新型三价碘化物的设计、合成与反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,有机高价碘化学的研究引起了人们的广泛关注并得到了快速的发展。有机高价碘化物作为有机合成的试剂或催化剂不仅广泛应用于各类氧化反应中,还广泛应用于碳-碳键、碳-杂键及杂-杂键的形成,碳-氢键的活化、裂解及重排等反应中,在药物及中间体的制备和天然产物的全合成中也得到了非常广泛的应用,已发展成为一类拓展全新的合成方法学的新试剂。
     但是尽管有机高价碘化物具有反应活性高、无毒安全及环境友好等优点,但高价碘化物的使用在许多方面却不符合绿色化学的要求,因为其参与的反应大多为化学计量的反应,反应结束后会生成等摩尔的氧化副产物碘苯或其衍生物,沸点较高,且在有机溶剂中溶解度很大,现行的处理方法一般需要在反应结束后通过柱层析进行分离,不仅给产物的分离及碘苯的回收再利用造成了困难,同时消耗了大量的有机溶剂,环境不友好。此外,许多高价碘化物参与的反应是在传统有机溶剂(如二氯甲烷、二甲基甲酰胺、二甲亚砜等)中进行的,对环境有潜在的危害性。
     基于上述内容,本课题总体研究思路如下:首先,设计、合成一些新型的三价碘化物,并探索其在有机合成中的应用领域。其次,立足于现有已知的三价碘试剂,进一步拓展其在有机反应中的新应用。最后,针对目前有机高价碘化物使用上的一些缺点,从绿色化学的角度出发,分别研究了基于三价碘化物的负载体系、催化氧化体系及水相反应体系。
     论文首先设计、合成了一系列烷氧基修饰的新型非环状丙二酸甲酯型及环状二甲酮型碘叶立德,X-ray单晶衍射表征证明了通过在碘苯的邻位引入烷氧基进行结构修饰,产生分子内二级碘氧键I…O作用力,削弱了分子间的碘氧键I…O作用力,从而显著降低了原化合物易聚合的性质,稳定性及溶解性显著提高。研究了经烷氧基修饰的碘叶立德在环丙烷化反应、C-H插入反应、转叶立德反应及与碳二亚胺的环加成反应中的应用。结果表明,经过改性后的新型碘叶立德无论在操作使用的便捷性上,还是在反应性能上较原化合物均有着明显的提高。
     其次,立足于现有的已知三价碘化物,研究了它们在合成含碳杂不饱和键的氰基化合物及碳二亚胺类化合物中的新应用。系统考察了不同的三价碘化物、反应温度、反应时间、催化剂用量、溶剂种类等因素对上述反应的影响,研究表明,某些有机三价碘化物,特别是羟基对甲苯磺酸基碘苯(HTIB)能够有效的促进上述反应,具有反应条件温和、后处理简单、产率理想等优点。
     最后,针对目前有机高价碘化物使用上的一些缺点,从绿色化学的角度出发,先研究了负载型三价碘化物的制备及应用,分别设计、合成了聚苯乙烯负载的二乙酰氧基碘苯及纳米三氧化二铁负载的二乙酰氧基碘苯,考察了它们在醇类氧化反应中的应用及其自身的循环回收使用性能。研究表明,这些负载型试剂具有较高的稳定性和氧化活性,在反应结束后经过简单的过滤或磁性分离,即可达到循环回收使用的目的,经多次的循环使用,未发现明显的失活现象。
     针对负载型三价碘试剂的合成路线较繁琐等缺点,论文接着对基于三价碘化物的催化氧化体系进行了较为深入、系统的研究,分别探索了以间氯过氧苯甲酸、过硫酸钾、过氧乙酸和双氧水为助氧化剂,以碘苯或无机小分子碘化物四丁基碘化铵为催化剂,构建了反应条件温和、后处理简单及对环境友好的有效的催化氧化体系,并成功将其应用于醇类化合物的选择性氧化及苯并咪唑类衍生物的绿色合成中。
     针对目前高价碘化物参与的反应大多需要使用对环境有潜在危害性的一些传统有机溶剂的缺点,论文研究了基于三价碘化物的绿色水相反应体系。分别探索了以溴化钾或β-环糊精为反应的催化剂,基于亚碘酰苯及其衍生物的水相中的醇类化合物的选择性氧化反应。与其他无过渡金属催化氧化体系相比,反应效率高,选择性好,且对环境更加友好。
During the past decade, the organic chemistry of hypervalent iodine compounds has experienced an unprecedented development. Hypervalent iodine reagents are nowadays popular reagents not only for the oxidation, but also for the formation of carbon-carbon bonds, carbon-heteroatom bonds, heteroatom-heteroatom bonds. Activation of carbon-hydrogen bonds, rearrangements and fragmentations can also be induced by these reagents. Therefore, hypervalent iodine compounds offer high potential for the improvement of known reactions, not only from the environmental point of view, they are also potentially interesting reagents for the development of completely new synthetic transformations.
     Despite their useful reactivity, enhanced stability, and environmentally benign nature, common hypervalent iodine reagents are not perfect with respect to the principles of Green Chemistry. The reactions of these stoichiometric reagents with organic substrates lead to Arl as the byproduct, which is difficult to recover and reuse because of its high volatility and solubility in organic solvents. In addition, typical reactions of common hypervalent iodine reagents are performed in non-recyclable organic solvent (dichloromethane, DMF, DMSO, etc.), which have potentially damaging environmental properties.
     In this dissertation, focused on the problems existed in the hypervalent iodine chemistry, applications of hypervalent iodine (Ⅲ) compounds in organic synthesis processes and their recycling approaches were investigated.
     Some novel, highly soluble, and reactive iodonium ylides bearing an ortho substituent on the phenyl ring are designed and prepared from substituted iodobenzene and malonate or dimedone. According to X-ray crystal graphy, these novel iodonium ylides show remarkable intramolecular I…O interaction, which decreased the intermolecular I…O interaction and the tendency to polymerize. Therefore, they are highly soluble in common solvent and show higher reactivity than the original phenyliodonium ylides in the Rh-catalyzed cyclopropanation, C-H insertion, transylidation and reaction with carbodiimides.
     As model reactions for the formation of carbon-heteroatom bonds, synthesis of nitriles and carbodiimides was then studied using hypervalent iodine (Ⅲ) compounds as reagents. It was found that, among various kinds of hypervalent iodine (III) reagents, HTIB is especially effective for these kinds of transformations. In the presence of HTIB and nitrogen source, alcohols, aldehydes and amines all converted to nitriles under mild conditions in high yields. The desulfidation of thiourea to carbodiimides also proceeded smothly under mild conditions in the presence of HTIB with high yields.
     Polymer-supported and magnetic nanoparticle-supported PhI(OAc)2were successfully prepared and their applications and recycle abilities in oxidation of alcohols were studied in detail. Results showed that these supported reagents have good stability and catalytic activities, and they could be easily recovered and reused without significant loss of activities.
     Catalyst oxidative systems using m-chloroperbenzoic acid, potassium peroxodisulfate, peracetic acid and hydrogen peroxide as co-oxidant were investigated. The applications of these systems in the oxidation of alcohols and the synthesis of benzimidazoles were explored.
     The development of aqueous-phase reactions using hypervalent iodine (Ⅲ) compounds was also investigated. Selective oxidation of alcohols can be achieved using iodosylbenzene or its derivative as oxidant in the presence of β-Cyclodextrin or potassium bromide. These systems offers several advantages, including mild reaction conditions, simple work-up procedure and more environmentally benign.
引文
[1]Stang, P. J.; Zhdankin, V. V. Organic Polyvalent Iodine Compounds. Chem. Rev.1996, 90,1123-1178.
    [2]Zhdankin, V. V.; Stang, P. J. Recent Developments in the Chemistry of Polyvalent Iodine Compounds. Chem. Rev.2002,102,2523-2584.
    [3]梁永民;陈保华;武小莉;马永祥.有机合成中有机高价碘化合物的研究进展.合成化学2002,10,98-104.
    [4]Kita, Y.; Koser, G. F.; Ochiai, M.; Tohma, H.; Varvoglis, A.; Wirth, T.; Zhdankin, V. V. Topics in Current Chemistry:Hypervalent Iodine Chemistry-Modern Developments in Organic Synthesis; Springer:Berlin,2003.
    [5]Moriarty, R. M. Organohypervalent Iodine:Development, Applications, and Future Directions. J. Org. Chem.2005,70,2893-2903.
    [6]Zhdankin, V. V. Benziodoxole-Based Hypervalent Iodine Reagents in Organic Synthesis. Curr. Org. Synth.2005,2,121-145.
    [7]Wirth, T. Hypervalent iodine chemistry in synthesis:scope and new directions. Angew. Chem. Int. Edit.2005,44,3656-3665.
    [8]雷自强;马恒昌.有机五价碘氧化试剂.化学通报2005,650-658.
    [9]Ochiai, M. Stoichiometric and catalytic oxidations with hypervalent organo-λ3-iodanes. Chem. Rec.2007,7,12-23.
    [10]Ochiai, M.; Miyamoto, K. Catalytic Version of and Reuse in Hypervalent Organo-λ3-λ5-iodane Oxidation. Eur. J. Org. Chem.2008,4229-4239.
    [11]Zhdankin, V. V.; Stang, P. J. Chemistry of Polyvalent Iodine. Chem. Rev.2008,108, 5299-5358.
    [12]Moriarty, R. M.; Prakash, O. Hypervalent Iodine in Organic Chemistry:Chemical Transformations; Wiley-Blackwell,2008.
    [13]Merritt, E. A.; Olofsson, B. Diaryliodonium Salts:A Journey from Obscurity to Fame. Angew. Chem. Int. Edit.2009,48,9052-9070.
    [14]Dohi, T.; Kita, Y. Hypervalent iodine reagents as a new entrance to organocatalysts. Chem. Commun.2009,2073-2085.
    [15]Zhdankin, V. V. Hypervalent iodine(Ⅲ) reagents in organic synthesis. Arkivoc 2009, i, 1-62.
    [16]Silva, J. L. F.; Olofsson, B. Hypervalent iodine reagents in the total synthesis of natural products. Nat. Prod. Rep.2011,28,1722-1754.
    [17]Zhdankin, V. V. Organoiodine(V) Reagents in Organic Synthesis. J. Org. Chem.2011, 76,1185-1197.
    [18]Frigerio, M.; Santagostino, M.; Sputore, S. A User-Friendly Entry to 2-Iodoxybenzoic Acid (IBX). J. Org. Chem.1999,64,4537-4538.
    [19]Plumb, J. B.; Harper, D. J. Chem. Eng. News 1990,68,2-3.
    [20]Andreas, K. Hypervalent Iodine and Carbohydrates-A New Liaison. Eur. J. Org. Chem. 1998,2267-2274.
    [21]杨贯羽;郭彦春;武光辉;宋毛平.氮氧自由基TEMPO选择氧化醇的高效有机小分子催化剂.化学进展2007,19,1727-1735.
    [22]Sheldon, R. A.; Arends, I. W. C. E. Catalytic oxidations mediated by metal ions and nitroxyl radicals. J. Mol. Catal. A Chem.2006,251,200-214.
    [23]De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. A Versatile and Highly Selective Hypervalent Iodine (III)/2,2,6,6-Tetramethyl-l-piperidinyloxyl-Mediated Oxidation of Alcohols to Carbonyl Compounds. J. Org. Chem.1997,62, 6974-6977.
    [24]Piancatelli, G; Leonelli, F.; Do, N.; Ragan, J. Oxidation of Nerol to Neral with Iodobenzene and TEMPO. Org. Synth.2006,83,18-23.
    [25]Moroda, A.; Togo, H. Biphenyl-and terphenyl-based recyclable organic trivalent iodine reagents. Tetrahedron 2006,62,12408-12414.
    [26]Pozzi, G; Quici, S.; Shepperson, I. A convenient access to (F-alkyl)alkanals. Tetrahedron Lett.2002,43,6141-6143.
    [27]Vatele, J.-M. One-pot selective oxidation/olefination of primary alcohols using TEMPO-BAIB system and stabilized phosphorus ylides. Tetrahedron Lett.2006,47, 715-718.
    [28]Danielle, J. V.; Lars, V.; Kanar, a.-M.; Renske, L.; Rob, F. S.; Frans, J. J. d. K.; Marinus, B. G; Ulf, H.; Romano, V. A. O. A Mild Chemo-Enzymatic Oxidation-Hydrocyanation Protocol. Eur. J. Org. Chem.2006,1672-1677.
    [29]Zhao, X.-F.; Zhang, C. Iodobenzene Dichloride as a Stoichiometric Oxidant for the Conversion of Alcohols into Carbonyl Compounds; Two Facile Methods for Its Preparation. Synthesis 2007,551-557.
    [30]Tohma, H.; Kita, Y. Hypervalent Iodine Reagents for the Oxidation of Alcohols and Their Application to Complex Molecule Synthesis. Adv. Synth. Catal.2004,346, 111-124.
    [31]Thottumkara, A. P.; Vinod, T. K. Synthesis and oxidation reactions of a user-and eco-friendly hypervalent iodine reagent. Tetrahedron Lett.2002,43,569-572.
    [32]Li, Y.; Hale, K. J. Asymmetric Total Synthesis and Formal Total Synthesis of the Antitumor Sesquiterpenoid (+)-Eremantholide A. Org. Lett.2007,9,1267-1270.
    [33]Karade, N. N.; Tiwari, G. B.; Huple, D. B. Molecular Iodine as Efficient Co-Catalyst for Facile Oxidation of Alcohols with Hypervalent(III) Iodine. Synlett 2005, 2039-2042.
    [34]Karade, N. N.; Budhewar, V. H.; Katkar, A. N.; Tiwari, G. B. Oxidative methyl esterification of aldehydes promoted by molecular and hypervalent (III) iodine. Arkivoc 2006, xi,162-167.
    [35]Tohma, H.; Takizaw, S.; Maegaw, T.; Kita, Y. Facile and Clean Oxidation of Alcohols in Water Using Hypervalent Iodine(III) Reagents. Angew. Chem. Int. Edit.2000,39, 1306-1308.
    [36]Tohma, H.; Maegawa, T.; Takizawa, S.; Kita, Y. Facile and Clean Oxidation of Alcohols in Water Using Hypervalent Iodine(III) Reagents. Adv. Synth. Catal.2002, 344,328-337.
    [37]Tohma, H.; Maegawa, T.; Kita, Y. Facile and Efficient Oxidative Transformation of Primary Alcohols to Methyl Esters in Water Using Hypervalent Iodine(Ⅲ) Reagents. Synlett 2003,723-725.
    [38]Karade, N. N.; Shirodkar, S. G; Dhoot, B. M.; Waghmare, P. B. An efficient and mild direct oxidative methyl esterification of aromatic aldehydes using NaBr and diacetoxyiodobenzene. J. Chem. Res.2005,274-276.
    [39]Adam, W.; Gelalcha, F. G; Saha-Moller, C. R.; Stegmann, V. R. Chemoselective C-H Oxidation of Alcohols to Carbonyl Compounds with Iodosobenzene Catalyzed by (Salen)chromium Complex. J. Org. Chem.2000,65,1915-1918.
    [40]Varma, R. S.; Dahiya, R.; Saini, R. K. Iodobenzene diacetate on alumina:Rapid oxidation of alcohols to carbonyl compounds in solventless system using microwaves. Tetrahedron Lett.1997,38,7029-7032.
    [41]Lee, J. C.; Lee, J. Y.; Lee, S. J. Efficient oxidation of benzylic alcohols with [hydroxy(tosyloxy)iodo]benzene under microwave irradiation. Tetrahedron Lett.2004, 45,4939-4941.
    [42]Moriarty, R. M; Hu, H. Hypervalent Iodine in Organic Synthesis. A New Route to α-Functionalized Carboxylate Esters. Tetrahedron Lett.1981,22,2747-2750.
    [43]Moriarty, R.; Prakash, O. Synthesis of Heterocyclic Compounds Using Organo-hypervalent Iodine Reagents. Adv. Heterocycl. Chem.1997,69,1-87.
    [44]Koser, G. F. [Hydroxy(tosyloxy)iodo]benzene and Closely Related Iodanes:The Second Stage of Development. Aldrichim. Acta 2001,34,89-102.
    [45]Wessig, P.; Muhling, O. Photochemical Synthesis of Highly Functionalized Cyclopropyl Ketones. Helv. Chim. Acta 2003,86,865-893.
    [46]Kumar, D.; Sundaree, S.; Rao, V. S.; Varma, R. S. A facile one-pot synthesis of β-keto sulfones from ketones under solvent-free conditions. Tetrahedron Lett.2006,47, 4197-4199.
    [47]Kumar, D.; Sundaree, M. S.; Patel, G; Rao, V. S.; Varma, R. S. Solvent-free facile synthesis of novel α-tosyloxy β-keto sulfones using [hydroxy(tosyloxy)iodo]benzene. Tetrahedron Lett.2006,47,8239-8241.
    [48]Lee, J. C.; Seo, J. W.; Baek, J. W. Synthesis of 2-Substituted 4,5-Diphenyloxazoles under Solvent-Free Microwave Irradiation Conditions. Synth. Commun.2007,37, 2159-2162.
