酚的分子识别[J]高等学校化学学报,1997,18,1316-1320.
    [54]Benesi, H. A.; Hildebrand, J. H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons [J] J. Am. Chem. Soc.1949,71,2703-2703.
    [55]尤长城,赵彦利,刘育.竞争包结法研究β-环糊精及其两种衍生物对一些手性脂肪族客体分子的识别作用[J]高等学校化学学报,2001,22,218-222.
    [56]]陈涌,韩宁,杨华,刘育.三嗪基苯胺桥连双环糊精的合成及其对染料分子的选择键合[J]化学学报,2007,65,1076-1080.
    [57]Inoue, Y; Yamamoto, K.; Wada, T.; Everitt, S.; Gao, X. M.; Hou, Z. J.; Tong, L. H.; Jiang, S. K.; Wu, H. M. Inclusion complexation of (cyclo)alkanes and (cyclo)alkanols with 6-O-modified cyclodextrins [J] J. Chem. Soc., Perkin Trans.2 1998,1807-1816.
    [58]Job, A. [J]Ann. Chim.1928,9,113-203.
    [59]Duus, J.; Gotfedsen, C. H.; Bock, K. Carbohydrate sgructural determination by NMR spectroscopy:modern methods and limitations [J] Chem. Rev.2000,100,4589-4614.
    [60]Wood, D. J.; Hruska, F. E.; Saenger, W. Proton NMR study of the inclusion of aromatic molecules in α-ccyclodextrin [J] J. Am. Chem. Soc.1977,99,1735-1740.
    [61]Schneider, H. J.; Hacket, F.; Rudiger, V. NMR studies of cyclodextrins and cyclodextrin complexes [J] Chem. Rev.1998,98,1755-1786.
    [62]Jiang, H. M; Zhang, S. B.; Sun, H. J.; Chen, H. Y.; Wang, R. J.; Guo, J.; Jin, S. B.; Bai, R. X. 1H and 13C NMR investigations of inclusion complexes between β-cyclodextrin and naphthalenediamines/phenol derivatives [J] J. Incl. Phenom. Macrocycl. Chem.2007,59, 65-70.
    [63]Mura, P.; Bettinetti, G. P.; Manderioli, A.; Faucci, M. T.; Bramanti, G.; Sorrenti, M. Interactions of ketoprofen and ibuprofen with β-cyclodextrin in solution and in solid state [J] Int. J. Pharm.1998,166,189-203.
    [64]Rekharsky, M. V; Goldberg, R. N.; Schwarz, F. P.; Tewari, Y. B.; Ross, P. D.; Yamashoji, Y.; Inoue, Y. Thermodynamic and nuclear magnetic resonance study of the interactions of alpha-and beta-cyclodextrin with model substances:phenethylamine, ephedrines, and related substances [J] J. Am. Chem. Soc.1995,117,8830-8840.
    [65]Qin, X. R.; Abe, H.; Nakanishi, H. NMR and CD studies on the interaction of Alzheimer β-amyloid peptide (12-28) with β-cyclodextrin [J] Biochem. Bioph. Res. Co.2002,297, 1011-1015.
    [66](a) Rojas-Aguirre, Y; Yepez-Mulia, L.; Castillo, I.; Lopez-Vallejo, F.; Soria-Arteche, O.; Hernandez-Campos, A.; Castillo, R.; Hernandez-Luis, F. Studies on 6-chloro-5-(1-naphthyloxy)-2-(trifluoromethyl)-1H-benzimidazole/2-hydroxypropyl-β-cyclod extrin association:characterization, molecular modeling studies, and in vivo anthelminthic activity [J] Bioorg. Med. Chem.,2011,19,789-797; (b) Chen, W.; Yang, L. J.; Ma, S. X.; Yang, X. D.; Fan, B. M.; Lin, J. Crassicauline A/β-cyclodextrin host-guest system:preparation, characterization, inclusion mode, solubilization and stability [J] Carbohydr. Polym.2011,84, 1321-1328.
    [67]Ferdinando, G; Casba, N.; Jose, R. M. Thermal analysis of cyclodextrins and their inclusion compounds [J] Thermochimica Acta.2001,380,123-151.
    [68]Wang, E. J.; Lian, Z. X.; Cai, J. W. The crystal structure of the 1:1 inclusion complex of β-cyclodextrin with benzamide [J] Carbohydr. Res.2007,342,767-771.
    [69]Nakai, Y. Molecular behavior of medicinals in ground mixtures with microcrystalline cellulose and cyclodextrins [J] Drug Dev. Ind. Pharm.1986,12,1017-1039.
    [70]Fir, M. M.; Smidovnik, A.; Milivojevic, L.; Zmitek, J.; Prosek, M. Studies of CoQIO and cyclodextrin complexes:solubility, thermo-and photo-stability [J] J. Incl. Phenom. Macrocycl. Chem.2009,64,225-232.
    [71]Prabagar, B.; Beom-Jin, L.; Dong, H. O. Enhanced oral bioavailability of Coenzyme Q10 by self-emulsifying drug delivery systems [J] Int. J. Pharm.2009,374,66-72.
    [72]Terao, K. J.; Nakata, D.; Fukum, H.; Schmid, G; Arima, H.; Hirayama, F.; Uekama, K. Enhancement of oral bioavailability of coenzyme Q10 by complexation with y-cyclodextrin in healthy adults [J] Nutr. Res.2006,26,503-508.
    [73]薛菲,尹寿玉.桂香油-β-环糊精的制备及验证[J]中药材,2009,23,1898-1902.
    [74]魏世超,杜光,张慧玲.苯巴比妥钠包合物的制备及其在液体制剂中的稳定性[J]中国医院药学杂志,2007,27,53-55.
    [75]Koester, L. S.; Bertuol, J. B.; Groch, K. R.; Xavier, C. R.; Moellerke, R.; Mayorga, P.; Costa, T. D.; Bassani. V. L. Bioavailability of carbamazepine: β-cyclodextrin complex in beagle dogs from hydroxypropylmethylcellulose matrix tablets [J] Eur. J. Pharm. Sci.2004,22,201-207.