    [49]Patonay, T.; Levai, A.; Rimana, E.; Varma, R. S. Microwave-induced, solvent-free transformations of benzoheteracyclanones by HTIB (Koser's reagent) Arkivoc 2004, ⅶ,183-195.
    [50]Muthukrishnan, M.; Patil, P. S.; More, S. V.; Joshi, R. A. Facile oxidation of flavanones to flavones using [hydroxy(tosyloxy)iodo]benzene in an ionic liquid. Mendeleev. Commun.2005,15,100-101.
    [51]Aggarwal, R.; Sumran, G. Hypervalent Iodine in the Synthesis of Bridgehead Heterocycles:A Facile Route to the Synthesis of 6-Arylimidazo[2,1-b]thiazoles Using [Hydroxy(tosyloxy)iodo]benzene. Synth. Commun.2006,36,875-879.
    [52]Yu, J.; Tian, J.; Zhang, C. Various α-Oxygen Functionalizations of β-Dicarbonyl Compounds Mediated by the Hypervalent Iodine(III) Reagentp-Iodotoluene Difluoride with Different Oxygen-Containing Nucleophiles. Adv. Synth. Catal.2010, 352,531-546.
    [53]Koser, G F.; Telu, S.; Laali, K. K. Oxidative-substitution reactions of polycyclic aromatic hydrocarbons with iodine(Ⅲ) sulfonate reagents. Tetrahedron Lett.2006,47, 7011-7015.
    [54]Celik, M.; Alp, C.; Coskun, B.; Gultekin, M. S.; Balci, M. Synthesis of diols using the hypervalent iodine(III) reagent, phenyliodine(III) bis(trifluoroacetate). Tetrahedron Lett.2006,47,3659-3663.
    [55]Tellitu, I.; Dominguez, E. On the regioselectivity of the PIFA-mediated bis(trifluoroacetoxylation) of styrene-type compounds. Tetrahedron 2008,64, 2465-2470.
    [56]Lee, S.; MacMillan, D. W. C. Enantioselective organocatalytic epoxidation using hypervalent iodine reagents. Tetrahedron 2006,62,11413-11424.
    [57]Prakash, O.; Kaur, H.; Pundeer, R.; Dhillon, R. S.; Singh, S. P. An Improved Iodine(III) Mediated Method for Thiocyanation of 2-Arylindan-1,3-diones, Phenols, and Anilines. Synth. Commun.2003,33,4037-4042.
    [58]Pedersen, C. M.; Marinescu, L. G; Bols, M. Radical substitution with azide: TMSN3-PhI(OAc)2 as a substitute of IN3. Org. Biomol. Chem.2005,3,816-822.
    [59]Li, X.-Q.; Zhao, X.-F.; Zhang, C. Iodobenzene Dichloride in Combination with Sodium Azide for the Effective Synthesis of Carbamoyl Azides from Aldehydes. Synthesis 2008,2589-2593.
    [60]Kumar, D.; Sundaree, S.; Rao, V. S. Facile One-Step Conversion of Ketones into a-Azidoketones using [Hydroxy(tosyloxy)iodo]benzene and Sodium Azide in the Presence of a Phase-Transfer Catalyst under Solvent-Free Conditions. Synth. Commun. 2006,56,1893-1896.
    [61]Prakash, O.; Pannu, K.; Prakash, R.; Batra, A. [Hydroxy(tosyloxy)iodo]benzene Mediated a-Azidation of Ketones. Molecules 2006,11,523-527.
    [62]Tingoli, M.; Tiecco, M.; Testaferri, L.; Temperini, A. Substituted azides from selenium-promoted deselenenylation of azido selenides. Glycosylation reactions of protected 2-azido-2-deoxy-l-selenoglycopyranoses J. Chem. Soc, Chem. Commun. 1994,1883-1884.
    [63]Tingoli, M.; Tiecco, M.; Testaferri, L.; Temperini, A. Iodosobenzene Diacetate and Diphenyl Diselenide:An Electrophilic Selenenylating Agent of Double Bonds. Synth. Commun.1998,28,1769-1778.
    [64]Das, J. P.; Roy, U. K.; Roy, S. Synthesis of Alkynyl and Vinyl Selenides via Selenodecarboxylation of Arylpropiolic and Cinnamic Acids. Organometallics.2005, 24,6136-6140.
    [65]Mironov, Y. V.; Sherman, A. A.; Nifantiev, N. E. Homogeneous azidophenyl selenylation of glycals using TMSN3-Ph2Se2-PhI(OAc)2. Tetrahedron Lett.2004,45, 9107-9110.
    [66]Chen, J. M.; Huang, X. A Facile Preparation of Organyltellurophosphates. Synth Commun.2004,34,1745-1752.
    [67]Prakash, O.; Batra, H.; Kaur, H.; Sharma, P. K.; Sharma, V.; Singh, S. P.; Moriarty, R. M. Hypervalent Iodine Oxidative Rearrangement of Anthranilamides, Salicylamides and Some b-Substituted Amides:A New and Convenient Synthesis of 2-Benzimidazolones,2-Benzoxazolones and Related Compounds. Synthesis 2001, 541-543.
    [68]Song, H.; Chen, W.; Wang, Y.; Qin, Y. Preparation of Alkyl Carbamate of 1-Protected Indole-3-methylamine as a Precursor of Indole-3-methylamine. Synth. Commun.2005, 35,2735-2748.
    [69]Berkessel, A.; Glaubitz, K.; Lex, J. Enantiomerically Pure β-Amino Acids:A Convenient Access to Both Enantiomers of trans-2-Aminocyclohexanecarboxylic Acid. Eur. J. Org. Chem.2002,2948-2952.
    [70]Fujioka, H.; Matsuda, S.; Horai, M.; Fujii, E.; Morishita, M; Nishiguchi, N.; Hata, K.; Kita, Y. Facile and Efficient Synthesis of Lactols by a Domino Reaction of 2,3-Epoxy Alcohols with a Hypervalent Iodine(III) Reagent and Its Application to the Synthesis of Lactones and the Asymmetric Synthesis of (+)-Tanikolide. Chem. Eur. J.2007,13, 5238-5248.
    [71]Iglesias-Arteaga, M. A.; Velazquez-Huerta, G. A. Favorskii rearrangement of 23-oxo-3-epz-smilagenin acetate induced by iodosobenzene. Tetrahedron Lett.2005, 46,6897-6899.
    [72]Justik, M. W.; Koser, G. F. Oxidative rearrangements of arylalkenes with [hydroxy(tosyloxy)iodo]benzene in 95% methanol:a general, regiospecific synthesis of a-aryl ketones. Tetrahedron Lett.2004,45,6159-6163.
    [73]Justik, M. W.; Koser, G. F. Application of [Hydroxy(tosyloxy)iodo]benzene in the Wittig-Ring Expansion Sequence for the Synthesis of β-Benzocycloalkenones from a-Benzocycloalkenones. Molecules 2005,10,217-225.
    [74]Silva, L. F.; Vasconcelos, R. S.; Nogueira, M. A. Iodine(III)-Promoted Ring Expansion of 1-Vinylcycloalkanol Derivatives:A Metal-Free Approach toward Seven-Membered Rings. Org. Lett.2008,10,1017-1020.
    [75]Tokuoka, T.; Yamashita, K.; Kawamura, Y.; Tsukayama, M.; M. Hossain, M. Regioselective Synthesis of 6-Prenylpolyhydroxyisoflavone (Wighteone) and Wighteone Hydrate with Hypervalent Iodine. Synth. Commun.2006,36,1201-1211.
    [76]Silva, L. F.; Siqueira, F. A.; Pedrozo, E. C.; Vieira, F. Y. M.; Doriguetto, A. C. Iodine(III)-Promoted Ring Contraction of 1,2-Dihydronaphthalenes:A Diastereoselective Total Synthesis of (±)-Indatraline. Org. Lett.2007,9,1433-1436.
    [77]Vatele, J.-M. Lewis Acid Promoted Oxidative Rearrangement of Tertiary Allylic Alcohols with the PhIO/TEMPO System. Synlett 2008,1785-1788.
    [78]Quideau, S.; Pouysegu, L.; Deffieux, D. Oxidative Dearomatization of Phenols:Why, How and What For? Synlett 2008,467-495.
    [79]Canesi, S.; Sabot, C; Commare, B.; Duceppe, M.-A.; Nahi, S.; Guerard, K. On the Way to an Oxidative Hosomi-Sakurai Reaction. Synlett 2008,3226-3230.
    [80]Felpin, F.-X. Oxidation of 4-arylphenol trimethylsilyl ethers to p-arylquinols using hypervalent iodine(III) reagents. Tetrahedron Lett.2007,48,409-412.
    [81]Lebrasseur, N.; Fan, G.-J.; Quideau, S. Studies toward the synthesis of angularly-oxygenated angucyclines antibiotics Arkivoc 2004, xiii,5-16.
    [82]Lebrasseur, N.; Fan, G.-J.; Oxoby, M.; Looney, M. A.; Quideau, S. λ3-Iodane-mediated arenol dearomatization. Synthesis of five-membered ring-containing analogues of the aquayamycin ABC tricyclic unit and novel access to the apoptosis inducer menadione. Tetrahedron 2005,61,1551-1562.
    [83]Ciufolini, M.; Braun, N.; Canesi, S.; Ousmer, M.; Chang, J.; Chai, D. Oxidative Amidation of Phenols through the Use of Hypervalent Iodine Reagents:Development and Applications. Synthesis 2007,3759-3772.
    [84]Shigehisa, H.; Takayama, J.; Honda, T. The first total synthesis of (±)-annosqualine by means of oxidative enamide-phenol coupling:pronounced effect of phenoxide formation on the phenol oxidation mechanism. Tetrahedron Lett.2006,47,7301-7306.
    [85]Quideau, S.; Lebon, M.; Lamidey, A.-M. Enantiospecific Synthesis of the Antituberculosis Marine Sponge Metabolite (+)-Puupehenone. The Arenol Oxidative Activation Route. Org. Lett.2002,4,3975-3978.
    [86]Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y; Fujioka, H.; Caemmerer, S. B.; Kita, Y. A Chiral Hypervalent Iodine(III) Reagent for Enantioselective Dearomatization of Phenols. Angew. Chem. Int. Edit.2008,47, 3787-3790.
    [87]Gagnepain, J.; Mereau, R.; Dejugnac, D.; Leger, J.-M.; Castet, F.; Deffieux, D.; Pouysegu, L.; Quideau, S. Regio-and stereoselectivities in Diels-Alder cyclodimerizations of orthoquinonoid cyclohexa-2,4-dienones. Tetrahedron 2007,63, 6493-6505.
    [88]Lai, C.-H.; Lin, P.-Y.; Peddinti, R. K.; Liao, C.-C. Diels-Alder Reactions of Silyl-Substituted Masked o-Benzoquinones:Expedient Access to Alkenylsilanes. Synlett 2002,1520-1522.
    [89]Cook, S. P.; Danishefsky, S. J. An Interesting Issue of Diels-Alder Selectivity Discovered En Route to 11-O-Debenzoyltashironin. Org. Lett.2006,8,5693-5695.
    [90]Berube, A.; Drutu, I.; Wood, J. L. Progress toward the Total Synthesis of Bacchopetiolone:Application of a Tandem Aromatic Oxidation/Diels-Alder Reaction. Org. Lett.2006,8,5421-5424.
    [91]Ruchirawat, S.; Pingaew, R. Application of the Hypervalent Iodine Reagent to the Synthesis of Some Pentasubstituted Aporphine Alkaloids. Synlett 2007,2363-2366.
    [92]Dohi, T.; Ito, M.; Morimoto, K.; Iwata, M.; Kita, Y. Oxidative Cross-Coupling of Arenes Induced by Single-Electron Transfer Leading to Biaryls by Use of Organoiodine(III) Oxidants. Angew. Chem. Int. Edit.2008,47,1301-1304.
    [93]Taylor, S. R.; Ung, A. T.; Pyne, S. G.; Skelton, B. W.; White, A. H. Intramolecular versus intermolecular oxidative couplings of ester tethered di-aryl ethers. Tetrahedron 2001,63,11377-11385.
    [94]Hata, K.; Hamamoto, H.; Shiozaki, Y.; Kita, Y. A new synthesis of dienone lactones using a combination of hypervalent iodine(III) reagent and heteropoly acid. Chem. Commun.2005,2465-2467.
    [95]Hamamoto, H.; Hata, K.; Nambu, H.; Shiozaki, Y.; Tohma, H.; Kita, Y. A novel and direct synthesis of chroman derivatives using a hypervalent iodine(III) reagent. Tetrahedron Lett.2004,45,2293-2295.
    [96]Huang, W.-J.; Singh, O. V.; Chen, C.-H.; Lee, S.-S. Synthesis of (±)-Glaucine and (±)-Neospirodienone via an One-Pot Bischler-Napieralski Reaction and Oxidative Coupling by a Hypervalent Iodine Reagent. Helv. Chim. Acta 2004,87,167-174.
    [97]Tohma, H.; Iwata, M.; Maegawa, T.; Kita, Y. Novel and efficient oxidative biaryl coupling reaction of alkylarenes using a hypervalent iodine(III) reagent. Tetrahedron Lett.2002,43,9241-9244.
    [98]Mirk, D.; Willner, A.; Roland, F.; Waldvogel, S. R. Iodinated Biaryls Synthesized by the Direct Dehydrodimerization of Iodoarenes Using Phenyliodine(Ⅲ) Bis(trifluoroacetate) (PIFA).Adv. Synth. Catal.2004,346,675-681.
    [99]Jean, A.; Cantat, J.; Berard, D.; Bouchu, D.; Canesi, S. Novel Method of Aromatic Coupling between N-Aryl Methanesulfonamide and Thiophene Derivatives. Org. Lett. 2007,9,2553-2556.
    [100]Dohi, T.; Morimoto, K.; Kiyono, Y.; Maruyama, A.; Tohma, H.; Kita, Y. The synthesis of head-to-tail (H-T) dimers of 3-substituted thiophenes by the hypervalent iodine(III)-induced oxidative biaryl coupling reaction. Chem. Commun.2005, 2930-2932.
    [101]Tohma, H.; Iwata, M.; Maegawa, T.; Kiyono, Y.; Maruyama, A.; Kita, Y. A novel and direct synthesis of alkylated 2,2'-bithiophenederivatives using a combination of hypervalent iodine(III) reagent and BF3?Et2O. Org. Biomol. Chem.2003,1, 1647-1649.
    [102]Dohi, T.; Morimoto, K.; Maruyama, A.; Kita, Y. Direct Synthesis of Bipyrroles Using Phenyliodine Bis(trifluoroacetate) with Bromotrimethylsilane. Org. Lett.2006,8, 2007-2010.
    [103]Yoshimura, Y; Ohta, M.; Imahori, T.; Imamichi, T.; Takahata, H. A New Entry to Carbocyclic Nucleosides:Oxidative Coupling Reaction of Cycloalkenylsilanes with a Nucleobase Mediated by Hypervalent Iodine Reagent. Org. Lett.2008,10,3449-3452.
    [104]Tellitu, I.; Urrejola, A.; Serna, S.; Moreno, I.; Herrero, M. T.; Dominguez, E.; SanMartin, R.; Correa, A. On the Phenyliodine(III)-Bis(trifluoroacetate)-Mediated Olefin Amidohydroxylation Reaction. Eur. J. Org. Chem.2007,437-444.
    [105]Correa, A.; Tellitu, I.; Dominguez, E.; Moreno, I; SanMartin, R. An Efficient, PIFA Mediated Approach to Benzo-, Naphtho-, and Heterocycle-Fused Pyrrolo[2,1-c] [l,4]diazepines. An Advantageous Access to the Antitumor Antibiotic DC-81. J. Org. Chem.2005,70,2256-2264.
    [106]Churruca, F.; SanMartin, R.; Tellitu, I.; Dominguez, E. A New, Expeditious Entry to the Benzophenanthrofuran Framework by a Pd-Catalyzed C-and O-Arylation/ PIFA-Mediated Oxidative Coupling Sequence. Eur. J. Org. Chem.2005,2481-2490.
    [107]Serna, S.; Tellitu, I.; Dominguez, E.; Moreno, I.; SanMartin, R. Iodine(III)-mediated aromatic amidation vs olefin amidohydroxylation. The amide N-substituent makes the difference. Tetrahedron 2004,60,6533-6539.
    [108]Churruca, F.; SanMartin, R.; Carril, M.; Urtiaga, M. K.; Solans, X.; Tellitu, I.; Dommguez, E. Direct, Two-Step Synthetic Pathway to Novel Dibenzo[a,c] phenanthridines. J. Org. Chem.2005,70,3178-3187.
    [109]Correa, A.; Tellitu, I.; Dominguez, E.; SanMartin, R. A Metal-Free Approach to the Synthesis of Indoline Derivatives by a Phenyliodine(Ⅲ) Bis(trifluoroacetate)-Mediated Amidohydroxylation Reaction. J. Org. Chem.2006,71,8316-8319.
    [110]Correa, A.; Tellitu, I.; Dominguez, E.; SanMartin, R. An advantageous synthesis of new indazolone and pyrazolone derivatives. Tetrahedron 2006,62,11100-11105.
    [111]Miyazawa, E.; Sakamoto, T.; Kikugawa, Y. Synthesis of Spirodienones by Intramolecular Ipso-Cyclization of N-Methoxy-(4-halogenophenyl)amides Using [Hydroxy(tosyloxy)iodo]benzene in Trifluoroethanol. J. Org. Chem.2003,68, 5429-5432.
    [112]Saito, T.; Kutsumura, N.; Kunimatsu, S.; Kagawa, K.; Otani, T. Synthesis of Benzimidazole-Fused Heterocycles by Intramolecular Oxidative C-N Bond Formation Using Hypervalent Iodine Reagents. Synthesis 2011,3235-3240.
    [113]Dohi, T.; Maruyama, A.; Minamitsuji, Y.; Takenaga, N.; Kita, Y. First hypervalent iodine(Ⅲ)-catalyzed C-N bond forming reaction:catalytic spirocyclization of amides to N-fused spirolactams. Chem. Commun.2007,1224-1226.
    [114]Correa, A.; Tellitu, I.; Dominguez, E.; SanMartin, R. Novel alternative for the N-N bond formation through a PIFA-Mediated oxidative cyclization and its application to the synthesis of Indazol-3-ones.J. Org. Chem.2006,71,3501-3505.
    [115]Yoshida, M.; Fujikawa, K.; Sato, S.; Hara, S. α-Fluorination of β-dicarbonyl compounds using p-iodotoluene difluoride under neutral conditions Arkivoc 2003, vi, 36-42.
    [116]Motherwell, W. B.; Greaney, M. F.; Tocher, D. A. Fluorination of α-phenylsulfanyl esters using difluoroiodotoluene. J. Chem. Soc. Perkin. Trans.1.2002,2809-2815.
    [117]Inagaki, T.; Nakamura, Y.; Sawaguchi, M.; Yoneda, N.; Ayuba, S.; Hara, S. Fluorinative ring-expansion of cyclic ethers using p-iodotoluene difluoride. Stereoselective synthesis of fluoro cyclic ethers. Tetrahedron Lett.2003,44, 4117-4119.
    [118]Conte, P.; Panunzi, B.; Tingoli, M. Iodofluorination of alkenes and alkynes promoted by iodine and 4-iodotoluene difluoride. Tetrahedron Lett.2006,47,273-276.
    [119]Zanka, A.; Takeuchi, H.; Kubota, A. large-scale preparation of iodobenzene dichloride and efficient monochlorination of 4-Aminoacetophenone. Org. Process. Res. Dev. 1998,2,270-273.
    [120]Ibrahim, H.; Kleinbeck, F.; Togni, A. Catalytic Asymmetric Chlorination of β-Keto Esters with Hypervalent Iodine Compounds. Helv. Chim. Acta 2004,87,605-610.
    [121]Chen, Q.-Y.; Guo, C.-C.; Jin, L.-M.; Yin, J.-J.; Chen, L. Metal-Dependent Halogenation and/or Coupling Reactions of Porphyrins with PhIX2(X= Cl, F). Synlett 2005,2893-2898.
    [122]Telvekar, V. N. Hypervalent Iodine System for Debenzylation of Sugars. Synth. Commun.2007,37,2647-2650.
    [123]Whitfield, S. R.; Sanford, M. S. Reactivity of Pd(II) Complexes with Electrophilic Chlorinating Reagents:Isolation of Pd(IV) Products and Observation of C-Cl Bond-Forming Reductive Elimination. J. Am. Chem. Soc.2007,129,15142-15143.
    [124]Cook, T. R.; Esswein, A. J.; Nocera, D. G. Metal Halide Bond Photoactivation from a PtⅢ-AuⅡ Complex. J. Am. Chem. Soc.2007,129,10094-10095.
    [125]Khusniyarov, M. M.; Harms, K.; Sundermeyer, J. New highly fluorinated phenazine derivatives:Correlation between crystal structure and NMR spectroscopy. J. Fluorine. Chem.2006,127,200-204.
    [126]Hayton, T. W.; Legzdins, P.; Patrick, B. O. Differing Reactivities of (trimpsi)M(CO)2(NO) Complexes [M=V, Nb, Ta; trimpsi= tBuSi(CH2PMe2)3] with Halogens and Halogen Sources. Inorg. Chem.2002,41,5388-5396.
    [127]Bastian, M.; Morales, D.; Poli, R.; Richard, P.; Sitzmann, H. Synthesis of new half sandwich tetrachloro derivatives of molybdenum(V) and tungsten(V). X-ray structures of (C5HPr'4)W(CO)3(CH3) and (C5Et5)WCl4. J. Organomet. Chem.2002,654, 109-116.
    [128]Hashem, M. A.; Jung, A.; Ries, M.; Kirschning, A. Iodine(Ⅲ)-Initiated Bromoacetoxylation of Olefins. Synlett 1998,195-197.
    [129]Kirschning, A.; Kunst, E.; Ries, M.; Rose, L.; Schonberger, A.; Wartchow, R. Polymer-bound haloate(I) anions by iodine(III)-mediated oxidation of polymer-bound iodide:synthetic utility in natural product transformations. Arkivoc 2003, vi,145-163.
    [130]Xia, J.-J.; Wu, X.-L.; Wang, G.-W. Hypervalent iodine-promoted aminobromination of electron-deficient olefins with Bromamine-T. Arkivoc 2008, xvi,22-28.
    [131]Wu, X.-L.; Wang, G.-W. Hypervalent iodine-mediated aminobromination of olefins in water. Tetrahedron 2009,65,8802-8807.
    [132]Wu, X.-L.; Wang, G.-W. Aminohalogenation of Electron-Deficient Olefins Promoted by Hypervalent Iodine Compounds. Eur. J. Org. Chem.2008,6239-6246.
    [133]Panunzi, B.; Rotiroti, L.; Tingoli, M. Solvent directed electrophilic iodination and phenylselenenylation of activated alkyl aryl ketones. Tetrahedron Lett.2003,44, 8753-8756.
    [134]Karade, N. N.; Tiwari, G. B.; Huple, D. B.; Siddiqui, T. A. J. Grindstone chemistry: (diacetoxyiodo)benzene-mediated oxidative nuclear halogenation of arenes using NaCl, NaBr or I2. J. Chem. Res.2006,366-368.
    [135]Cheng, D.-R.; Chen, Z.-C.; Zheng, Q.-G. Hypervalent Iodine in Synthesis.90. A Mild and Efficient Method for the Iodination of Pyrazoles. Synth. Commun.2003,33, 2671-2676.
    [136]Yan, J.; Li, J.; Cheng, D. Novel and Efficient Synthesis of 1-Iodoalkynes. Synlett 2007, 2442-2444.
    [137]Comins, D. L.; Kuethe, J. T.; Miller, T. M.; Fevrier, F. C.; Brooks, C. A. Diels-Alder Reactions of N-Acyl-2-alkyl(aryl)-5-vinyl-2,3-dihydro-4-pyridones. J. Org. Chem. 2005,70,5221-5234.
    [138]Iglesias-Arteaga, M. n. A.; Castellanos, E.; Juaristi, E. Alternative procedure for the synthesis of enantiopure 1-benzoyl-2(S)-tert-butyl-3-methylperhydropyrimidin-4-one, a useful starting material for the enantioselective synthesis of a-substituted (3-amino acids. Tetrahedron:Asymmetry 2003,14,577-580.
    [139]Diaz-Sanchez, B. R.; Iglesias-Arteaga, M. A.; Melgar-Fernandez, R.; Juaristi, E. Synthesis of 2-Substituted-5-halo-2,3-dihydro-4(H)-pyrimidin-4-ones and Their Derivatization Utilizing the Sonogashira Coupling Reaction in the Enantioselective Synthesis of a-Substituted β-Amino Acids.J. Org. Chem.2007,72,4822-4825.
    [140]Anastas, P. T.; Levy, I. J.; Parent, K. E. Green Chemistry Education:Changing the Course of Chemistry.; ACS Symp. Ser.,2009.
    [141]赵刚.绿色有机催化;中国石化出版社:北京,2005.
    [142]McNamara, C. A.; Dixon, M. J.; Bradley, M. Recoverable catalysts and reagents using recyclable polystyrene-based supports. Chem. Rev.2002,102,3275-3299.
    [143]Togo, H.; Sakuratani, K. Polymer-Supported Hypervalent Iodine Reagents. Synlett 2002,1966-1975.
    [144]Togo, H. Environmentally benign reagents for chemical conversion: development of recyclable polymer-bound hypervalent iodine oxidants. Eco Industry 2002,7,5-18.
    [145]Togo, H.; Nogami, G.; Yokoyama, M. Synthetic Application of Poly[styrene(iodoso diacetate)]. Synlett 1998,534-536.
    [146]Wang, G.-P.; Chen, Z.-C. Hypervalent Iodine in Synthesis XXVIII:The Preparation and Utility of Polymer-Supported Phenyliodine(III) Diacetate. Synth. Commun.1999, 29,2859-2866.
    [147]Ficht, S.; Mulbaier, M.; Giannis, A. Development of new and efficient polymer-supported hypervalent iodine reagents. Tetrahedron 2001,57,4863-4866.
    [148]Chen, D.-J.; Chen, Z.-C. Hypervalent iodine in synthesis.49. A new effective synthesis of Se-phenyl O,O-dialkyl phosphoroselenoates with polymer-supported phenyiodine diacetate. Synth. Commun.2001,31,421-424.
    [149]Xian, H.; Qing, Z.; Jizheng, Z. Preparation of 1,2-diacylbenzenes from o-hydroxyaryl ketone acylhydrazones using cross-linked poly[styrene(iodoso diacetate)]. Synth. Commun.2001,31,2413-2418.
    [150]Toy, P.; Togo, H.; Shang, Y.; But, T. Macroporous Polystyrene-Supported (Diacetoxyiodo)benzene:An Efficient Heterogeneous Oxidizing Reagent. Synlett 2007, 67-70.
    [151]Chen, F.-E.; Xie, B.; Zhang, P.; Zhao, J.-F.; Wang, H.; Zhao, L. An Efficient and Green Oxidation of Vicinal Diols to Aldehydes Using Polymer-Supported (Diacetoxyiodo)benzene as the Oxidant. Synlett 2007,619-622.
    [152]Huang, X.; Zhu, Q. The Synthesis of Cross-Linked Poly[Styrene(Iodoso Diacetate)] and Application in Preparation of Pyrazoline. Synth. Commun.2001,31,111-115.
    [153]Ley, S. V.; Thomas, A. W.; Finch, H. Polymer-supported hypervalent iodine reagents in clean organic synthesis with potential application in combinatorial chemistry. J. Chem. Soc.,Perkin Trans.11999,669-672.
    [154]Chen, D.-J.; Cheng, D.-P.; Chen, Z.-C. Hypervalent Iodine in Synthesis.61. Regeneration of Carbonyl Function from Carbonyl Derivatives Using Polymer-Supported Phenyliodinebis(Trifluoroacetate). Synth. Commun.2001,31, 3847-3850.
    [155]Abe, S.; Sakuratani, K.; Togo, H. Synthetic Use of Poly[4-hydroxy (tosyloxy)iodo]styrenes. J. Org. Chem.2001,66,6174-6177.
    [156]Abe, S.; Sakuratani, K.; Togo, H. Novel Preparation and Reactivity of Poly[4-hydroxy(tosyloxy)iodo]styrenes. Synlett 2001,22-24.
    [157]Chen, D.-J.; Chen, Z.-C. Hypervalent Iodine in Synthesis 59:Application of Polymeric Diaryliodonium Salts as Aryl Transfer Reagents in SPOS. Synlett 2000, 1175-1177.
    [158]Kalberer, E. W.; Whitfield, S. R.; Sanford, M. S. Application of recyclable, polymer-immobilized iodine(III) oxidants in catalytic C-H bond functionalization. J. Mol. Catal. A Chem.2006,251,108-113.
    [159]Kirschning, A.; Jesberger, M.; Monenschein, H. Application of Polymer-Supported Electrophilic Reagents for the 1,2-Functionalization of Glycals Tetrahedron Lett. 1999,40,8999-9002.
    [160]Monenschein, H.; Sourkouni-Argirusi, G.; Schubothe, K. M.; O'Hare, T.; Kirschning, A. Reactions of Alkenes, Alkynes, and Alkoxyallenes with New Polymer-Supported Electrophilic Reagents. Org. Lett.1999,1,2101-2104.
    [161]Sourkouni-Argirusi, G.; Kirschning, A. A New Polymer-Attached Reagent for the Oxidation of Primary and Secondary Alcohols. Org. Lett.2000,2,3781-3784.
    [162]Kirschning, A.; Monenschein, H.; Wittenberg, R. Functionalized Polymers-Emerging Versatile Tools for Solution-Phase Chemistry and Automated Parallel Synthesis. Angew. Chem. Int. Ed.2001,40,650-679.
    [163]Kirschning, A.; Monenschein, H.; Schmeck, C. Stable Polymer-Bound Iodine Azide. Angew. Chem. Int. Ed.1999,38,2594-2596.
    [164]Yusubov, M. S.; Drygunova, L. A.; Zhdankin, V. V.4,4'-Bis(dichloroiodo)biphenyl and 3-(Dichloroiodo)benzoic Acid:New Recyclable Hypervalent Iodine Reagents for Vicinal Halomethoxylation of Unsaturated Compounds. Synthesis 2004,2289-2292.
    [165]Li, X.-Q.; Zhang, C. An Environmentally Benign TEMPO-Catalyzed Efficient Alcohol Oxidation System with a Recyclable Hypervalent Iodine(III) Reagent and Its Facile Preparation. Synthesis 2009,1163-1169.
    [166]Yoshimura, A.; Banek, C. T.; Yusubov, M. S.; Nemykin, V. N.; Zhdankin, V. V. Preparation, X-ray Structure, and Reactivity of 2-Iodylpyridines:Recyclable Hypervalent Iodine(V) Reagents. J. Org. Chem.2011,76,3812-3819.
    [167]Hirofumi Tohma, A. M. A. M. T. M. T. D. M. S. T. M. Y. K. Preparation and Reactivity of 1,3,5,7-Tetrakis[4-(diacetoxyiodo)phenyl]adamantane, a Recyclable Hypervalent Iodine(III) Reagent. Angew. Chem. Int. Edit.2004,43,3595-3598.
    [168]Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Shiro, M.; Kita, Y. A unique site-selective reaction of ketones with new recyclable hypervalent iodine(III) reagents based on a tetraphenylmethane structure. Chem. Commun.2005,2205-2207.
    [169]Yusubov, M. S.; Yusubova, R. Y.; Kirschning, A.; Park, J. Y.; Chi, K.-W. m-Iodosylbenzoic acid, a tagged hypervalent iodine reagent for the iodo-functionalization of alkenes and alkynes. Tetrahedron Lett.2008,49,1506-1509.
    [170]Yusubov, M.; Funk, T.; Yusubova, R.; Zholobova, G.; Kirschning, A.; Park, J. Y.; Chi, K.-W. m-Iodosylbenzoic Acid:Recyclable Hypervalent Iodine Reagent for a-Tosyloxylation and a-Mesyloxylation of Ketones. Synth. Commun.2009,39, 3772-3784.
    [171]Yusubov, M. S.; Gilmkhanova, M. P.; Zhdankin, V. V.; Kirschning, A. m-Iodosylbenzoic Acid as a Convenient Recyclable Reagent for Highly Efficient RuC13-Catalyzed Oxidation of Alcohols to Carbonyl Compounds. Synlett 2007,4, 563-566.
    [172]Yusubov, M. S.; Funk, T. V.; Chi, K.-W.; Cha, E.-H.; Kim, G. H.; Kirschning, A. Zhdankin, V. V. Preparation and X-ray Structures of 3-[Bis(trifluoroacetoxy)iodo] benzoic Acid and 3-[Hydroxy(tosyloxy)iodo]benzoic Acid:New Recyclable Hypervalent Iodine Reagents. J. Org. Chem.2008,73,295-297.
    [173]Kunst, E.; Gallier, F.; Dujardin, G.; Yusubov, M. S.; Kirschning, A. Tagged Hypervalent Iodine Reagents:A New Purification Concept Based on Ion Exchange through SN2 Substitution. Org. Lett.2007,9,5199-5202.
    [174]Kunst, E.; Gallier, F.; Dujardin, G.;Kirschning, A. Glycosidations of 2-deoxy glycosyl dithiophosphates using a tagged iodine(iii)-promoter for simple purification. Org. Biomol. Chem.2008,6,893-898.
    [175]Qian, W.; Jin, E.; Bao, W.; Zhang, Y. Clean and Highly Selective Oxidation of Alcohols in an Ionic Liquid by Using an Ion-Supported Hypervalent Iodine(III) Reagent. Angew. Chem. Int. Edit.2005,44,952-955.