    [76]何进,毕殿洲,刘宝庆,赵玲.大蒜油-β-环糊精包合物的稳定性考察[J]中国药学杂志,1997,32,216-218.
    [77]魏世超,徐丽君,曾勤,封金刚.鱼腥草素-β-环糊精包合物的研究[J]中国药学杂志,1999,34,167-169.
    [78]林雄,褚克丹.醒鼻凝胶剂中丹皮酚的β-环糊精包合工艺研究[J]福建中医学院学报,2007,17,41-43.
    [79]Loftsson, T.; Duchene, D. Historical perspective. Cyclodextrins and their pharma-ceutical applications [J]. Int. J. Pharm.2007,329,1-11.
    [80]Muller, R. H.; Hildebrand, G. E.(胡晋红译). Pharmazeutische technologie:moderne arzneiformen(现代给药系统的理论和实践,第二版)[M].北京:人民军医出版社,2004,9-12.
    [81]Dailey, O. D.; Bland, J. J. M.; Trask-Morrell, B. J. Preparation and characterization of cyclodextrin complexes of the insecticides aldicarb and sulfrofos [J] J. Agric. Food Chem. 1993,41,1767-1771.
    [82]侯怀恩,武雪芬.氯氟氰菊酯与β-环糊精的包合作用研究[J]化学世界,2002,43,592-594.
    [83]高德霖.环糊精-多功能的天然食品添加剂[J]食品、饲料添加剂信息,1989,4,1-7.
    [84]张胜强,张琦.柠檬醛β-环糊精包合物的研究[J]中国药科大学学报,1999,30,435-437.
    [85]任维衡,罗冬冬.β-环糊精与柠檬醛及紫罗兰酮包合物的研究[J]湖北化工,1997,14,11-12.
    [86]Kraus, W. Biologically active ingredients. In The Neem Tree:Azadirachta indica A. Juss. And Other Meliaceous Plants:Sources of Unique Natural Products for the Integrated Pest Management, Medicine, Industry, and Other Purposes [M]; Schmutterer, H., Ed.; VCH: Weinheim, New York,1995.
    [87]Kumar, J.; Parmar, B. S. Physicochemical and chemical variation in neem oils and some bioactivity leads against Spodoptera litura F [J]. J. Agric. Food Chem.1996,44,2137-2143.
    [88]Verkerk, R. H. J.; Wright, D. Biological activity of neem seed kernel extracts and synthetic azadirachtin against larvae of Plutella xylostella L [J]. J. Pestic. Sci.1993,37,83-91.
    [89]Liu, Y.; Chen, C. S. Chen, Y; Lin, J. Inclusion complexes of azadirachtin with native and methylated cyclodextrins:solubilization and binding ability [J]. Bioorg. Med. Chem.2005,13, 4037-4042.
    [90]Yang, B.; Chen, Y.; Lin, J.; Liu, Y. Inclusion complexation behaviors of 3-tigloyl-azadirachtol with β-cyclodextrin derivatives [J]. Curr. Pharm. Anal.2008,4,176-182.
    [91]Yang, B.; Lin, J. Selective binding behaviors of β-cyclodextrin and its derivatives with azadirachtin guests by competitive inclusion method [J]. Chin. J. Anal. Chem.2009,37, 1468-1472.
    [92]Yang, L. J.; Yang, B.; Chen, W.; Huang, R.; Yan, S. J.; Lin, J. Host-guest system of nimbin and β-cyclodextrin or its derivatives:preparation, characterization, inclusion mode, and solubilization [J] J. Agric. Food Chem.2010,58,8545-8546.
    [93]Ge, X.; He, J.; Yang, Y; Qi, F. M.; Huang, Z.; Lu, R. H.; Huang, L. Z.; Yao, X. J. Study on inclusion complexation between plant growth regulator 6-benzylaminopurine and β-cyclodextrin:preparation, characterization and molecular modeling [J] J. Mol. Struct.2011, 994,163-169.
    [94]Neoh, T. L.; Yamauchi, K.; Yoshii, H.; Furuta, T. Kinetics of molecular encapsulation of 1-methylcyclopropene into a-cyclodextrin [J] J. Agric. Food Chem.2007,55,11020-11026.
    [95]Yang, L. J., Chen, W., Ma, S. X., Gao, Y. T., Huang, R., Yan, S. J., Lin, J. Host-guest system of taxifolin and native cyclodextrin or its derivative:Preparation, characterization, inclusion mode, and solubilization. [J] Carbohydr. Polym.2011,85,629-637.
    [96]Yang, B.; Yang, L. J.; Lin, J.; Chen, Y; Liu, Y. Binding behaviors of scutellarin with a-,β-, y-cyclodextrins and their derivatives [J]. J. Incl Phenom. Macrocycl. Chem.2009,64, 149-155.
    [97]Yang, B.; Chen, Y; Lin, J.; Liu, Y. Artemether/hydroxypropyl-β-cyclodextrin host-guest system:Characterization, phase-solubility and inclusion mode [J]. Bioorg. Med. Chem.2009, 77,6311-6317.
    [98]Eid, E. E. M.; Abdul, A. B.; Suliman, F. E. O.; Sukari, M. A. Rasedee, A.; Fatah, S. S. Characterization of the inclusion complex of zerumbone with hydroxypropyl-β-cyclodxtrin [J] Carbohydr. Polym.2011,83,1707-1714.
    [99]Liu, Y; Chen, C. S. Chen, Y; Cao, D. X.; Ge, Z. Q.; Yuan, Y. J. Inclusion complexes of paclitaxel and oligo(ethylenediamino)bridged bis(β-cyclodextrin)s:solubilization and antitumor activity [J]. Bioorg. Med. Chem.2004,12,5767-5775.