    [176]Qian, W.; Jin, E.; Bao, W.; Zhang, Y. Clean and selective oxidation of alcohols catalyzed by ion-supported TEMPO in water. Tetrahedron 2006,62,556-562.
    [177]Qian, W.; Pei, L. Efficient and Highly Selective Oxidation of Sulfides to Sulfoxides in the Presence of an Ionic Liquid Containing Hypervalent Iodine. Synlett 2006,709-712.
    [178]Bao, W.; Qian, W.; Fang, C. A Mild and Clean Method for Oxidative Formation of Amides from Aldehydes and Amines. Synlett 2008,2529-2531.
    [179]Handy, S. T.; Okello, M. Homogeneous Supported Synthesis Using Ionic Liquid Supports:Tunable Separation Properties. J. Org. Chem.2005,70,2874-2877.
    [180]Roy, M.-N.; Poupon, J.-C.; Charette, A. B. Tetraarylphosphonium Salts as Soluble Supports for Oxidative Catalysts and Reagents. J. Org. Chem.2009,74,8510-8515.
    [181]Rocaboy, C.; Gladysz, J. A. Convenient Syntheses of Fluorous Aryl Iodides and Hypervalent Iodine Compounds:ArI(L)n Reagents That Are Recoverable by Simple Liquid/Liquid Biphase Workups, and Applications in Oxidations of Hydroquinones. Chem. Eur.J.2003,9,88-95.
    [182]Tesevic, V.; Gladysz, J. A. An easily accessed class of recyclable hypervalent iodide reagents for functional group oxidations:bis(trifluoroacetate) adducts of fluorous alkyl iodides, CF3(CF2)n-1I(OCOCF3)2. Green Chem.2005,7,833-836.
    [183]Tesevic, V.; Gladysz, J. A. Oxidations of Secondary Alcohols to Ketones Using Easily Recyclable Bis(trifluoroacetate) Adducts of Fluorous Alkyl Iodides, CF3(CF2)n-1I(OCOCF3)2.J.Org. Chem.2006,71,7433-7440.
    [184]Podgorsek, A.; Jurisch, M.; Stavber, S.; Zupan, M.; Iskra, J.; Gladysz, J. A. Synthesis and Reactivity of Fluorous and Nonfluorous Aryl and Alkyl Iodine(Ⅲ) Dichlorides: New Chlorinating Reagents that are Easily Recycled using Biphasic Protocols. J. Org. Chem.2009,74,3133-3140.
    [185]Zagulyaeva, A. A.; Yusubov, M. S.; Zhdankin, V. V. A General and Convenient Preparation of [Bis(trifluoroacetoxy)iodo]perfluoroalkanes and [Bis(trifluoroacetoxy) iodo]arenes by Oxidation of Organic Iodides Using Oxone and Trifluoroacetic Acid. J. Org. Chem.2010,75,2119-2122.
    [186]Lion, C. J.; Vasselin, D. A.; Schwalbe, C. H.; Matthews, C. S.; Stevensa, M. F. G.; Westwell, A. D. Novel reaction products from the hypervalent iodine oxidation of hydroxylated stilbenes and isoflavones. Org. Biomol. Chem.2005,3,3996-4001.
    [187]Richardson, R. D.; Wirth, T. Hypervalent Iodine Goes Catalytic. Angew. Chem. Int. Ed. 2006,45,4402-4404.
    [188]Ngatimin, M.;Lupton, D. W. The Discovery of Catalytic Enantioselective Polyvalent Iodine Mediated Reactions. Aust. J. Chem.2010,63,653-658.
    [189]Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. Iodobenzene-Catalyzed a-Acetoxylation of Ketones. In Situ Generation of Hypervalent (Diacyloxyiodo)benzenes Using m-Chloroperbenzoic Acid. J. Am. Chem. Soc.2005,127,12244-12245.
    [190]Yamamoto, Y.; Togo, H. PhI-Catalyzed a-Tosyloxylation of Ketones with m-Chloroperbenzoic Acid and p-Toluenesulfonic Acid. Synlett 2006,798-800.
    [191]Richardson, R. D.; Page, T. K.; Altermann, S.; Paradine, S. M.; French, A. N.; Wirth, T. Enantioselective a-Oxytosylation of Ketones Catalysed by Iodoarenes. Synlett 2007, 538-542.
    [192]Akiike, J.; Yamamoto, Y.; Togo, H. Efficient Conversion of Ketones to a-Tosyloxyketones with m-Chloroperbenzoic Acid and p-Toluenesulfonic Acid in the Presence of Catalytic Amount of IL-Supported Phi in [emim]OTs. Synlett 2007, 2168-2172.
    [193]Yamamoto, Y.; Kawano, Y.; Toy, P. H.; Togo, H. PhI- and polymer-supported PhI-catalyzed oxidative conversion of ketones and alcohols to a-tosyloxyketones with m-chloroperbenzoic acid and p-toluenesulfonic acid. Tetrahedron 2007,63, 4680-4687.
    [194]Altermann, S. M.; Richardson, R. D.; Page, T. K.; Schmidt, R. K.; Holland, E.; Mohammed, U.; Paradine, S. M.; French, A. N.; Richter, C.; Bahar, A. M.; Witulski, B.; Wirth, T. Catalytic Enantioselective a-Oxysulfonylation of Ketones Mediated by Iodoarenes. Eur. J. Org. Chem.2008,5315-5328.
    [195]Miyamoto, K.; Sei, Y.; Yamaguchi, K.; Ochiai, M. Iodomesitylene-Catalyzed Oxidative Cleavage of Carbon-Carbon Double and Triple Bonds Using m-Chloroperbenzoic Acid as a Terminal Oxidant. J. Am. Chem. Soc.2009,131, 1382-1383.
    [196]Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Versatile Hypervalent-Iodine(III)-Catalyzed Oxidations with m-Chloroperbenzoic Acid as a Cooxidant. Angew. Chem. Int. Edit.2005,44,6193-6196.
    [197]Traore, M.; Ahmed-Ali, S.; Peuchmaur, M.; Wong, Y.-S. Hypervalent iodine(III)-mediated tandem oxidative reactions:application for the synthesis of bioactive polyspirocyclohexa-2,5-dienones. Tetrahedron 2010,66,5863-5872.
    [198]Dohi, T.; Minamitsuji, Y.; Maruyama, A.; Hirose, S.; Kita, Y. A New H2O2/Acid Anhydride System for the Iodoarene-Catalyzed C-C Bond-Forming Reactions of Phenols. Org. Lett.2008,10,3559-3562.
    [199]Muhammet, U.; Takeshi, Y.; Kazuaki, I. Enantioselective Kita Oxidative Spirolactonization Catalyzed by In Situ Generated Chiral Hypervalent Iodine(III) Species. Angew. Chem. Int. Edit.2010,49,2175-2177.
    [200]Uyanik, M.; Yasui, T.; Ishihara, K. Chiral hypervalent iodine-catalyzed enantioselective oxidative Kita spirolactonization of 1-naphthol derivatives and one-pot diastereo-selective oxidation to epoxyspirolactones. Tetrahedron 2010,66, 5841-5851.
    [201]Uyanik, M.; Okamoto, H.; Yasui, T.; Ishihara, K. Quaternary ammonium (hypo)iodite catalysis for enantioselective oxidative cycloetherification. Science 2010,328, 1376-1379.
    [202]Moroda, A.; Togo, H. Iodobenzene-Catalyzed Preparation of 3,4-Dihydro-1H-2,1-benzothiazine 2,2-Dioxides from 2-Aryl-N-methoxyethanesulfonamides with m-Chloroperoxybenzoic Acid. Synthesis 2008,1257-1261.
    [203]Yan, J.; Wang, H.; Yang, Z.; He, Y. An Efficient Catalytic Sulfonyloxylactonization of Alkenoic Acids Using Hypervalent Iodine(III) Reagent. Synlett 2009,2669-2672.
    [204]Zhou, Z.-S.; He, X.-H. A convenient phosphoryloxylactonization of pentenoic acids with catalytic hypervalent iodine(III) reagent. Tetrahedron Lett.2010,51,2480-2482.
    [205]Liu, H.; Tan, C.-H. Iodobenzene-catalysed iodolactonisation using sodium perborate monohydrate as oxidant. Tetrahedron Lett.2007,48,8220-8222.
    [206]Yakura, T.; Konishi, T. A Novel Catalytic Hypervalent Iodine Oxidation of p-Alkoxyphenols to p-Quinones Using 4-Iodophenoxyacetic Acid and Oxone?. Synlett 2007,765-768.
    [207]Yakura, T.; Yamauchi, Y.; Tian, Y.; Omoto, M. Catalytic Hypervalent Iodine Oxidation of p-Dialkoxybenzenes to p-Quinones Using 4-Iodophenoxyacetic Acid and Oxone. Chem. Pharm. Bull.2008,56,1632-1634.
    [208]Yakura, T.; Tian, Y.; Yamauchi, Y.; Omoto, M.; Konishi, T. Catalytic hypervalent iodine oxidation using 4-iodophenoxyacetic acid and oxone:oxidation of p-alkoxyphenols to p-benzoquinones. Chem. Pharm. Bull.2009,57,252-256.
    [209]Yakura, T.; Omoto, M. Efficient synthesis of p-quinols using catalytic hypervalent iodine oxidation of 4-arylphenols with 4-iodophenoxyacetic acid and oxone. Chem. Pharm. Bull.2009,57,643-645.
    [210]Yakura, T.; Omoto, M.; Yamauchi, Y.; Tian, Y.; Ozono, A. Hypervalent iodine oxidation of phenol derivatives using a catalytic amount of 4-iodophenoxyacetic acid and Oxone? as a co-oxidant. Tetrahedron 2010,66,5833-5840.
    [211]Uyanik, M.; Ishihara, K.2-Iodoxybenzenesulfonic Acid (IBS) Catalyzed Oxidation of Alcohols. Aldrichim. Acta 2010,43,83-91.
    [212]Uyanik, M.; Ishihara, K. Hypervalent iodine-mediated oxidation of alcohols. Chem. Commun.2009,2086-2099.
    [213]Uyanik, M.; Akakura, M.; Ishihara, K.2-Iodoxybenzenesulfonic acid as an extremely active catalyst for the selective oxidation of alcohols to aldehydes, ketones, carboxylic acids, and enones with oxone. J. Am. Chem. Soc.2009,131,251-262.
    [214]Yusubov, M. S.; Nemykin, V. N.; Zhdankin, V. V. Transition metal-mediated oxidations utilizing monomeric iodosyl-and iodylarene species. Tetrahedron 2010,66, 5745-5752.
    [215]Yoshimura, A.; Neu, H. M.; Nemykin, V. N.; Zhdankin, V. V. Metalloporphyrin /Iodine(Ⅲ)-Cocatalyzed Oxygenation of Aromatic Hydrocarbons. Adv. Synth. Catal. 2010,352,1455-1460.
    [216]Yusubov, M. S.; Chi, K.-W.; Park, J. Y.; Karimov, R.; Zhdankin, V. V. Highly efficient RuCl3-catalyzed disproportionation of (diacetoxyiodo)benzene to iodylbenzene and iodobenzene; leading to the efficient oxidation of alcohols to carbonyl compounds. Tetrahedron Lett.2006,47,6305-6308.
    [217]Koposov, A. Y.; Karimov, R. R.; Pronin, A. A.; Skrupskaya, T.; Yusubov, M. S.; Zhdankin, V. V. RuCl3-Catalyzed Oxidation of Iodoarenes with Peracetic Acid:New Facile Preparation of Iodylarenes.J.Org. Chem.2006,71,9912-9914.
    [218]Yusubov, M. S.; Zagulyaeva, A. A.; Zhdankin, V. V. Iodine(V)/Ruthenium(III)-Cocatalyzed Oxidations:A Highly Efficient Tandem Catalytic System for the Oxidation of Alcohols and Hydrocarbons with Oxone. Chem. Eur. J.2009,15, 11091-11094.
    [219]Zeng, X.-M.; Chen, J.-M.; Middleton, K.; Zhdankin, V. V. Recyclable silica-supported iodoarene-RuCl3 bifunctional catalysts for oxidation of alcohols and alkylarenes. Tetrahedron Lett.2011,52,5652-5655.
    [220]Grieco, P. A. Organic synthesis in water.; Blackie Academic & Professional:London, 1998.
    [221]Lindstrom, U. M. Stereoselective Organic Reactions in Water. Chem. Rev.2002,102, 2751-2772.
    [222]Chanda, A.; Fokin, V. V. Organic Synthesis "On Water". Chem. Rev.2009,109, 725-748.
    [223]Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev.1999,99,2071-2083.
    [224]Parvulescu, V. I.; Hardacre, C. Catalysis in Ionic Liquids. Chem. Rev.2007,107, 2615-2665.
    [225]Giernoth, R. Task-Specific Ionic Liquids. Angew. Chem. Int. Edit.2010,49, 2834-2839.
    [226]Tundo, P.; Selva, M. The Chemistry of Dimethyl Carbonate. Acc. Chem. Res.2002,35, 706-716.
    [227]Baiker, A. Supercritical Fluids in Heterogeneous Catalysis. Chem. Rev.1999,99, 453-473.
    [228]Jessop, P. G. Homogeneous Catalysis in Supercritical Fluids. Chem. Rev.1999,99, 475-493.
    [229]Cornils, B. Fluorous Biphase Systems-The New Phase-Separation and Immobilization Technique. Angew. Chem. Int. Edit.1997,36,2057-2059.
    [230]Fish, R. H. Fluorous Biphasic Catalysis:A New Paradigm for the Separation of Homogeneous Catalysts from Their Reaction Substrates and Products. Chem. Eur. J. 1999,5,1677-1680.
    [231]Moriarty, R. M.; Rani, N.; Condeiu, C.; Duncan, M. P.; Prakash, O. Hypervalent Iodine Oxidation of Trimethylsilyl Ketene Acetals:A Convenient Route to a-Methoxylation of Esters and Lactones. Synth. Commun.1997,27,3273-3277.
    [232]Moriarty, R. M.; Prakash, O.; Duncan, M. P.; Vaid, R. K.; Rani, N. Hypervalent iodine oxidation of trimethylsilyl ketene acetals:a convenient route to a-methoxylation of esters and lactones. J. Chem. Res. (S) 1996,432-433.
    [233]Tohma, H.; Takizawa, S.; Watanabe, H.; Kita, Y. Hypervalent iodine(III) oxidation catalyzed by quaternary ammonium salt in micellar systems. Tetrahedron Lett.1998, 39,4547.4550.
    [234]Tohma, H.; Maegawa, T.; Kita, Y. Facile and efficient oxidation of sulfides to sulfoxides in water using hypervalent iodine reagents. Arkivoc 2003, vi,62-70.
    [235]Dohi, T.; Takenaga, N.; Goto, A.; Fujioka, H.; Kita, Y. Clean and Efficient Benzylic C-H Oxidation in Water Using a Hypervalent Iodine Reagent:Activation of Polymeric Iodosobenzene with KBr in the Presence of Montmorillonite-K10. J. Org. Chem.2008, 73,7365-7368.
    [236]Das, B.; Holla, H.; Venkateswarlu, K.; Majhi, A. Organic reactions in water:an efficient one-pot synthesis of acyloxiranes from Baylis-Hillman adducts using hypervalent iodine. Tetrahedron Lett.2005,46,8895-8897.
    [237]Ye, Y.; Wang, L.; Fan, R. Aqueous Iodine(Ⅲ)-Mediated Stereoselective Oxidative Cyclization for the Synthesis of Functionalized Fused Dihydrofuran Derivatives. J. Org. Chem.2010,75,1760-1763.
    [238]Huang, W.-J.; Singh, O. V.; Chen, C.-H.; Chiou, S.-Y.; Lee, S.-S. Activation of Iodosobenzene by Catalytic Tetrabutylammonium Iodide and Its Application in the Oxidation of Some Isoquinoline Alkaloids. Helv. Chim. Acta 2002,85,1069-1078.
    [239]Tada, N.; Miyamoto, K.; Ochiai, M. Oxidation of 3-Hydroxypiperidines with Iodosylbenzene in Water:Tandem Oxidative Grob Fragmentation-Cyclization Reaction. Chem. Pharm. Bull.2004,52,1143-1144.
    [240]Chatterjee, N.; Pandit, P.; Halder, S.; Patra, A.; Maiti, D. K. Generation of Nitrile Oxides under Nanometer Micelles Built in Neutral Aqueous Media:Synthesis of Novel Glycal-Based Chiral Synthons and Optically Pure 2,8-Dioxabicyclo[4.4.0] decene Core. J. Org. Chem.2008,73,7775-7778.
    [241]Ochiai, M.; Miyamoto, K.; Shiro, M.; Ozawa, T.; Yamaguchi, K. Isolation, Characterization, and Reaction of Activated Iodosylbenzene Monomer Hydroxy(phenyl)iodonium Ion with Hypervalent Bonding:Supramolecular Complex PhI+OH-18-Crown-6 with Secondary I…O Interactions. J. Am. Chem. Soc.2003,125, 13006-13007.
    [242]Miyamoto, K.; Tada, N.; Ochiai, M. Activated Iodosylbenzene Monomer as an Ozone Equivalent:Oxidative Cleavage of Carbon Carbon Double Bonds in the Presence of Water. J. Am. Chem. Soc.2007,129,2772-2773.
    [243]Koposov, A. Y.; Netzel, B. C.; Yusubov, M. S.; Nemykin, V. N.; Nazarenko, A. Y.; Zhdankin, V. V. Preparation and Structure of Oligomeric Iodosylbenzene Sulfate (PhIO)3?SO3:Stable and Water-Soluble Analog of Iodosylbenzene. Eur. J. Org. Chem. 2007,4475-4478.
    [244]Nemykin, V. N.; Koposov, A. Y.; Netzel, B. C.; Yusubov, M. S.; Zhdankin, V. V. Self-Assembly of Hydroxy(phenyl)iodonium Ions in Acidic Aqueous Solution: Preparation, and X-ray Crystal Structures of Oligomeric Phenyliodine(III) Sulfates. Inorg. Chem.2009,48,4908-4917.
    [245]Yusubov, M. S.; Yusubova, R. Y.; Funk, T. V.; Chi, K.-W.; Zhdankin, V. V. Oligomeric Iodosylbenzene Sulfate:A Convenient Hypervalent Iodine Reagent for Oxidation of Organic Sulfides and Alkenes. Synthesis 2009,2505-2508.
    [246]Geraskin, I. M.; Pavlova, O.; Neu, H. M.; Yusubov, M. S.; Nemykin, V. N.; Zhdankin, V. V. Comparative Reactivity of Hypervalent Iodine Oxidants in Metalloporphyrin-Catalyzed Oxygenation of Hydrocarbons:Iodosylbenzene Sulfate and 2-Iodylbenzoic Acid Ester as Safe and Convenient Alternatives to Iodosylbenzene. Adv. Synth. Catal. 2009,351,733-737.
    [247]Neu, H. M.; Yusubov, M. S.; Zhdankin, V. V.; Nemykin, V. N. Binuclear Iron(III) Phthalocyanine(μ-Oxodimer)-Catalyzed Oxygenation of Aromatic Hydrocarbons with Iodosylbenzene Sulfate and Iodosylbenzene as the Oxidants. Adv. Synth. Catal.2009, 351,3168-3174.
    [248]Panchan, W.; Chiampanichayakul, S.; Snyder, D. L.; Yodbuntung, S.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Kuhakarn, C. Facile oxidative hydrolysis of acetals to esters using hypervalent iodine(III)/LiBr combination in water. Tetrahedron 2010,66, 2732-2735.
    [249]Li, X.; Xu, Z.; DiMauro, E. F.; Kozlowski, M. C. Unusual oxidative rearrangement of 1,5-diazadecalin. Tetrahedron Lett.2002,43,3747-3750.
    [250]Bag, S.; Tawari, N. R.; Degani, M. S. A new, mild and high yielding protocol for the preparation of nitriles from aldehydes using iodosobenzene diacetate in aqueous ammonia. Arkivoc 2009, xiv,118-123.
    [251]Hou, R.-S.; Wang, H.-M.; Lin, Y.-C.; Chen, L.-C. Hypervalent Iodine(Ⅲ) Sulfonate Mediated Synthesis of 5-Benzoyldihydro-2(3H)-Furanone in Ionic Sovlent. Heterocycles 2005,65,649-656.
    [252]Yusubov, M. S.; Wirth, T. Solvent-free reactions with hypervalent iodine reagents. Org. Lett.2005,7,519-521.
    [253]Zhu, M.; Cai, C. G.; Ke, W.; Shao, J. Convenient, Solvent-Free Method for Preparation of [Hydroxy(phosphoryloxy)iodo]arenes. Synth. Commun.2010,40, 1371-1376.
    [254]Wu, X.-L.; Xia, J.-J.; Wang, G.-W. Aminobromination of olefins with TsNH2 and NBS as the nitrogen and bromine sources mediated by hypervalent iodine in a ball mill. Org. Biomol. Chem.2008,6,548-553.
    [255]Varma, R. S. "Greener" chemical syntheses using mechanochemical mixing or microwave and ultrasound irradiation. Green Chem. Lett. Rev.2007,1,37-45.
    [256]Polshettiwar, V.; Varma, R. S. Greener and expeditious synthesis of bioactive heterocycles using microwave irradiation. Pure Appl. Chem.2008,80,777-790.
    [257]Varma, R. S.; Kumar, D. Solid state oxidation of 1,4-dihydropyridines to pyridines using phenyliodine(Ⅲ) bis(trifluoroacetate) or elemental sulfur. J. Chem. Soc., Per kin Trans.11999,1755-1758.
    [258]Lee, J. C.; Park, J. Y.; Yoon, S. Y.; Bae, Y. H.; Lee, S. J. Efficient microwave induced direct α-halogenation of carbonyl compounds. Tetrahedron Lett.2004,45,191-193.
    [259]Lee, J. C.; Kim, S.; Ku, C. H.; Choi, H. J.; Lee, Y. C. Efficient Method for Preparation of α-[(2,4-Dinitrobenzene)sulfonyl]oxy Carbonyl Compounds. Bull. Korean Chem. Soc.2002,23,1503-1504.
    [260]Wurz, R. P.; Charette, A. B. Hypervalent lodine(Ⅲ) Reagents as Safe Alternatives to α-Nitro-α-diazocarbonyls. Org. Lett.2003, 5,2327-2329.
    [1]Regitz, M.; Maas, G. Diazo Compounds:Properties and Synthesis; Academic Press: London,1986.
    [2]Bollinger, F. W.; Tuma, L. D. Diazotransfer Reagents. Synlett 1996,407-413.
    [3]Bretherick, L. Hazards in the Chemical Laboratory,4th ed.;Royal Society of Chemistry, Burlington House:London,1986.
    [4]Miiller, P.; Fernandez, D.; Nury, P.; Rossier, J.-C. Metal-catalyzed carbenoid reactions with iodonium and sulfonium ylides. J. Phys. Org. Chem.1998,11,321-333.
    [5]Muller, P. Asymmetric Transfer of Carbenes with Phenyliodonium Ylides. Acc. Chem. Res.2004,37,243-251.
    [6]Li, A.-H.; Dai, L.-X. Asymmetric Ylide Reactions:Epoxidation, Cyclopropanation, Aziridination, Olefination, and Rearrangement. Chem. Rev.1997,97,2341-2372.
    [7]Ochiai, M.; Tada, N.; Miyamoto, K.; Shiro, M. Synthesis and structure of aliphatic phenylchloronium ylide. Heteroatom Chem.2011,22,325-330.
    [8]Neilands, O. Aryliodonium betaines of a-dicarbonyl compounds:Synthesis and use in generation of dioxocarbenes. Latv. J. Chem 2002,27-59.
    [9]Moriarty, R. M.; Vaid, R. K. Carbon-Carbon Bond Formation Via Hypervalent Iodine Oxidations. Synthesis 1990,431-447.
    [10]Spyroudis, S.; Malamidou-Xenikaki, E. Zwitterionic Iodonium Compounds:Useful Tools in Organic Synthesis. Synlett 2008,2725-2740.
    [11]Camacho, M. B.; Clark, A. E.; Liebrecht, T. A.; DeLuca, J. P. A Phenyliodonium Ylide as a Precursor for Dicarboethoxycarbene:Demonstration of a Strategy for Carbene Generation. J. Am. Chem. Soc.2000,122,5210-5211.
    [12]Moriarty, R. M.; Tyagi, S.; Kinch, M. Metal-free intramolecular cyclopropanation of alkenes through iodonium ylide methodology. Tetrahedron 2010,66,5801-5810.
    [13]Muller, P. Transition metal-catalyzed nitrene transfer:aziridination and insertion; JAI Press:London,1997.
    [14]Miiller, P.; Fruit, C. Enantioselective Catalytic Aziridinations and Asymmetric Nitrene Insertions into CH Bonds. Chem. Rev.2003,103,2905-2919.
    [15]Dodd, R. H.; Dauban, P. Iminoiodanes and C-N Bond Formation in Organic Synthesis. Synlett 2003,1571-1586.
    [16]Moriarty, R. M.; Prakash, O.; Vaid, R. K.; Zhao, L. A novel intramolecular cyclopropanation using iodonium ylides. J. Am. Chem. Soc.1989,111,6443-6444.
    [17]Goudreau, S. R.; Marcoux, D.; Charette, A. B. General Method for the Synthesis of Phenyliodonium Ylides from Malonate Esters:Easy Access to 1,1-Cyclopropane Diesters. J. Org. Chem.2009,74,470-473.
    [18]Goudreau, S. R.; Marcoux, D.; Charette, A. B. Synthesis of dimethyl 2-phenylcyclopropane-1,1-dicarboxylate using an iodonium ylide derived from dimethyl malonate. Org. Synth.2010,87,115-125.
    [19]Ghanem, A.; Lacrampe, F.; Schurig, V. Rhodium(II)-Catalyzed Inter-and Intramolecular Cyclopropanations with Diazo Compounds and Phenyliodonium Ylides:Synthesis and Chiral Analysis. Helv. Chim. Acta 2005,88,216-239.
    [20]Georgakopoulou, G.; Kalogiros, C.; Hadjiarapoglou, L. P. RhⅡ-Catalyzed Thermal Cyclopropanations of a Phenyliodonium Bis(carbomethoxy)methylide with Alkenes and Dienes. Synlett 2001,1843-1846.
    [21]Batsila, C.; Kostakis, G.; Hadjiarapoglou, L. P. RhⅡ-catalyzed cycloadditions of carbomethoxy iodonium ylides. Tetrahedron Lett.2002,43,5997-6000.
    [22]Batsila, C.; Gogonas, E. P.; Kostakis, G.; Hadjiarapoglou, L. P. Alkenyl C-H Insertion of Iodonium Ylides into Pyrroles:Studies toward the Total Syntheses of Tolmetin and Amtolmetin Guacil. Org. Lett.2003,5,1511-1514.
    [23]Telu, S.; Durmus, S.; Koser, G. F. Oxidative-substitution reactions of electron-rich aromatic compounds with BF3-activated iodonium ylides. Tetrahedron Lett.2007,48, 1863-1866.
    [24]Muller, P.; Bolea, C. Enantioselective Intramolecular CH-Insertions upon Cu-Catalyzed Decomposition of Phenyliodonium Ylides. Molecules 2001,6,258-266.
    [25]Muller, P.; Bolea, C. The Enantioselectivity and the Stereochemical Course of Copper-Catalyzed Intramolecular CH Insertions of Phenyliodonium Ylides. Helv. Chim. Acta 2002,85,483-494.
    [26]Muller, P.; Tohill, S. Intermolecular Cyclopropanation versus CH Insertion in Rh"-Catalyzed Carbenoid Reactions. Tetrahedron Lett.2000,56,1725-1731.
    [27]Lee, Y. R.; Cho, B. S. Rhodium(II)-Catalyzed Reaction of Iodonium Ylides with Heterocyclic and Aromatic Compounds. Efficient Synthesis of Fused Acetals and C-H Insertion Products. Bull. Korean Chem. Soc.2002,23,779-782.
    [28]Ochiai, M.; Kitagawa, Y.; Yamamoto, S. Generation and Reaction of Monocarbonyliodonium Ylides:Ester Exchange of (Z)-(Acetoxyvinyl)iodonium Salts with Lithium Ethoxide and Synthesis of Epoxy Ketones. J. Am. Chem. Soc.1997,119, 11598-11604.
    [29]March, P. d.; Huisgen, R. Carbonyl Ylides from Aldehydes and Carbenes. J. Am. Chem. Soc.1982,104,4952.
    [30]Fairfax, D. J.; Austin, D. J.; Xu, S. L.; Padwa, A. Alternatives to a-diazo ketones for tandem cyclization-cycloaddition and carbenoid-alkyne metathesis strategies. Novel cyclic enol-ether formation via carbonyl ylide rearrangement reactions. J. Chem. Soc. Perkin Trans.11992,2837-2844.
    [31]Ghanem, A.; Aboul-Enein, H. Y.; Muller, P. One-pot synthesis and chiral analysis of cyclopropane derivatives. Chirality 2005,17,44-50.
    [32]Muller, P.; Bolea, C. Carbenoid Pathways in Copper-Catalyzed Intramolecular Cyclopropanations of Phenyliodonium Ylides. Helv. Chim. Acta 2001,84,1093-1111.
    [33]Muller, P.; Allenbach, Y.; Chappellet, S.; Ghanem, A. Asymmetric Cyclopropanations and Cycloadditions of Dioxocarbenes. Synthesis 2006,1689-1696.
    [34]Moreau, B.; Charette, A. B. Expedient Synthesis of Cyclopropane a-Amino Acids by the Catalytic Asymmetric Cyclopropanation of Alkenes Using Iodonium Ylides Derived from Methyl Nitroacetate. J. Am. Chem. Soc.2005,127,18014-18015.
    [35]Muller, P.; Ghanem, A. Rh(II)-Catalyzed Enantioselective Cyclopropanation of Olefins with Dimethyl Malonate via in Situ Generated Phenyliodonium Ylide. Org. Lett.2004,6,4347-4350.
    [36]Wurz, R. P.; Charette, A. B. Hypervalent Iodine(III) Reagents as Safe Alternatives to a-Nitro-α-diazocarbonyls. Org. Lett.2003,5,2327-2329.
    [37]Dauban, P.; Saniere, L.; Tarrade, A.; Dodd, R. H. Copper-Catalyzed Nitrogen Transfer Mediated by Iodosylbenzene PhlO. J. Am. Chem. Soc.2001,123,7707-7708.
    [38]Muller, P.; Ghanem, A. Asymmetric Cyclopropanation of Olefins with an in situ Generated Phenyliodonium Ylide. Synlett 2003,1830-1833.
    [39]Macikenas, D.; Skrzypczak-Jankun, E.; Protasiewicz, J. D. Redirecting Secondary Bonds To Control Melecular and Crystal Properties of an Iodosyl-and an Iodylbenzene. Angew. Chem. Int. Ed.2000,39,2007-2010.
    [40]Neilands, O. The method of synthesis of iodonium yield. Zh. Org. Khim.1965,1, 1858-1862.
    [41]Zhu, S.-Z. Synthesis and Reactions of Phenyliodonium Bis(perfluoroalkanesulfonyl) Methides. Heteroatom Chem.1994,5,9-18.
    [42]Su, J. T.; Goddard, W. A. Enhancing 2-Iodoxybenzoic Acid Reactivity by Exploiting a Hypervalent Twist. J. Am. Chem. Soc.2005,127,14146-14147.
    [43]Moorthy, J. N.; Singhal, N.; Senapati, K. Modified o-methyl-substituted IBX:room temperature oxidation of alcohols and sulfides in common organic solvents. Tetrahedron Lett.2008,49,80-84.
    [44]Guilbault, A.-A.; Legault, C. Y. Drastic Enhancement of Activity in Iodane-Based a-Tosyloxylation of Ketones:Iodine(III) Does the Hypervalent Twist. ACS Catal. 2012,2,219-222.
    [45]Moorthy, J. N.; Senapati, K.; Parida, K. N.; Jhulki, S.; Sooraj, K.; Nair, N. N. Twist Does a Twist to the Reactivity:Stoichiometric and Catalytic Oxidations with Twisted Tetramethyl-IBX. J. Org. Chem.2011,76,9593-9601.
    [46]Davies, H. M. L.; Beckwith, R. E. J. Catalytic Enantioselective C-H Activation by Means of Metal-Carbenoid-Induced C-H Insertion. Chem. Rev.2003,103,2861-2903.
    [47]Slattery, C. N.; Ford, A.; Maguire, A. R. Catalytic asymmetric C-H insertion reactions of a-diazocarbonyl compounds. Tetrahedron 2010,66,6681-6705.
    [48]Cuffe, J.; Gillespie, R. J.; Porter, A. E. A.2,5-Dichlorothiophenium bismethoxy carbonylmethylide:a bismethoxycarbonylcarbene equivalent. J. Chem. Soc., Chem. Commun.1978,641-642.
    [49]Maryanoff, B. E. Reaction of Dimethyl Diazomalonate and Ethyl 2-Diazoacetoacetate with N-Methylpyrrole. J. Org. Chem.1982,47,3000-3002.
    [50]Kita, Y; Tohma, H.; Hatanaka, K.; Takada, T.; Fujita, S.; Mitoh, S.; Sakurai, H.; Oka, S. Hypervalent Iodine-Induced Nucleophilic Substitution of para-Substituted Phenol Ethers. Generation of Cation Radicals as Reactive Intermediates. J. Am. Chem. Soc. 1994,116,3684-3691.
    [51]Yasuyuki, K.; Tohma, H.; Hatanaka, K.; Yakura, T. A Novel Oxidative Azidation of Aromatic Compounds with Hypervalent Iodine Reagent, Phenyliodine(III) Bis(trifluoroacetate) (PIFA) and Trimethylsilyl Azide. Tetrahedron Lett.1991,32, 4321-4324.
    [52]Karele, B.; Neiland, O. The transylidation of nucleophiles with iodonium ylide. J. Org. Chem. USSR 1966,2,1656-1658.