    [100]Zhao, Y. L.; Wei, H.; Zheng, H. H.; Guo, Z.; Wei, Y. S.; Zhang, D. Zhang, H. J. Enhancing water-solubility of poorly soluble drug, asiatic acid with hydroxypropyl-β-cyclodextrin [J]. Digest J. Nanomater. Biostruct.2010,5,419-425.
    [1]Ross, J. J.; Reid, J. B. Evolution of growth-promoting plant hormones [J] Funct. Plant Biol. 2010,37,795-805.
    [2]Mander, L. N. The Chemistry of Gibberellins:An Overview [J] Chem. Rev.1992,92, 573-612.
    [3]Boaventura, M. A. D.; Pereira, R. G; Freitas, L. B. O.; Reis, L. A.; Vieira, H. S. Preparation and Phytotoxicity of Novel Kaurane Diterpene Amides with Potential Use as Herbicides [J] J. Agric. Food Chem.2008,56,2985-2988.
    [4]Mander, L. N. Twenty years of gibberellin research [J] Nat. Prod. Rep.2003,20,49-69.
    [5]MacMillan, J.; Occurrence of gibberellins in vascular plants, fungi, and bacteria. [J] J. Plant Growth Regul.2002,20,387-442.
    [6]Kawaide, H. Review:Biochemical and molecular analyses of gibberellin biosynthesisi in fungi [J] Biosci. Biotechnol. Biochem.2006,70,583-590.
    [7]Bomke, C; Tudzynski, B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria [J] Phytochemistry 2009,70,1876-1893.
    [8]Shukla, R.; Chand, S.; Srivastava, A. K. Improvement of gibberellic acie production using a model based fed-batch cultivation of Gibberella fujikuroi [J] Process Biochem.2005,40, 2045-2050.
    [9]Nhujak, T.; Srisa-art, M.; Kalampakorn, K.; Tolieng, V.; Petsom, A. Determination of Gibberellic Acid in Fermentation Broth and Commercial Products by Micellar Electrokinetic Chromatography [J] J. Agric. Food Chem.2005,53,1884-1889.
    [10]Troudi, A.; Amara, I. B.; Soudani, N.; Bouaziz, H.; Boudawara, T.; Zeghal, N. Oxidative stress induced by gibberellic acid in bone of suckling rats [J] Ecotoxicol. Environ. Saf.2011, 74,643-649.
    [11]Troudi, A.; Bouaziz, H.; Soudani, N.; Amara, I. B.; Boudawara, T.; Touzani, H.; Lyoussi, B.; Zeghal, N. Neurotoxicity and oxidative stress induced by gibberellic acid in rats during late pregnancy and early postnatal periods:Biochemical and histological changes [J] Exp. Toxicol. Pathol.2011, In Press.
    [12]Goh, C. H.; Lee, D. J.; Bae, H. J. Gibberellic acid of Arabidopsis regulates the abscisic acid-induced inhibition of stomatal opening in response to light [J] Plant Sci.2009,176, 136-142.
    [13]Pegoraro, C; Zanuzo, M. R.; Chaves, F. C; Brackmann, A.; Girardi, C. L.; Lucchetta, L. Nora, L.; Silva, J. A.; Rombaldi, C. V. Physiological and molecular changes associated with prevention of woolliness in peach following pre-harvest application of gibberellic acid [J] Postharvest Biol. Technol.2010,57,19-26.
    [14]Troudi, A.; Samet, A. M.; Zeghal, N. Hepatotoxicity induced by gibberellic acid in adult rats and their progeny [J] Exp. Toxicol. Pathol.2010,62,637-642.
    [15]Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. [J] Chem. Rev. 1998,98,1742-1753.
    [16]Szejtli, J. Past, present, and future of cyclodextrin research [J] Pure Appl. Chem.2004,76, 1825-1845.
    [17]Liu, Y.; Chen, Y. Cooperative binding and multiple recognition by bridged bis(p-cyclodextrin)s with functional linkers [J]. Acc. Chem. Res.2006,39,681-691.
    [18]Liu, Y; Chen, G. S.; Chen, Y; Lin, J. Inclusion complexes of azadirachtin with native and methylated cyclodextrins:solubilization and binding ability [J] Bioorg. Med. Chem.2005.13, 4037-042.
    [19](a) Yang, B.; Chen, Y.; Lin, J.; Liu, Y. Inclusion Complexation behaviors of 3-tigloyl-azadirachtol with (3-cyclodextrin derivatives. [J] Curr. Pharm. Anal.2008,4, 176-182; (b) Yang, B.; Lin, J. Selective Binding behaviors of β-cyclodextrin and its derivatives with azadirachtin guests by competitive inclusion method. [J] Chin. J. Anal. Chem.2009,37,1468-1472.
    [20]Yang, B.; Yang, L. J.; Lin, J.; Chen, Y.; Liu, Y. Binding behaviors of scutellarin with a-, β-, y-cyclodextrins and their derivatives. [J] J. Inclusion Phenom. Mol. Recognit. Chem.2009, 64,149-155.
    [21]Yang, L. J.; Yang, B.; Chen, W.; Huang, R.; Yan, S. J.; Lin, J. Host-guest system of nimbin and (3-cyclodextrin or its derivatives:Preparation, characterization, inclusion mode, and solubilization. [J] J. Agric. Food Chem.2010,58,8545-8552.
    [22]Liu, Y.; Li, B.; Wada, T.; Inoue, Y. Novel o-phenylenediseleno bridged bis (β-cyclodextrin)s complexes with platinum(IV) and palladium(II) ions [J]. Supramol. Chem.1999,10, 279-285.
    [23]Del Valle, E. M. M. Cyclodextrins and their uses:a review [J]. Process Biochem.2004,39, 1033-1046.
    [24]Ayala-Zavla, J. F.; Del-Toro-Sanchez, L.; Alvarez-Parrilla, E.; Gonzalez-Aguilar, G. A. High Relative Humidity In-Package of Fresh-Cut Fruits and Vegetables:Advantage or Disadvantage Considering Microbiological Problems and Antimicrobial Delivering Systems? [J]. J. Food Sci.2008,73, R41-R47.
    [25]Ito, N.; Yoshida, N.; Ichikawa, K. Fluorescence detection of the electrostatic interactions in the molecular recognition between protonated amino-cyclodextrins and some anilinonaphthalenesulfonate anions [J] J. Chem. Soc, Perkin Trans.1996,2,965-972.
    [26]刘育,尤长城,张衡益.超分子化学—合成受体的分子识别与组装[M]天津:南开大学出版社,2001.
    [27]Correia,I.; Bezzenine, N.; Ronzani, N.; Platzer, N.; Beloeil, J.-C; Doan, B.-T. Study of inclusion complexes of acridine with β-and (2,6-di-O-methyl)-β-cyclodextrin by use of solubility diagrams and NMR spectroscopy [J]. J. Phys. Org. Chem.2002,15,647-659.
    [28]Montassier, P.; Duchene, D.; Poelman, M. C. Inclusion complexes of tretinoin with cyclodextrins [J]. Int. J. Pharm.1997,153,199-209.
    [1]Nora, L.; Silva, J. A.; Rombaldi, C. V. Physiological and molecular changes associated with prevention of woolliness in peach following pre-harvest application of gibberellic acid [J] Postharvest Biol. Technol.2010,57,19-26.
    [2]Mander, L. N. The Chemistry of Gibberellins:An Overview [J] Chem. Rev.1992,92, 573-612.
    [3]Bomke, C; Tudzynski, B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria [J] Phytochemistry 2009,70,1876-1893.
    [4]Liu, J. P.; Mander, L. N.; Willis, A. C. A general protocol for the hydroxylation of C-14 in gibberellins:synthesis of 14β-hydroxy-GA1 methyl ester [J] Tetrahedron 1998,54, 11637-11650.
    [5]Mander, L. N. Twenty years of gibberellin research [J] Nat. Prod. Rep.2003,20,49-69.
    [6]Banwell, M. G.; Phillis, A. T.; Willis, A. C. Exploitation of Cyclopropane Ring-Cleavage Reactions for the Rapid Assembly of Tetracyclic Frameworks Related to Gibberellins [J] Org. Lett.2006,8,5341-5344.
    [7]Hanson, J. R. Diterpenoids [J] Nat. Prod. Rep.,2007,24,1332-1341.
    [8]Chen, J. B.; Sun, Z. X.; Zhang, Y. L.; Zeng, X. H.; Qing, C; Liu, J. P.; Li, L.; Zhang, H. B. Synthesis of gibberllin derivatives with anti-tumor bioactivities [J] Bioorg. Med. Chem. Lett. 2009,19,5496-5499.
    [9]Zhang, Y. L.; Zhang, H.; Chen, J. B.; Zhao, H. X.; Zeng, X. H.; Zhang, H. B.; Qing, C. Antitumor and antiangiogenic effects of GA-13315, a gibberellin derivative [J] Invest. New Drugs 2010,1-9.
    [10]Sancho, M. I.; Gasull, E.; Blanco, S. E.; Castro, E. A. Inclusion complex of 2-chlorobenzophenone with cyclomaltoheptaose (β-cyclodextrin):temperature, solvent effects and molecular modeling [J] Carbohydr. Res.2011,346,1978-1984.
    [11]Eid, E. E.M.; Abdul, A. B.; Suliman, F. E. O.; Sukari, M. A.; Rasedee, A.; Fatah, S. S. Characterization of the inclusion complex of zerumbone with hydroxypropyl-|3-cyclodextrin [J] Carbohydr. Polym.2011, 83,1707-1714.
    [12]Liu, Y.; Chen, Y. Cooperative binding and multiple recognition by bridged bis(β-cyclodextrin)s with functional linkers [J] Ace. Chem. Res.2006,39,681-691.
    [13]Liu, Y.; Li, B.; Wada, T.; Inoue, Y. Novel o-phenylenediseleno bridged bis (β-cyclodextrin)s complexes with platinum(IV) and palladium(II) ions [J] Supramol. Chem.1999,10, 279-285.
    [14]Liu, Y.; Chen, C. S.; Chen, Y.; Lin, J. Inclusion complexes of azadirachtin with native and methylated cyclodextrins:solubilization and binding ability [J] Bioorg. Med. Chem.2005,13, 4037-4042.
    [15]Del Valle, E. M. M. Cyclodextrins and their uses:a review [J] Process Biochem.2004,39, 1033-1046.
    [16]Ayala-Zavla, J. F.; Del-Toro-Sanchez, L.; Alvarez-Parrilla, E.; Gonzalez-Aguilar, G. A. High Relative Humidity In-Package of Fresh-Cut Fruits and Vegetables:Advantage or Disadvantage Considering Microbiological Problems and Antimicrobial Delivering Systems? [J]. J. Food Sci.2008,73, R41-R47.
    [17]Correia, I.; Bezzenine, N.; Ronzani, N.; Platzer, N.; Beloeil, J.-C; Doan, B.-T. Study of inclusion complexes of acridine with β-and (2,6-di-O-methyl)-β-cyclodextrin by use of solubility diagrams and NMR spectroscopy [J]. J. Phys. Org. Chem.2002,15,647-659.
    [18]Montassier, P.; Duchene, D.; Poelman, M. C. Inclusion complexes of tretinoin with cyclodextrins [J]. Int. J. Pharm.1997,153,199-209.
    [19]Carmichael, J.; DeGraff, W.G.; Gazdar, A.F.; Minna, J.D.; Mitchell, J.B. Evaluation of a tetrazolium-based semiautomated colorimetric assay:assessment of chemosensitivity testing [J] Cancer Res.1987,47,936-942.
    [20]Mossman, T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays [J] J. Immunol. Methods 1983,65,55-63.
    [1]张洪彬,陈静波,刘建平,卿晨.3,15-二羰基赤霉酸类化合物及其酯和盐:中国,200410021939.2[P12005-01-05.