    [53]Gogonas, E. P.; Hadjiarapoglou, L. P. [3+2]-Cycloaddition reactions of 2-phenyl-iodonio-5,5-dimethyl-1,3-dioxacyclohexanemethylide. Tetrahedron Lett.2000,41, 9299-9303.
    [54]Koser, G. F.; Yu, S.-M. Iodonium Ylides. Reactions of Phenyldimedonyliodone with Diphenylketene and Phenyl Isocyanate J. Org. Chem.1975,40,1166-1168.
    [55]Asouti, A.; Hadjiarapoglou, L. P. [3+2]-Cycloaddition reactions of 2-pheny-liodonio-1,3-dioxacyclohexanemethylide:Facile synthesis of fused dihydrofuran derivatives. Tetrahedron Lett.1998,39,9073-9076.
    [56]Koser, G. F.; Linden, S.-M.; Shih, Y.-J. Iodonium Ylides. The Action of Thiols on Phenyl Dimedonyl Iodone. Oxidation-Reduction vs. Substitution J. Org. Chem. 1978,43,2676-2682.
    [57]Saito, T.; Kikuchi, H.; Kondo, A. A new and simple synthesis of heterocylce-fused [c]thiophenes:reaction of heteroaromatic thioketones with bis(arylsulfonyl) dizaomethanes and phenyliodonium bis(phenylsulfonyl)methylide. Synthesis 1995, 87-91.
    [58]Pirrung, M. C.; Zhang, J.; Lackey, K.; Sternbach, D. D.; Brown, F. Reactions of a Cyclic Rhodium Carbenoid with Aromatic Compounds and Vinyl Ethers. J. Org. Chem.1995,(60,2112-2124.
    [59]Lee, Y R.; Yoon, S. H.; Seo, Y.; Kim, B. S. Rhodium(II)-Catalyzed Reaction of Iodonium Ylides with Conjugated Compounds:Efficient Synthesis of Dihydrofurans, Oxazoles, and Dihydrooxepines. Synthesis 2004,2787-2798.
    [60]Lee, Y. R.; Suk, J. Y.; Kim, B. S. Rhodium(II)-catalyzed reactions of 3-diazo-2,4-chromenediones. First one-step synthesis of pterophyllin. Tetrahedron Lett.1999,40,6603-6607.
    [61]Koser, G. F.; Yu, S.-M. Iodonium Ylides. Reactions of Phenyldimedonyliodone with Several Thiocarbonyl Compounds. Evidence for Sulfur Ylide Intermediates J. Org. Chem.1976,41,125-128.
    [62]Lazaros P, H. The chemistry of photolytically and thermally generated α-ketocarbenes from iodonium ylides of β-diketones. Tetrahedron Lett.1987,28,4449-4450.
    [63]Moriarty, R. M.; Tyagi, S.; Ivanov, D.; Constantinescu, M. The Mechanism of 1,4 Alkyl Group Migration in Hypervalent Halonium Ylides:The Stereochemical Course. J. Am. Chem. Soc.2008,130,7564-7565.
    [64]Lee, Y. R.; Jung, Y. U. Efficient synthesis of β-substituted α-haloenones by rhodium(ⅱ)-catalyzed and thermal reactions of iodonium ylides. J. Chem. Soc., Perkin Trans.1 2002,1309-1313.
    [65]Gu, S.-Y.; Su, M.-D. Density Functional Studies on the Thermal Aryl Migration in a-Dicarbonyl Ylides and Related Compounds. J. Phy. Chem. A 2007,111,6587-6591.
    [66]Moriarty, R. M.; Bailey, B. R.; Prakash, O.; Prakash, I. Capture of Electron-Deficient Species with Aryl Halides. New Syntheses of Hypervalent Iodonium Ylides J. Am. Chem. Soc.1985,107,1375-1378.
    [67]Wheeler, T. N. Novel Photochemical Synthesis of 2-Aryl-1,3-cyclohexanedion. J. Org. Chem.1979,44,4906-4912.
    [68]Rosenfeld, M. J.; Shankar, B. K. R.; Shechter, H. Rhodium(Ⅱ) Acetate Catalyzed Reactions of 2-Diazo-1,3-indandione and 2-Diazo-1-indanone with Various Substrates. J. Org. Chem.1988,53,2699-2705.
    [69]West, F. G.; Naidu, B. N. New Route to Substituted Piperidines via the Stevens [1,2]-Shift of Ammonium Ylides J. Am. Chem. Soc.1993,115,1177-1178.
    [1]Friedrich, K.; Wallensfels, K. The Chemistry of the Cyano Group; Wiley-Interscience: New York,1970.
    [2]官仕龙;黄文榜.由醛合成腈的研究进展.化学世界1993,34,418-423.
    [3]程志明.杀菌剂氰霜畔的开发.世界农药2005,27,1-5.
    [4]Iveson, T. J.; Smith, I. E.; Ahern, J.; Smithers, D. A.; Trunet, P. F.; Dowsett, M. Phase I study of the oral nonsetoridal aromatase inhibitor CGS 20267 in postmenopausal patients with advanced breast cancer. Cancer Res.1993,53,266-270.
    [5]Buzdar, A.; Jonat, W.; Howell, A.; Jones, S. E.; Blomqvist, C.; Vogel, C. L.; Eiermann, W.; Wolter, J. M.; Azab, M.; Webster, A.; Plourde, P. V. Anastrozole, a potent and selective aromatase inhibitor, versus megestrol acetate in postmenopausal women with advanced breast cancer:Results of overview analysis of two phase 3 trials. J. Clin. Oncol.1996,14,2000-2011.
    [6]Labrock, R. C. Comprehensive Organic Transformations; VCH:New York,1989.
    [7]Demko, Z. P.; Sharpless, K. B. Preparation of 5-substituted 1H-tetrazoles from nitriles in water. J. Org. Chem.2001,66,7945-7950.
    [8]Himo, F.; Demko, Z. P.; Sharpless, K. B. Mechanisms of tetrazole formation by addition of azide to nitriles. J. Am. Chem. Soc.2002,124,12210-12216.
    [9]Wu, J.; Sun, X.; Xia, H. G Sc(OTf)3-catalyzed [3+2]-cycloaddition of aziridines with nitriles under solvent-free conditions. Tetrahedron Lett.2006,47,1509-1512.
    [10]Ghorai, M. K.; Ghosh, K.; Das, K. Copper(II) triflate promoted cycloaddition of a-alkyl or aryl substituted N-tosylaziridines with nitriles:a highly efficient synthesis of substituted imidazolines. Tetrahedron Lett.2006,47,5399-5403.
    [11]Ghorai, M. K.; Das, K.; Kumar, A. An efficient synthetic route to subst ituted tetrahydropyrimidines by Cu(OTf)2-mediated nucleophilic ring-opening followed by the [4+2] cycloaddition of N-tosylazetidines with nitriles. Tetrahedron Lett.2009,50, 1105-1109.
    [12]Mowry, D. T. The Preparation of Nitriles. Chem. Rev.1948,42,189-283.
    [13]Cassar, L.; Foa, M.; Montanari, F.; Marinelli, G. P. Phase-transfer catalysis in the nickel-catalyzed cyanation of aryl halides. J. Organomet. Chem.1979,173,335-339.
    [14]Zanon, J.; Klapars, A.; Buchwald, S. L. Copper-catalyzed domino halide exchange cyanation of aryl bromides. J. Am. Chem. Soc.2003,125,2890-2891.
    [15]Hatsuda, M.; Seki, M. A practical synthesis of highly functionalized aryl nitriles through cyanation of aryl bromides employing heterogeneous Pd/C. Tetrahedron Lett. 2005,46,1849-1853.
    [16]Marcantonio, K. M.; Frey, L. F.; Liu, Y.; Chen, Y.; Strine, J.; Phenix, B.; Wallace, D. J.; Chen, C. Y. An investigation into causes and effects of high cyanide levels in the palladium-catalyzed cyanation reaction. Org. Lett.2004,6,3723-3725.
    [17]Srivastava, R. R.; Collibee, S. E. Application of polymer-supported triphenyl phosphine in the palladium-catalyzed cyanation reaction under microwave conditions. Tetrahedron Lett.2004,45,8895-8897.
    [18]Wang, E.-C.; Lin, G.-J. A New One Pot Method for the Conversion of Aldehydes into Nitriles Using Hydroxyamine and Phthalic Anhydride Tetrahedron Lett.1998,39,4047-4050.
    [19]Hegedus, A.; Cwik, A.; Hell, Z.; Horvath, Z.; Esek, A.; Uzsoki, M. Microwave-assisted conversion of oximes into nitriles in the presence of a zeolite. Green Chem.2002,4,618-620.
    [20]Dewan, S. K.; Singh, R. Synthesis of Nitriles from Aldoximes Using Silica Gel as Catalyst Under Microwave Irradiation. Synth. Commun.2003,33,3085-3088.
    [21]Khan, T. A.; Peruncheralathan, S.; Ila, H.; Junjappa, H. S,S-Dimethyl Dithiocarbonate: A Useful Reagent for Efficient Conversion of Aldoximes to Nitriles Synlett 2004, 2019-2021.
    [22]Lee, K.; Han, S. B.; Yoo, E. M.; Chung, S. R.; Oh, H.; Hong, S. Efficient Transformation of Aldoximes to Nitriles Using 2-Chloro-l-methylpyridinium Iodide Under Mild Conditions. Synth. Commun.2004,34,1775-1782.
    [23]Li, D.; Shi, F.; Guo, S.; Deng, Y. Highly efficient Beckmann rearrangement and dehydration of oximes. Tetrahedron Lett.2005,46,671-674.
    [24]Sarvari, M. H. ZnO/CH3COCl:A New and Highly Efficient Catalyst for Dehydration of Aldoximes into Nitriles Under Solvent-Free Condition. Synthesis 2005,787-790.
    [25]Movassagh, B.; Shokri, S. Potassium Fluoride Doped on Alumina:An Efficient Catalyst for Conversion of Aldoximes Into Nitriles. Synth. Commun.2005,35, 887-890.
    [26]Movassagh, B.; Shokri, S. An efficient and convenient KF/Al2O3 mediated synthesis of nitriles from aldehydes. Tetrahedron Lett.2005,46,6923-6925.
    [27]Narsaiah, A. V.; Sreenu, D.; Nagaiah, K. Triphenylphosphine-Iodine:An Efficient Reagent System for the Synthesis of Nitriles From Aldoximes. Synth. Commun.2006, 36,137-140.
    [28]Supsanaa, P.; Liaskopoulosa, T.; Tsoungasb, P. G.; Varvounis, G. DMF-Catalysed Thermal Dehydration of Aldoximes:A Convenient Access to Functionalized Aliphatic and Aromatic Nitriles. Synlett 2007,2671-2674.
    [29]Sardarian, A. R.; Shahsavari-Fard, Z.; Shahsavari, H. R.; Ebrahimi, Z. Efficient Beckmann rearrangement and dehydration of oximes via phosphonate intermediates. Tetrahedron Lett.2007,48,2639-2643.
    [30]Yamaguchi, K.; Fujiwara, H.; Ogasawara, Y.; Kotani, M.; Mizuno, N. A Tungsten-Tin Mixed Hydroxide as an Efficient Heterogeneous Catalyst for Dehydration of Aldoximes to Nitriles. Angew. Chem. Int. Ed.2007,46,3922-3925.
    [31]Movassagh, B.; Fazeli, A. Direct Synthesis of Aromatic Nitriles from Aldehydes Using Hydroxylamine and Oxalyl Chloride. Synth Commun.2007,37,623-628.
    [32]Kivrak, A.; Zora, M. Efficient one-pot synthesis of cyanoferrocene from ferrocenecarboxaldehyde using NH2OH?HCl/KI/ZnO/CH3CN system. J. Organomet. Chem.2007,692,2346-2349.
    [33]Zhu, J.-L.; Lee, F.-Y.; Wu, J.-D.; Kuo, C.-W.; Shia, K.-S. An Efficient New Procedure for the One-Pot Conversion of Aldehydes into the Corresponding Nitriles. Synlett 2007,1317-1319.
    [34]Dewan, S. K.; Singh, R.; Kumar, A. One-Pot Synthesis of Nitriles from Aldehydes and Hydroxylamine Hydrochloride over Silica Gel, Montmorillonites K-10, and KSF Catalysts in Dry Media Under Microwave Irradiation. Synth. Commun.2004,34, 2025-2029.
    [35]Srinivas, K. V. N. S.; Reddy, E. B.; Das, B. Highly Convenient and Efficient One-pot Conversions of Aldehydes into Nitriles and Ketones into Amides Using HY-Zeolite Synlett 2002,625-627.
    [36]Srinivas, K. V. N. S.; Mahender, I.; Das, B. Efficient and Rapid One-pot Conversions of Aldehydes into Nitriles and Ketones into Amides Using Silica Chloride under Microwave Irradiation. Chem. Lett.2003,32,738-739.
    [37]Sato, R.; Itoh, K.; Itoh, K.; Nishina, H.; Goto, T.; Saito, M. Novel conversion of aromatic thioamides and aldehydes into nitriles with elemental sulfur and sodium nitrite in liquid ammonia. Chem. Lett.1984,13,1913-1916.
    [38]Capdevielle, P.; Lavigne, A.; Maumy, M. Simple and Efficient Copper-Catalyzed One-Pot Conversion of Aldehydes into Nitriles. Synthesis 1989,451-452.
    [39]Erman, M. B.; Snow, J. W.; Williams, M. J. A new efficient method for the conversion of aldehydes into nitriles using ammonia and hydrogen peroxide. Tetrahedron Lett. 2000,41,6749-6752.
    [40]Bandgar, B. P.; Makone, S. S. Organic Reactions in Water:Transformation of Aldehydes to Nitriles using NBS under Mild Conditions. Synth. Commun.2006,36, 1347-1352.
    [41]Bandgar, B. P.; Makone, S. S. Organic Reactions in Water:Highly Rapid CAN Mediated One-Pot Synthesis of Nitriles from Aldehydes under Mild Conditions. Synlett 2003,262-264.
    [42]Gaikwad, D. D.; Renukdas, S. V.; Kendre, B. V. Facile Synthesis of Nitriles from Aromatic Aldehydes Using DMSO-I2. Synth. Commun.2007,37,257-259.
    [43]Bose, D. S.; Narsaiah, A. V. Efficient one pot synthesis of nitriles from aldehydes in solid state using peroxymonosulfate on alumina. Tetrahedron Lett.1998,39, 6533-6534.
    [44]Kumar, H. M. S.; Reddy, B. V. S.; Reddy, P. T.; Yadav, J. S. Efficient One-Pot Preparation of Nitriles from Aldehydes using N-Methyl-pyrrolidone. Synthesis 1999, 586-587.
    [45]Das, B.; Ramesh, C.; Madhusudhan, P. An Improved One-Pot Conversion of Aldehydes into Nitriles under Microwave Irradiation Using Ammonium Acetate. Synlett 2000,1599-1600.
    [46]Sharghi, H.; Sarvari, M. H. A direct synthesis of nitriles and amides from aldehydes using dry or wet alumina in solvent free conditions. Tetrahedron 2002,58, 10323-10328.
    [47]Ballini, R.; Fiorini, D.; Palmieri, A. Highly Convenient, One-Pot Synthesis of Nitriles from Aldehydes Using the NH2OH?HCl/NaI/MeCN System. Synlett 2003,1841-1843.
    [48]Sharghi, H.; Sarvari, M. H. Graphite as an Efficient Catalyst for One-Step Conversion of Aldehydes into Nitriles in Dry Media. Synthesis 2003,243-246.
    [49]Niknam, K.; Karami, B.; Kiasat, A. R. Basic A12O3/PC15 as an Efficient Reagent for the Direct Synthesis of Nitriles from Aldehydes under Solvent-Free Conditions. Bull. Korean Chem. Soc.2005,26,975-978.
    [50]Lee, J. C.; Yoon, J. M.; Baek, J. W. A Novel and Efficient Synthesis of Nitriles from Aldehydes under Solvent-free Microwave Irradiation Conditions Bull. Korean Chem. Soc.2007,28,29-30.
    [51]Brackman, W.; Smit, P. J. Anew synthesis of nitriles. Recl. Trev. Chim. Pays-Bas 1963, 82,757-762.
    [52]Parameswaram, K. N.; Friedman, O. M. The method of synthesis nitriles. Chem. Ind. (London) 1965,988-990.
    [53]Misono, A.; Osa, T.; Koda, S. The Synthesis of Nitriles From Aldehydes. Bull. Chem. Soc. Jpn.1966,39,854-855.
    [54]Talukdar, S.; Hsu, J.-L.; Chou, T.-C.; Fang, J.-M. Direct transformation of aldehydes to nitriles using iodine in ammonia water. Tetrahedron Lett.2001,42,1103-1105.
    [55]Shie, J.-J.; Fang, J.-M. Direct Conversion of Aldehydes to Amides, Tetrazoles, and Triazines in Aqueous Media by One-Pot Tandem Reactions. J. Org. Chem.2003,68, 1158-1160.