    [2]张洪彬,陈静波,孙先竹,卿晨,刘建平,曾祥慧,张雁丽.13-卤代-3,15-二氧代赤霉酸酯及其制备方法:中国,200810058297.1[P]2008-09-10.
    [3]陈静波,张洪彬,卿晨,张雁丽,孙竹先,刘建平,曾祥慧,李良.13-烷氧代-3,15-二氧代赤霉酸酯及其制备方法:中国,200910094180.3[P]2009-08-05.
    [4]Chen, J. B.; Sun, Z. X.; Zhang, Y. L.; Zeng, X. H.; Qing, C; Liu, J. P.; Li, L.; Zhang, H. B. [J] Bioorg. Med. Chem. Lett.2009,19,5496-5499.
    [5]张洪彬,陈静波,李鹏辉,卿晨,曾祥慧,张雁丽,刘建平,李良.13-氯代-3,15-二羰基赤霉酸及其盐的制备方法:中国,201010104230.4[P]2010-09-15.
    [6]Correia, I.; Bezzenine, N.; Ronzani, N.; Platzer, N.; Beloeil, J.-C; Doan, B.-T. Study of inclusion complexes of acridine with β-and (2,6-di-O-methyl)-(3-cyclodextrin by use of solubility diagrams and NMR spectroscopy [J]. J. Phys. Org. Chem.2002,15,647-659.
    [7]Liu, Y.; Chen, C. S.; Chen, Y.; Lin, J. Inclusion complexes of azadirachtin with native and methylated cyclodextrins:solubilization and binding ability [J] Bioorg. Med. Chem.2005,13, 4037-4042.
    [8]Yang, L. J.; Yang, B.; Chen, W.; Huang, R.; Yan, S. J.; Lin, J. Host-guest system of nimbin and β-cyclodextrin or its derivatives:Preparation, characterization, inclusion mode, and solubilization. [J] J. Agric. Food Chem.2010,58,8545-8552.
    [9]Montassier, P.; Duchene, D.; Poelman, M. C. Inclusion complexes of tretinoin with cyclodextrins [J]. Int. J. Phann.1997,153,199-209.
    [10]Yang, B.; Chen, Y.; Lin, J.; Liu, Y. Inclusion Complexation behaviors of 3-tigloyl-azadirachtol with β-cyclodextrin derivatives. [J] Curr. Pharm. Anal.2008,4, 176-182.
    [1](a) Manikwar, P.; Zimmerman, T.; Blanco, F. J.; Williams, T. D.; Siahaan, T. J. Rapid identification of fluorochrome modification sites in protens by LC ESI-Q-TOF mass spectrometry [J] Bioconjugate Chem.2011,22,1330-1336; (b) de Vega, M. J. P.; Garcia-Aranda, M. I.; Gonzalez-Muniz, R. A role for ring-closing metathesis in medicinal chemistry:Mimicking secondary architectures in bioactive peptides [J] Med. Res. Rev.2011, 31,677-715; (c) Majumdar, S.; Kobayashi, N.; Krise, J. P.; Siahaan, T. J. Mechanism of internalization of an ICAM-1-derived peptide by human leukemic cell line hL-60:Influence of physicochemical properties on targeted drug delivery [J] Mol. Pharmaceutics 2007,4, 749-758; (d) Toublan, F.J. J.; Boppart, S.; Suslick, K. S. Tumor targeting by surface modified protein microspheres [J] J. Am. Chem. Soc.2006,128,3472-3473; (e) Derksen, D. J.; Stymiest, J. L.; Vederas, J. C. Antimicrobial leucocin analogues with a dsulfide bridge replaced by carbocycle or by noncovalent interactions of allyl glycine residues [J] J. Am. Chem. Soc.2006,128,14252-14253.
    [2](a) Engin, O.; Villa, A.; Peter, C; Sayar, M. A challenge for peptide coarse graining: Transferability of fragment-based models [J] Macromol. Theory Simul.2011,20,451-465; (b) Law, B.; Weissleder, R.; Tung, C. H. Peptide based biomaterials for protease enhanced drug delivery [J] Biomacromolecules 2006,7,1261-1265; (c) Chen, X. Y.; Plasencia, C; Hou, Y. P.; Neamati, N. Synthesis and biological evaluation of dimeric RGD peptide paclitaxel conjugate as a model for integrin-targeted drug delivery [J] J. Med. Chem.2005, 48,1098-1106.
    [3](a) Wong, V. W.; Rustad, K. C; Longaker, M. T.; Gurtner, G. C. Tissue engineering in plastic surgery:A review [J] Plastic and Reconstrucitve Surgery 2010,126,858-868; (b) Shieh, S. J.; Vacanti, J. P. State of the art tissue engineering:From tissue engineering to organ building [J] Surgery,2005,137,1-7.
    [4](a) Elbarbary, H. A.; Abdou, A. M.; Park, E. Y; Nakamura, Y; Mohamed, H. A.; Sato, K. Novel antibacterial lactoferin peptides generated by rennet digestion and autofocusing technique [J] Int. Dairy J.2010,20,646-651; (b) Hashimoto, K.; Sato, K.; Nakamura, Y.; Ohtsuki, K. Development of a large-scale (50L) apparatus for ampholyte-free isoelectric focusing (autofocusing) of peptides in enzymatic hydrolysates of food proteins [J] J. Agric. Food Chem.2005,53,3801-3806.
    [5](a) Kuo, S. W.; Chen, C. J. Using hydrogen-bonding interactions to control the peptide secondary structures and miscibility behavior of poly(L-glutamate)s with phenolic resin [J] Macromol.2011,44,7315-7326; (b) Ding, J. X.; Shi, F. H.; Xiao, C. S.; Lin, L.; Chen, L. He, C. L.; Zhuang, X. L.; Chen, X. S. One-step preparation of reduction-responsive poly(ethylene glycol)-poly (amino acid)s nanogels as efficient intracellular drug delivery platforms [J] Polym. Chem.2011,2,2857-2864; (c)Sistiabudi, R.; Ivanisevic, A. Patterning of polypeptides on a collagen-terminated tissue surface [J] J. Phys. Chem. C,2007,111, 11676-11681; (d) Agut, W.; Taton, D.; Lecommandoux, S. A versatile synthetic approach to polypeptide based rod coil block copolymers by click chemistry [J] Macromol.2007,40, 5653-5661; (e) Sun, J.; Chen, X. S.; Deng, C; Yu, H. J.; Xie, Z. G.; Jing, X. B. Direct formation of giant vesicles from synthetic polypeptides [J] Langmuir,2007,23,8308-8315.
    [6]闫爱新,田桂玲,叶蕴华.非蛋白氨基酸对生物活性肽的修饰及其构效关系的研究进展[J]有机化学,2000,120,299-305.
    [7](a) Stefanucci, A.; Pinnen, F.; Feliciani, F.; Cacciatore, I.; Lucente, G; Mollica, A. Conformationally constrained histidines in the design of peptidomimetics:Strategies for the chi-space control [J] Int. J. J.Mol. Sci.2011,12,2853-2890; (b) Misicka, A.; Cavagnero, S.; Horvath, R.; Davis, P.; Porreca, F.; Yamamura, H. I.; Hruby, V. J. Synthesis and biological properties of β-MePhe3 analogues of deltorphin 1 and dermenkephalin:Influence of biased X1 of Phe3 residues on peptide recognition for δ-opioid receptors [J] J. Peptide. Res.1997, 50,48-54; (c) Huang, Z. W.; He, Y. B.; Raynor, K.; Tallent, M.; Reisine, T.; Goodman, M. Main chain and side chain chiral methylated somatostatin analogs:syntheses and conformational analyses [J] J.Am. Chem. Soc.1992,114,9390-9401.
    [8]Wilkes, B. C; Schiller, P. W. Theoretical conformational analysis of the opioid 8 antagonist H-Tyr-Tic-Phe-OH and the μ agonist H-Tyr-D-Tic-Phe-NH2 [J] Bioplymers 1994,34, 1213-1219.
    [9]Nicolas, E.; Russell, K. C; Knollenberg, J.; Hruby, V. J. Efficient method for the total asymmetric synthesis of the isomers of β-methyltyrosine [J] J. Org. Chem.1993,58, 7565-7571.
    [10](a) Qian, X. H.; Russell, K. C; Boteju, L. W.; Hruby, V. J. Stereoselective total synthesis of topographically constrained designer amino acids:2',6'-dimethyl-β-methyltyrosines [J] Tetrahedron,1995,51,1033-1054; (b) Qian, X. H.; Shenderovich, M. D.; Kover, K. E.; Davis, P.; Horvath, R.; Zalewska, T.; Yamamura, H. I.; Porreca, F.; Hruby, V. J. Probing the stereochemical requirements for receptor recognition of δ opioid agonists through topographic modidications in position 1 [J] J. Am. Chem. Soc.1996,118,7280-7290.
    [11]Xiang, L.; Wu, H. W.; Hruby, V. J. Stereoselective synthesis of all individual isomers of β-methyl-2',6'-dimethylphenylalanine [J] Tetrahedron:Asymmetry,1995,6,83-86.
    [12](a) Li, G. G; Jarosinski, M. A.; Hruby, V. J. Diastereospecific tandem Michael-like addition/ electrophilic bromination:A one-pot tandem asymmetric synthesis of precursors of unusual amino acids [J] Tetrahedron Lett.1993,34,2561-2564; (b) Li, G. G.; Russel, K. C; Jarosinski, M. A.; Hruby, V. J. Asymmetric synthesis of unusual amino acids:An enantioselective synthesis of the four isomers of D-and L-O-methyl-2',β-dimethyltyrosine [J] Tetrahedron Lett.1993,34,2565-2568.
    [13](a) Liao, S.; Hruby, V. J. Asymmetric synthesis of optically pure β-isopropylphenylalanine:A new β-branched unusual amino acid [J] Tetraheron Lett.1996,37,1563-1566; (b) Liao, S.; Han, Y. L.; Qiu, W.; Bruck, M.; Hruby, V. J. Syntheses of highly constrained β-aryl isohexanoic acid derivatives via asymmetric Michael addition [J] Tetrahedron Lett.1996,37, 7917-7920; (c) Liao, S.; Shenderovich, M. D.; Lin, J.; Hruby, V. J. Synthesis and conformational features of topographically constrained designer chimeric amino acids:The β-isopropyl phenylalanines [J] Tetrahedron,1997,53,16645-16662.
    [14]Han, Y. L.; Liao, S.; Qiu, W.; Cai, C. Z.; Hruby, V. J. Total asymmetric synthesis of highly constrained amino acids β-isopropyl-2',6'-dimethyl-tyrosines [J] Tetrahedron Lett.1997,38, 5135-5138.
    [15]Lin, J.; Liao, S.; Han, Y. L.; Qiu, W.; Hruby, V. J. Asymmetric synthesis of all four isomers of topographically constrained novel amino acids:β-isopropyltyrosines [J] Tetrahedron: Asymmetry,1997,8,3213-3221.
    [16]Lin, J.; Liao, S.; Hruby, V. J. Asymmetric syntheses of highly hydrophobic chimeric aromatic amino acids:2-amino-3,3'-diarylpropionic acids [J] Tetrahedron Lett.1998,39, 3117-3120.
    [17]Wang, S. H.; Tang, X. J.; Hruby, V. J. First stereoselective synthesis of an optically pure β-substituted histidine:(2S,3S)-β-methylhistidine [J] Tetrahedron Lett.2000,41, 1307-1310.