    [56]Rajender Reddy, K.; Uma Maheswari, C.; Venkateshwar, M.; Prashanthi, S.; Lakshmi Kantam, M. Catalytic oxidative conversion of alcohols, aldehydes and amines into nitriles using KI/I2-TBHP system. Tetrahedron Lett.2009,50,2050-2053.
    [57]Arote, N. D.; Bhalerao, D. S.; Akamanchi, K. G. Direct oxidative conversion of aldehydes to nitriles using IBX in aqueous ammonia. Tetrahedron Lett.2007,48, 3651-3653.
    [58]Tan, X.; Tan, S. P.; Teo, W. K.; Li, K. Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water. J. Membrane. Sci.2006,271,59-68.
    [59]Misono, A.; Osa, T.; Koda, S. On the formation of benzonitrile from benzaldehyde and ammonia. II. Iodine as an oxidant. Bull. Chem. Soc. Jpn.1967,40,2875-2884.
    [60]Cornils, B.; Herrmann, W. Aqueous-phase organometallic catalysis:concepts and applications.2nd ed.;Wiley-VCH:Weinheim,2004.
    [61]Tohma, H.; Takizaw, S.; Maegaw, T.; Kita, Y. Facile and Clean Oxidation of Alcohols in Water Using Hypervalent Iodine(Ⅲ) Reagents. Angew. Chem. Int. Edit.2000,39, 1306-1308.
    [62]Abe, S.; Sakuratani, K.; Togo, H. Novel Preparation and Reactivity of Poly[4-hydroxy(tosyloxy)iodo]styrenes. Synlett 2001,22-24.
    [63]Sakuratani, K.; Togo, H. Environmentally-Friendly TEMPO-Mediated Oxidation of Alcohols with Poly[4-(diacetoxyiodo)styrene] Synthesis 2003,21-23.
    [64]Tohma, H.; Maegawa, T.; Kita, Y. Facile and Efficient Oxidative Transformation of Primary Alcohols to Methyl Esters in Water Using Hypervalent Iodine(III) Reagents. Synlett 2003,723-725.
    [65]Chen, D.-J.; Chen, Z.-C. Hypervalent iodine in synthesis.49. A new effective synthesis of Se-phenyl O,O-dialkyl phosphoroselenoates with polymer-supported phenyiodine diacetate. Synth. Commun.2001,31,421-424.
    [66]Togo, H.; Nogami, G.; Yokoyama, M. Synthetic Application of Poly[styrene(iodoso diacetate)]. Synlett 1998,534-536.
    [67]Wang, G.-P.; Chen, Z.-C. Hypervalent Iodine in Synthesis XXVIII:The Preparation and Utility of Polymer-Supported Phenyliodine(III) Diacetate. Synth. Commun.1999, 29,2859-2866.
    [68]Ley, S. V.; Thomas, A. W.; Finch, H. Polymer-supported hypervalent iodine reagents in clean organic synthesis with potential application in combinatorial chemistry. J. Chem. Soc, Perkin Trans.11999,669-672.
    [69]Huang, X.; Zhu, Q. The Synthesis of Cross-Linked Poly[Styrene(Iodoso Diacetate)] and Application in Preparation of Pyrazoline. Synth. Commun.2001,31,111-115.
    [70]Xian, H.; Qing, Z.; Jizheng, Z. Preparation of 1,2-diacylbenzenes from o-hydroxyaryl ketone acylhydrazones using cross-linked poly[styrene(iodoso diacetate)]. Synth. Commun.2001,31,2413-2418.
    [71]Tohma, H.; Morioka, H.; Takizawa, S.; Arisawa, M.; Kita, Y. Efficient oxidative biaryl coupling reaction of phenol ether derivatives using hypervalent iodine(III) reagents. Tetrahedron 2001,57,345-352.
    [72]Ficht, S.; Mulbaier, M.; Giannis, A. Development of new and efficient polymer-supported hypervalent iodine reagents. Tetrahedron 2001,57,4863-4866.
    [73]Toy, P.; Togo, H.; Shang, Y.; But, T. Macroporous Polystyrene-Supported (Diacetoxyiodo)benzene:An Efficient Heterogeneous Oxidizing Reagent. Synlett 2007, 67-70.
    [74]Chen, F.-E.; Xie, B.; Zhang, P.; Zhao, J.-F.; Wang, H.; Zhao, L. An Efficient and Green Oxidation of Vicinal Diols to Aldehydes Using Polymer-Supported (Diacetoxyiodo) benzene as the Oxidant. Synlett 2007,619-622.
    [75]Togo, H.; Abe, S.; Nogami, G.; Yokoyama, M. Syntheitc Use of Poly[4-(diacetoxy-iodo)styrene] for Organic Reactions. Bull. Chem. Soc. Jpn.1999,72,2351-2356.
    [76]Ren, Y.-M.; Zhu, Y.-Z.; Cai, C. Iodine/aqueous NH4OAc:an improved reaction system for direct oxidative conversion of aldehydes and alcohols into nitriles. J. Chem. Res. 2008,1,18-19.
    [77]Yusubov, M. S.; Zholobova, G. A.; Filimonova, I. L.; Chi, K.-W. New oxidative transformations of alkenes and alkynes under the action of diacetoxyiodobenzene. Russ. Chem. Bull.2004,53,1735-1742.
    [78]Saltzman, H.; Sharefkin, J. G. The synthesis of iodosylarenes. Org. Synth. Coll. Vol. V 1973,658-659.
    [79]Zhao, X.-F.; Zhang, C. Iodobenzene Dichloride as a Stoichiometric Oxidant for the Conversion of Alcohols into Carbonyl Compounds; Two Facile Methods for Its Preparation. Synthesis 2007,551-557.
    [80]Zagulyaeva, A. A.; Yusubov, M. S.; Zhdankin, V. V. A General and Convenient Preparation of [Bis(trifluoroacetoxy)iodo]perfluoroalkanes and [Bis(trifluoroacetoxy) iodo]arenes by Oxidation of Organic Iodides Using Oxone and Trifluoroacetic Acid. J. Org. Chem.2010,75,2119-2122.
    [81]Kazmierczak, P.; Skulski, L.; Kraszkiewicz, L. Syntheses of (Diacetoxyiodo)arenes or Iodylarenes from Iodoarenes, with Sodium Periodate as the Oxidant. Molecules 2001, 6,881-891.
    [82]McAllister, G. D.; Wilfred, C. D.; Taylor, R. J. K. Tandem Oxidation Processes:The Direct Conversion of Activated Alcohols into Nitriles. Synlett 2002,1291-1292.
    [83]Chen, F.-E.; Li, Y.-Y.; Xu, M.; Jia, H.-Q. Tetrabutylammonium Peroxydisulfate in Organic Synthesis; XIII. A Simple and Highly Efficient One-Pot Synthesis of Nitriles by Nickel-Catalyzed Oxidation of Primary Alcohols with Tetrabutylammonium Peroxydisulfate Synthesis 2002,1804-1806.
    [84]Iranpoor, N.; Firouzabadi, H.; Akhlaghinia, B.; Nowrouzi, N. Conversion of Alcohols, Thiols, and Trimethysilyl Ethers to Alkyl Cyanides Using Triphenyl-phosphine/2,3-Dichloro-5,6-dicyanobenzoquinone/n-Bu4NCN. J. Org. Chem.2004,69, 2562-2564.
    [85]Mori, N.; Togo, H. Direct Oxidative Conversion of Primary Alcohols to Nitriles Using Molecular Iodine in Ammonia Water. Synlett 2005,1456-1458.
    [86]Iida, S.; Togo, H. Direct oxidative conversion of alcohols and amines to nitriles with molecular iodine and DIH in aq NH3. Tetrahedron 2007,63,8274-8281.
    [87]Iida, S.; Togo, H. Oxidative Conversion of Primary Alcohols, and Primary, Secondary, and Tertiary Amines into the Corresponding Nitriles with 1,3-Diiodo-5,5-dime-thylhydantoin in Aqueous NH3. Synlett 2007,407-410.
    [88]Huber, V. J.; Bartsch, R. A. Preparation of nitriles from carboxylic acids:A new, synthetically useful example of the Smiles rearrangement. Tetrahedron 1998,54, 9281-9288.
    [89]Mlinaric-Majerski, K.; Margeta, R.; Veljkovic, J. A Facile and Efficient One-Pot Synthesis of Nitriles from Carboxylic Acids. Synlett 2005,2089-2091.
    [90]Kangani, C. O.; Day, B. W.; Kelley, D. E. Direct, facile synthesis of acyl azides and nitriles from carboxylic acids using bis(2-methoxyethyl)aminosulfur trifluoride. Tetrahedron Lett.2007,48,5933-5937.
    [91]Telvekar, V. N.; Rane, R. A. A novel system for the synthesis of nitriles from carboxylic acids. Tetrahedron Lett.2007,48,6051-6053.
    [92]Yu-Qing, C.; Zhan, Z.; Yan-Xin, G. A new efficient method for one-pot conversions of aryl carboxylic acids into nitriles without solvent. J. Chem. Technol. Biotechnol.2008, 83,1441-1444.
    [93]Moriarty, R. M.; Vaid, R. K.; Duncan, M. P. Hypervalent Iodine Oxidation of Amines Using Iodosobenzene:Synthesis of Nitriles, Ketones and Lactams. Tetrahedron Lett. 1988,29,6913-6916.
    [94]Chen, F. E.; Peng, Z. Z.; Fu, H.; Liu, J. D.; Shao, L. Y. Tetrabutylammonium Peroxydisulfate in Organic Synthesis. Part 8. An Efficient and Convenient Nickel-catalyzed Oxidation of Primary Amines to Nitriles with Tetrabutylammonium Peroxydisulfate. J. Chem. Res. (S) 1999,726-727.
    [95]Mori, K.; Yamaguchi, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Catalysis of a hydroxyapatite-bound Ru complex:efficient heterogeneous oxidation of primary amines to nitriles in the presence of molecular oxygen. Chem. Commun.2001, 461-462.
    [96]Yamaguchi, K.; Mizuno, N. Efficient Heterogeneous Aerobic Oxidation of Amines by a Supported Ruthenium Catalyst Angew. Chem. Int. Ed.2003,42,1480-1483.
    [97]Chen, F.-E.; Kuang, Y.-Y.; Dai, H.-F.; Lu, L.; Huo, M. A Selective and Mild Oxidation of Primary Amines to Nitriles with Trichloroisocyanuric Acid. Synthesis 2003, 2629-2631.
    [98]Maeda, Y.; Nishimura, T.; Uemura, S. Copper-Catalyzed Oxidation of Amines with Molecular Oxygen. Bull. Chem. Soc. Jpn.2003,76,2399-2403.
    [99]De Luca, L.; Giacomelli, G. An Insight of the Reactions of Amines with Trichloroisocyanuric Acid. Synlett 2004,2180-2184.
    [100]Nicolaou, K. C.;Mathison, C. J. N. Synthesis of Imides, N-Acyl Vinylogous Carbamates and Ureas, and Nitriles by Oxidation of Amides and Amines with Dess-Martin Periodinane. Angew. Chem. Int. Ed.2005,44,5992-5997.
    [101]Biondini, D.; Brinchi, L.; Germani, R.; Goracci, L.; Savelli, G. Dehydrogenation of Amines to Nitriles in Aqueous Micelles. Eur. J. Org. Chem.2005,3060-3063.
    [102]Iida, S.; Togo, H. Direct and Facile Oxidative Conversion of Primary, Secondary, and Tertiary Amines to Their Corresponding Nitriles. Synlett 2006,2633-2635.
    [103]Sasson, R.; Rozen, S. From Azides to Nitriles. A Novel Fast Transformation Made Possible by BrF3. Org. Lett.2005,7,2177-2179.
    [104]Fife, W. K. Regioselective cyanation of pyridine 1-oxides with trimethylsilane-carbonitrile:a modified Reissert-Henze reaction. J. Org. Chem.1983,48,1375-1377.
    [105]Huo, Z.; Kosugi, T.; Yamamoto, Y. Zinc cyanide mediated direct a-cyanation of isonicotinic acid N-oxide. Application to the synthesis of FYX-051, a xanthine oxidoreductase inhibitor. Tetrahedron Lett.2008,49,4369-4371.
    [106]Zhang, Z.; Liebeskind, L. S. Palladium-Catalyzed, Copper(Ⅰ)-Mediated Coupling of Boronic Acids and Benzylthiocyanate. A Cyanide-Free Cyanation of Boronic Acids. Org. Lett.2006,8,4331-4333.
    [107]De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. A Versatile and Highly Selective Hypervalent Iodine (III)/2,2,6,6-Tetramethyl-l-piperidinyloxyl-Mediated Oxidation of Alcohols to Carbonyl Compounds. J. Org. Chem.1997,62, 6974-6977.
    [108]Pozzi, G.; Quici, S.; Shepperson, I. A convenient access to (F-alkyl)alkanals. Tetrahedron Lett.2002,43,6141-6143.
    [109]T. Matthew Hansen; Gordon J. Florence; Lugo-Mas, P.; Chen, J.; Abrams, J. N.; Forsyth, C. J. Highly chemoselective oxidation of 1,5-diols to δ-lactones with TEMPO/BAIB. Tetrahedron Lett.2003,44,57-59.
    [110]Piancatelli, G.; Leonelli, F.; Do, N.; Ragan, J. Oxidation of Nerol to Neral with Iodobenzene and TEMPO. Org. Synth.2006,83,18-23.
    [111]Moroda, A.; Togo, H. Biphenyl-and terphenyl-based recyclable organic trivalent iodine reagents. Tetrahedron 2006,62,12408-12414.
    [112]Vatele, J.-M. One-pot selective oxidation/olefination of primary alcohols using TEMPO-BAIB system and stabilized phosphorus ylides. Tetrahedron Lett.2006,47, 715-718.
    [113]Danielle, J. V.; Lars, V.; Kanar, a.-M.; Renske, L.; Rob, F. S.; Frans, J. J. d. K.; Marinus, B. G.; Ulf, H.; Romano, V. A. O. A Mild Chemo-Enzymatic Oxidation-Hydrocyanation Protocol. Eur. J. Org. Chem.2006,1672-1677.
    [114]Vatele, J.-M. Yb(OTf)3-Catalyzed Oxidation of Alcohols with Iodosylbenzene Mediated by TEMPO. Synlett 2006,2055-2058.
    [115]Vatele, J.-M. Lewis Acid Promoted Oxidative Rearrangement of Tertiary Allylic Alcohols with the PhIO/TEMPO System. Synlett 2008,1785-1788.
    [116]Li, X.-Q.; Zhang, C. An Environmentally Benign TEMPO-Catalyzed Efficient Alcohol Oxidation System with a Recyclable Hypervalent Iodine(III) Reagent and Its Facile Preparation. Synthesis 2009,1163-1169.
    [117]Yakura, T.; Ozono, A. Novel 2,2,6,6-Tetramethylpiperidine 1-Oxyl-Iodobenzene Hybrid Catalyst for Oxidation of Primary Alcohols to Carboxylic Acids. Adv. Synth. Catal.2011,353,855-859.
    [118]Yakura, T.; Omoto, M. Efficient synthesis of p-quinols using catalytic hypervalent iodine oxidation of 4-arylphenols with 4-iodophenoxyacetic acid and oxone. Chem. Pharm. Bull.2009,57,643-645.
    [119]Fujioka, H.; Komatsu, H.; Nakamura, T.; Miyoshi, A.; Hata, K.; Ganesh, J.; Murai, K. Kita, Y. Organic synthesis using a hypervalent iodine reagent:unexpected and novel domino reaction leading to spiro cyclohexadienone lactones. Chem. Commun.2010, 4133-4135.
    [120]Muhammet, U.; Takeshi, Y; Kazuaki, I. Enantioselective Kita Oxidative Spirolactonization Catalyzed by In Situ Generated Chiral Hypervalent Iodine(III) Species. Angew. Chem. Int. Edit.2010,49,2175-2177.
    [121]Nicolaou, K. C.; Mathison, C. J. N.; Montagnon, T. o-Iodoxybenzoic Acid (IBX) as a Viable Reagent in the Manipulation of Nitrogen-and Sulfur-Containing Substrates:Scope, Generality, and Mechanism of IBX-Mediated Amine Oxidations and Dithiane Deprotections. J. Am. Chem. Soc.2004,126,5192-5201.
    [122]Palmisano, G.; Danieli, B.; Lesma, G.; Passarella, D. Synthetic studies on indole alxaloids. A stereocontrolled entry to the cuanzine structural unit. Tetrahedron 1989, 45,3583-3596.
    [123]Miiller, P.; Gilabert, D. M. Oxidation of amines to imines with hypervalent iodine. Tetrahedron 1988,44,7171-7175.
    [124]Justik, M. W.; Koser, G F. Application of [Hydroxy(tosyloxy)iodo]benzene in the Wittig-Ring Expansion Sequence for the Synthesis of β-Benzocycloalkenones from a-Benzocycloalkenones. Molecules 2005,10,217-225.
    [1]Weith, W. The new compound carbodiimides. Chem. Ber.1873,6,1389-1392.
    [2]Khorana, H. G. The Chenmistry of Carbodiimides. Chem. Rev.1953,53,145-164.