    [18](a) Boteju, L. W.; Wegner, K.; Qian, X. H.; Hruby, V. J. Asymmetric synthesis of unusual amino acids:Synthesis of the optically pure isomers of indole-protected β-methyltryptophan suitable for peptide synthesis[J] Tetrahedron Lett.1992,55,7491-7494; (b) Boteju, L. W.; Wegner, K.; Qian, X. H.; Hruby, V; J Asymmetric synthesis of unusual amino acids: synthesis of optically pure isomers of N-indole-(2-mesitylenesulfonyl)-β-methyltryptophan [J] Tetrahedron 1994,50,2391-2404.
    [19]Wang, W; Xiong, C. Y.; Yang, J. Q.; Hruby, V. J. Practical, asymmetric synthesis of aromatic-substituted bulky and hydrophobic trytophan derivatives [J] Tetrahedron Lett.2001, 42,7717-7719.
    [20]Yuan, W.; Hruby, V. J. Asymmetric synthesis of unusual amino acid:Synthesis of four isomers of β-methyl-3-(2'-naphthyl)alanine [J] Tetrahedron Lett.1997,38,3853-3856.
    [21]Wang, W.; Zhang, J. Y.; Xiong, C. Y.; Hruby, V. J. Design and synthesis of hydrophobic, bulky χ2-ponstrained phenylalanine and naphthylalanine derivatives [J] Tetrahedron Lett. 2002,43,2137-2140.
    [22](a) Hruby, V. J. Peptide science:Exploring the use of chemical principles and interdisciplinary collaboration for understanding life proceses [J] J. Med. Chem.2003,46, 4215-4231; (b) Bonner, G. G; Davis, P.; Stropova, D.; Edsall, S.; Yamamura, H. I.; Porreca, F.; Hruby, V. J. Opiate aromatic pharmacophore structure-activity relationships in CTAP analogues determined by topographical bias, two-dimensional NMR, and biological activity assays [J] J. Med. Chem.2000,43,569-80; (c) Haskell-Luevano, C; Toth, K.; Boteju, L. Job, C; de L. Castrucci, A. M; Hadley, M. E.; Hruby, V. J. β-methylation of the Phe7 and Trp9 melanotropin side chain pharmacophores affects ligand-receptor interactions and prolonged biological activity [J] J. Med. Chem.1997,40,2740-2749; (d) Azizeh, B. Y.; Shenderovich, M. D.; Trivedi, D.; Li, G. G.; Sturm, N. S.; Hruby, V. J. Topographical amino acid substitution in position 10 of glucagon leads to antagonists/partial agonists with greater binding differences [J] J. Med. Chem.1996,39,2449-2455; (e) He, Y. B.; Huang, Z. W.; Raynor, K.; Reisine, T.; Goodman, M. Synthesis and conformations of somatostatin-related cyclic hexapeptides incorporating specific a-and β-methylated residues [J] J. Am. Chem. Soc.1993,115,8066-8072; (f) Toth, G; Russell, K. C; Landis, G.; Kramer, T. H.; Fang, L. Knapp, R.; Davis, P.; Burks, T. F.; Yamamura, H. I.; Hruby, V. J. Ring substituted and other conformationally constrained tyrosine analogs of [cyclic] [D-pen2, D-Pen5] enkephalin with 8-opioid receptor selectivity [J] J. Med. Chem.1992,35,2384-2391.
    [23]Qian, X. H.; Kover, K. E.; Shendrovich, M. D.; Lou, B.-S.; Misicka, A.; Zalewska, T.; Horvath, R.; Davis, P.; Bilsky, E. J. Newly discovered stereochemical requirements in the side-chain conformation of δ opioid agonists for recognizing opioid δ receptors [J] J. Med. Chem.1994,37,1746-1757.
    [24]殷元骐,蒋耀忠主编.不对称催化反应进展[M]北京:科学出版社出版,2000年,1-68.
    [25]Evans, D. A.; Ennis, M. D.; Mathre, D. J. Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of.alpha.-substituted carboxylic acid derivatives [J] J. Am. Chem. Soc.1982,104,1737-1739.
    [26]Umezawa, T.; Sueda, M.; Kamura, T.; Kawahara, T.; Han, X. R.; Okino, T.; Matsuda, F. Synthesis and biological activity of Kalkitoxin and its analogues [J] J. Org. Chem.2012,77, 357-370.
    [27]Pearson, A. J.; Zhum, P. J.; Yongs, W. J.; Bradshaw, J. D.; McConville, D. B. Chiral auxiliary-directed asymmetric nucleophile additions to arene-manganese tricarbonyl complexes [J] J. Am. Chem. Soc.1993,115,10376-10377.
    [28]Evans, D. A.; Bartroli, J.; Shih, T. L. Enantioselective aldol condensations.2. Erythro-selective chiral aldol condensations via boron enolates [J] J. Am. Chem. Soc.1981, 103,2127-2129.
    [29]Evans, D. A.; Dow, R. L.; Shih, T. L; Takacs, J. M.; Zahler, R. Total synthesis of the polyether antibiotic ionomycin [J] J. Am. Chem. Soc.1990,112,5290-5313.
    [30]Peed, J.; Dominguez, I. P.; Davies, I. R.; Cheeseman, M.; Taylor, J. E.; Kociok-Kohn, G.; Bull, S. D. Asymmetric synthesis of chiral 8-Lactones containing multiple contiguous stereocenters [J] Org. Lett.2011,13,3592-3595.
    [31]Evans, D. A.; Ellman, J. A.; Dorow, R. L. Asymmetric halogenation of chiral imide enolates. A general approach to the synthesis of enantiomerically pure a-amino acids. [J] Tetrahedron Lett.1987,28,1123-1126.
    [32]Hale, K. J.; Delisser, V. M.; Manaviazar, S. Azinothricin synthetic studies.1. Efficient asymmetric synthesis of (3R)-and (3S)-piperazic acids. [J] Tetrahedron Lett.1992,33, 7613-7616.
    [33]Wu, M.-J.; Yeh, J.-Y. Conjugate addition of allysilanes to a,β-unsaturated N-acyloxazolidinoneS. [J] Tetrahedron 1994,50,1073-1082.
    [34]Lander, P. A.; Hegedus, L. S. Asymmestric synthesis of.alpha.-amino acids by copper-catalyzed conjugate addition of grignard reagents to optically active carbamatoacrylates [J] J. Am. Chem. Soc.1994,116,8126-8132.
    [35]Ruck, K.; Kunz, H. p-alkyl and p-alkyl-a-hydroxy carboxylic acid derivatives from radical or ionic 1,4 addition of dialkylaluminum chlorides to a,p-unsaturated N-acyl urethanes [J] Angew. Chem. Int. Ed. Engl.1991,30,694-696.
    [36]Marchand, A.; Mauger, D.; Guingant, A.; Pradere, J.-P. An asymmetric route to the 5,6-dihydro-4H-1,3-thiazine skeleton via an asymmetric hetero Diels-Alder reaction [J] Tetrahedron:Asymmetry 1995,6,853-856.
    [37]杜大明,花文廷.催化不对称Michael加成反应的新进展[J]有机化学2002,22,164-173.
    [38](a) Takao, I.; Wang, H.; Masahito, W. Asymmetric Michael reaction of α-substituted acetates with cyclic enones catalyzed by multifunctional chiral Ru amido complexes [J] J. Organomet. Chem.2004,689,1377-1381; (b) Velmathi, S.; Swarnalakshmib, S.; Narasimhana, S. Novel heterobimetallic catalysts for asymmetric Michael reactions [J] Tetraheron:Asymmetry,2003,14,113-117.
    [39]杨林,唐莅东,潘英明.含松香骨架的手性氮杂冠醚的合成及其在不对称Michael加成反应中的应用[J]有机化学,2008,28,1250-1253.
    [40](a) Pansare, S. V.; Kirby, R. L. Secondary-secondary diamine catalysts for the enantioseletive Michael addition of cyclic ketones to nitroalkenes [J] Tetrahedron,2009,65, 4557-561; (b) Wang, C; Yu, C; Liu, C. L.4-Trifluoromethanesulfonamidyl prolinol tert-bytyldiphenylsilyl ether as a highly efficient bifunctional organocatalyst for Michael addition of ketones and aldehydes to nitroolefins [J] Tetrahedron Lett.,2009,50,2363-2366; (c) Thandavamurthy, K.; Sethuraman, S.; New pyrrolidine-triazole-based C2 symmetric organocatalysts and their utility in the asymmetric Michael reaction of b-nitrostyrenes and the syntheisi of nirochromenes [J] Tetrahedron:Asymmetry,2008,19,2741-2745; (d) Hao, L.; Zu, L. S.; Wang, J. Organocatalytic enantioselective Michael addition of thioacetic acid to enones [J] Tetrahedron Lett.,2006,47,3145-3148.
    [41]卢刚,张谦,许佑君.无溶剂Michael加成反应的新进展[J]有机化学,2004,24,600-608.
    [42]Lin, J.; Liao, S.; Hruby, V. J. Syntheses of optically pure, conformationally constrained, and highly hydrophobic unusual amino acids:2-amino-3,3-diarylpropionic acids [J] J. Peptide Res.2005,65,105-112.
    [43]Lou, B. S.; Li, G. G; Lung, F. D.; Hruby, V. J. NMR investigation of asymmetric conjugate additions using chiral 4-phenyloxazolidinone as a mechanistic probe [J] J. Org. Chem.1995, 60,5509-5514.
    [44]朱建,潘圣强,张从海,严胜骄,林军.手性助剂控制的不对称Michael加成立体选择性研究[J]有机化学,2010,30,98-102.
    [45]Evans, D. A.; Ellman, J. A. The total syntheses of the isodityrosine-derived cyclic tripeptides of 4949-III and K-13. Determination of the absolute configuration of K-13 [J] J. Am. Chem. Soc.1989,111,1063-1072.
    [46]Butcher, J. W.; Liverton, N. J.; Selnick, H. G.; Elliot, J. M; Smith, G. R.; Tebben, A. J.; Pribush, D. A.; Wai, J. S.; Claremon, D. A. Preparation of 3-amino-1,4-benzodiazepin-2-ones via direct azidation with trisyl azide [J] Tetrahedron Lett. 1996,37,6685-6688.
    [47]Evans, D. A.; Britton, T. C; Ellman, J. A.; Dorow, R. L. The asymmetric synthesis of a-amino acids. Electrophilic azidation of chiral imide enolates, a practical approach to the synthesis of (R)-and (S)-a-azido carboxylic acids [J] J. Am. Chem. Soc.1990,112, 4011-4030.
    [48]Evans, D. A.; Evrad, D. A.; Rychnovsky, S. D.; Fruh, T.; Whittingham, W. G.; deVries, K. M. A general approach to the asymmetric synthesis of vancomycin-relate arylglycines by enolate azidation [J] Tetrahedron Lett.1992,33,1189-1192.
    [49]Butcher, J. W.; Liverton, N. J.; Selnick, H. G.; Elliot, J. M.; Smith, G. R.; Tebben, A. J.; Pribush, D. A.; Wai, J. S.; Claremon, D. A. Preparation of 3-amino-1,4-benzodiazepin-2-ones via direct azidation with trisyl azide [J] Tetrahdedron Lett.1996,37,6685-6688.
    [50]Ami, E.; Rajesh, S.; Wang, J.; Kimura, T.; Hayashi, Y.; Kiso, Y.; Ishida, T. Synthesis of novel amino acids, L-bis-tetrahydrofuranylglycines [J] Tetrahedron Lett..2002,43,2931-2834.
    [51]Cusack, N. J.; Hildick, B. J.; Robinson, D. H.; Rugg, P. W.; Shaw, G. Purines, Pyrimidines, and imidazoles. Part XL. A New Synthesis of a D-Ribofurano-sylamine Derivative and its Use in the Synthesis of Pyrimidine and Inidazole Nucleosides [J] J. Chem. Soc. Perkin Trans I.1973,1720-1731.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700