    [3]Kurzer, F.; Douraghi-Zadeh, K. Advances in the Chemistry of Carbodiimides. Chem. Rev.1967,67,107-140.
    [4]Williams, A.; Ibrahim, I. T. Carbodiimide Chemistry:Recent Advances. Chem. Rev. 1981,81,589-636.
    [5]Mikolajczyk, M.; Kielbasinski, P. Recent developments in the carbodiimide chemistry. Tetrahedron Lett.1981,37,233-284.
    [6]Ulrich, H.; Sayigh, A. A. R. Synthesis of Isocyanates and Carbodiimides. Angew. Chem. Int. Ed.1966,5,704-712.
    [7]Kim, S.; Yi, K. Y. Di-2-pyridyl sulfite. A new useful reagent for the preparation of N-sulfinylamines, nitriles, isocyanides, and carbodiimides under mild conditions. Tetrahedron Lett.1986,27,1925-1928.
    [8]Kim, S.; Yi, K. Y. 1,1'-thiocarbonyldi-2,2'-pyridone. A New Useful Reagent for Functional Group Conversions under Essentially Neutral Conditions. J. Org. Chem. 1986,57,2613-2615.
    [9]Isobe, T.; Ishikawa, T.2-Chloro-1,3-dimethylimidazolinium Chloride.1. A Powerful Dehydrating Equivalent to DCC. J. Org. Chem.1999,64,6984-6988.
    [10]Stevens, C. L.; Singhal, G. H.; Ash, A. B. Carbodiimides. Dehydration of Ureas. J. Org. Chem.1967,32,2895-2896.
    [11]Hessel, E. T.; Jones, W. D. Synthesis and Structure of Rhodium Complexes Containing aPhotolabile Carbodiimide Ligand. Oganometallics 1992,11,1496-1505.
    [12]Schlama, T.; Gouverneur, V.; Mioskowski, C. A New and Efficient Preparation of Carbodiimides from Ureas Using Dimethylphosgeniminium Chloride as a Dehydrating Agent Tetrahedron Lett.1996,37,7047-7048.
    [13]Fell, J. B.; Coppola, G. M. A Mild and Efficient Preparation of Carbodiimides. Synth. Commun.1995,25,43-47.
    [14]Zhang, M.; Vedantham, P.; Flynn, D. L.; Hanson, P. R. High-Load, Soluble Oligomeric Carbodiimide:Synthesis and Application in Coupling Reactions. J. Org. Chem.2004, 69,8340-8344.
    [15]Deeming, A. J.; Fuchita, Y.; Hardcastle, K.; Henrick, K.; McPartlin, M. Reversible carbon-nitrogen bond formation in the isomerisation of triosmium compounds derived from t-butyldiazomethane (ButCHN2); the X-ray crystal structure of [Os3H2(ButCH =NNCO)(CO)8(PMe2Ph)]. J. Chem. Soc. Dalton Trans.1986,2259-2264.
    [16]Bryan, J. C.; Rheingold, A. L.; Geib, S. J.; Mayer, J. M. Reaction of C-H Bonds in Alkanes with Bis(diphosphine) Complexes of Iron J. Am. Chem. Soc.1987,109, 2825-2826.
    [17]Tang, J.; Mohan, T.; Verkade, J. G. Selective and Efficient Syntheses of Perhydro-1,3,5-triazine-2,4,6-triones and Carbodiimides from Isocyanates Using ZP(MeNCH2CH2)3N Catalysts J. Org. Chem.1994,59,4931-4938.
    [18]Barbaro, G.; Battaglia, A.; Giorgianni, P.; Guerrini, A.; Scconi, G. Synthesis and Reactivity of N-[Bis(trimethylsilyl)methyl]heterocumulenes J. Org. Chem.1995,60, 6032-6039.
    [19]Rahman, A. K. F.; Nicholas, K. M. Catalytic conversion of isocyanates to carbodiimides by cyclopentadienyl manganese tricarbonyl and cyclopentadienyl iron dicarbonyl dimer. Tetrahedron Lett.2007,48,6002-6004.
    [20]Ito, Y.; Hirao, T.; Saegusa, T. Synthetic Reactions by Complex Catalysts. XXXVII. A Novel and Versatile Method of Carbodiimide Synthesis. Oxidation of Carbene Palladium(II) Complex with Silver Oxide J. Org. Chem.1975,40,2981-2982.
    [21]Pri-Bar, I.; Schwartz, J. N,N-Dialkylcarbodiimide synthesis by palladium-catalysed coupling of amines with isonitriles. Chem. Commun.1997,347-348.
    [22]Ali, A. R.; Ghosh, H.; Patel, B. K. A greener synthetic protocol for the preparation of carbodiimide. Tetrahedron Lett.2010,51,1019-1021.
    [23]Ghosh, H.; Yella, R.; Nath, J.; Patel, B. K. Desulfurization Mediated by Hypervalent Iodine(Ⅲ):A Novel Strategy for the Construction of Heterocycles. Eur. J. Org. Chem. 2008,6189-6196.
    [24]Singh, C. B.; Ghosh, H.; Murru, S.; Patel, B. K. Hypervalent Iodine(III)-Mediated Regioselective N-Acylation of 1,3-Disubstituted Thioureas. J. Org. Chem.2008,73, 2924-2927.
    [25]Yamamoto, Y.; Togo, H. PhI-Catalyzed a-Tosyloxylation of Ketones with m-Chloroperbenzoic Acid and p-Toluenesulfonic Acid. Synlett 2006,798-800.
    [26]Akiike, J.; Yamamoto, Y.; Togo, H. Efficient Conversion of Ketones to a-Tosyloxyketones with m-Chloroperbenzoic Acid and p-Toluenesulfonic Acid in the Presence of Catalytic Amount of IL-Supported PhI in [emim]OTs. Synlett 2007, 2168-2172.
    [27]Yamamoto, Y.; Kawano, Y.; Toy, P. H.; Togo, H. PhI-and polymer-supported PhI-catalyzed oxidative conversion of ketones and alcohols to a-tosyloxyketones with m-chloroperbenzoic acid and p-toluenesulfonic acid. Tetrahedron 2007,63, 4680-4687.
    [28]Koser, G. F. [Hydroxy(tosyloxy)iodo]benzene and Closely Related Iodanes:The Second Stage of Development. Aldrichim. Acta 2001,34,89-102.
    [29]Kumar, D.; Sundaree, S.; Rao, V. S.; Varma, R. S. A facile one-pot synthesis of β-keto sulfones from ketones under solvent-free conditions. Tetrahedron Lett.2006,47, 4197-4199.
    [30]Wessig, P.; Muhling, O. Photochemical Synthesis of Highly Functionalized Cyclopropyl Ketones. Helv. Chim. Acta 2003,86,865-893.
    [31]Kumar, D.; Sundaree, M. S.; Patel, G; Rao, V. S.; Varma, R. S. Solvent-free facile synthesis of novel a-tosyloxy β-keto sulfones using [hydroxy(tosyloxy)iodo]benzene. Tetrahedron Lett.2006,47,8239-8241.
    [32]Prakash, O.; Batra, A.; Chaudhri, V.; Prakash, R. Use of [hydroxy(tosyloxy)iodo]-benzene in a novel and facile synthesis of 1,4-diaryl-2-(arylamino)but-2-ene-l,4-diones. Tetrahedron Lett.2005,46,2877-2878.
    [33]Aggarwal, R.; Sumran, G. Hypervalent Iodine in the Synthesis of Bridgehead Heterocycles:A Facile Route to the Synthesis of 6-Arylimidazo[2,1-6]thiazoles Using [Hydroxy(tosyloxy)iodo]benzene. Synth. Commun.2006,36,875-879.
    [34]Lee, J. C.; Seo, J. W.; Baek, J. W. Synthesis of 2-Substituted 4,5-Diphenyloxazoles under Solvent-Free Microwave Irradiation Conditions. Synth. Commun.2007,37, 2159-2162.
    [35]Kawano, Y.; Togo, H. Iodoarene-Mediated One-Pot Preparation of 2,4,5-Trisubstituted Oxazoles from Ketones. Synlett 2008,217-220.
    [36]Muthukrishnan, M.; Patil, P. S.; More, S. V.; Joshi, R. A. Facile oxidation of flavanones to flavones using [hydroxy(tosyloxy)iodo]benzene in an ionic liquid. Mendeleev. Commun.2005,15,100-101.
    [37]Patonay, T.; Levai, A.; Rimana, E.; Varma, R. S. Microwave-induced, solvent-free transformations of benzoheteracyclanones by HTIB (Koser's reagent) Arkivoc 2004, v/7,183-195.
    [38]Karade, N. N.; Gampawar, S. V; Kondre, J. M.; Shinde, S. V. A novel one-pot synthesis of 3-carbomethoxy-4-arylfuran-2-(5H)-ones from ketones using [hydroxy(tosyloxy)iodo]benzene. Tetrahedron Lett.2008,49,4402-4404.
    [39]Zhang, P.-F.; Zhou, G.-B.; Guan, Y.-Q.; Shen, C.; Wang, Q.; Liu, X.-M.; Li, L.-L. A Novel and Convenient Synthesis of Thiazol-2(3H)-imine-Linked Glycoconjugates. Synthesis 2008,1994-1996.
    [40]Koser, G. F.; Telu, S.; Laali, K. K. Oxidative-substitution reactions of polycyclic aromatic hydrocarbons with iodine(Ⅲ) sulfonate reagents. Tetrahedron Lett.2006,47, 7011-7015.
    [41]Zhdankin, V. V. Alkynyliodonium Salts in Organic Synthesis. Tetrahedron 1998,54, 10927-10966.
    [42]Stang, P. J. Alkynyl-and Alkenyl(phenyl)iodonium Compounds. New Synthetic Methods. Angew. Chem. Int. Ed.1992,31,274-285.
    [43]Bollini, M.; Casal, J. J.; Alvarez, D. E.; Boiani, L.; Gonzalez, M.; Cerecetto, H.; Bruno, A. M. New potent imidazoisoquinolinone derivatives as anti-Trypanosoma cruzi agents:Biological evaluation and structure-activity relationships. Bioorg. Med. Chem. 2009,77,1437-1444.
    [44]Novaka, L.; Hananiaa, M.; Kovacsb, P.; Kovacsa, C. E.; Kolonitsa, P.; Szantay, C. A Convenient Route To Cyanoguanidines. Synth. Commun.1999,29,1757-1766.
    [45]Ramadas, K.; Srinivasan, N.; Janarthanan, N. A Facile Conversion of Synmetrical to Unsymmetrical Thioureas. Tetrahedron Lett.1993,34,6447-6450.
    [46]Xu, J.-M.; Liu, B.-K.; Wu, W.-B.; Qian, C.; Wu, Q.; Lin, X.-F. Basic Ionic Liquid as Catalysis and Reaction Medium:A Novel and Green Protocol for the Markovnikov Addition of N-Heterocycles to Vinyl Esters, Using a Task-Specific Ionic Liquid, [bmIm]OH. J. Org. Chem.2006,71,3991-3993.
    [47]Ranu, B. C.; Banerjee, S. Ionic Liquid as Catalyst and Reaction Medium. The Dramatic Influence of a Task-Specific Ionic Liquid, [bmIm]OH, in Michael Addition of Active Methylene Compounds to Conjugated Ketones, Carboxylic Esters, and Nitriles. Org. Lett.2005,7,3049-3052.
    [1]Anastas, P. T.; Levy, I. J.; Parent, K. E. Green Chemistry Education:Changing the Course of Chemistry.; ACS Symp. Ser.,2009.
    [2]赵刚.绿色有机催化;中国石化出版社:北京,2005.
    [3]Clark, J. H.; Cullen, S. R.; Barlow, S. J.; Bastock, T. W. Environmentally friendly chemistry using supported reagent catalysts:structure-property relationships for clayzic. J. Chem. Soc, Perkin Trans.21994,1117-1130.
    [4]Leadbeater, N. E.; Marco, M. Preparation of polymer-supported ligands and metal complexes for use in catalysis. Chem. Rev.2002,102,3217-3274.
    [5]Xue, W.; Zhang, J.; Wang, Y.; Zhao, Q.; Zhao, X. Effect of promoter copper on the oxidative carbonylation of phenol over the ultrafine embedded catalyst Pd CuO/SiO2. J. Mol. Catal. A:Chem.2005,232,77-81.
    [6]Song, H. Y.; Park, E. D.; Lee, J. S. Oxidative carbonylation of phenol to diphenyl carbonate over supported palladium catalysts. J. Mol. Catal. A:Chem.2000,154, 243-250.
    [7]Kim, W. B.; Park, E. D.; Lee, J. S. Effects of inorganic co-catalysts and initial states of Pd on the oxidative carbonylation of phenols over heterogeneous Pd/C. Appl. Catal. A: Gen.2003,242,335-345.
    [8]Hussain, M.; Song, S. K.; Lee, J. H.; Ihm, S. K. Characteristics of CoMo catalysts supported on modified MCM-41 and MCM-48 materials for thiophene hydrodesulfurization. Ind. Eng. Chem. Res.2006,45,536-543.
    [9]Chou, B.; Tsai, J. L.; Cheng, S. Cu-substituted molecular sieves as liquid phase oxidation catalysts. Micropor. Mesopor. Mater.2001,48,309-317.
    [10]McNamara, C. A.; Dixon, M. J.; Bradley, M. Recoverable catalysts and reagents using recyclable polystyrene-based supports. Chem. Rev.2002,102,3275-3299.
    [11]Hodeg, P. Organic synthesis using polymer-supported reagents, catalysts and scavengers in simple laboratory flow systems. Curr. Opin. Chem. Biol.2003,7, 362-373.
    [12]Nam, N.-H.; Sardari, S.; Parang, K. Reactions of solid-supported reagents and solid supports with alcohols and phenols through their hydroxyl functional group. J. Comb. Chem.2003,5,479-546.
    [13]Togo, H.; Sakuratani, K. Polymer-Supported Hypervalent Iodine Reagents. Synlett 2002,1966-1975.
    [14]Togo, H. Environmentally benign reagents for chemical conversion:development of recyclable polymer-bound hypervalent iodine oxidants. Eco Industry 2002,7,5-18.
    [15]Chen, D.-J.; Chen, Z.-C. Hypervalent iodine in synthesis.49. A new effective synthesis of Se-phenyl O,O-dialkyl phosphoroselenoates with polymer-supported phenyiodine diacetate. Synth. Commun.2001,31,421-424.
    [16]Togo, H.; Nogami, G.; Yokoyama, M. Synthetic Application of Poly[styrene(iodoso diacetate)]. Synlett 1998,534-536.
    [17]Wang, G.-P.; Chen, Z.-C. Hypervalent Iodine in Synthesis ⅩⅩⅤⅢ:The Preparation and Utility of Polymer-Supported Phenyliodine(Ⅲ) Diacetate. Synth. Commun.1999, 29,2859-2866.
    [18]Ley, S. V.; Thomas, A. W.; Finch, H. Polymer-supported hypervalent iodine reagents in clean organic synthesis with potential application in combinatorial chemistry. J. Chem. Soc., Perkin Trans.11999,669-672.
    [19]Huang, X.; Zhu, Q. The Synthesis of Cross-Linked Poly[Styrene(Iodoso Diacetate)] and Application in Preparation of Pyrazoline. Synth. Commun.2001,31,111-115.
    [20]Xian, H.; Qing, Z.; Jizheng, Z. Preparation of 1,2-diacylbenzenes from o-hydroxyaryl ketone acylhydrazones using cross-linked poly[styrene(iodoso diacetate)]. Synth. Commun.2001,31,2413-2418.
    [21]Tohma, H.; Morioka, H.; Takizawa, S.; Arisawa, M.; Kita, Y. Efficient oxidative biaryl coupling reaction of phenol ether derivatives using hypervalent iodine(Ⅲ) reagents. Tetrahedron 2001,57,345-352.
    [22]Ficht, S.; Mulbaier, M.; Giannis, A. Development of new and efficient polymer-supported hypervalent iodine reagents. Tetrahedron 2001,57,4863-4866.
    [23]Toy, P.; Togo, H.; Shang, Y.; But, T. Macroporous Polystyrene-Supported (Diacetoxyiodo)benzene:An Efficient Heterogeneous Oxidizing Reagent. Synlett 2007, 67-70.
    [24]Chen, F.-E.; Xie, B.; Zhang, P.; Zhao, J.-F.; Wang, H.; Zhao, L. An Efficient and Green Oxidation of Vicinal Diols to Aldehydes Using Polymer-Supported (Diacetoxyiodo)-benzene as the Oxidant. Synlett 2007,619-622.
    [25]Togo, H.; Abe, S.; Nogami, G.; Yokoyama, M. Syntheitc Use of Poly[4-(diacetoxy-iodo)styrene] for Organic Reactions. Bull. Chem. Soc. Jpn.1999,72,2351-2356.
    [26]Chen, D.-J.; Cheng, D.-P.; Chen, Z.-C. Hypervalent Iodine in Synthesis.61. Regeneration of Carbonyl Function from Carbonyl Derivatives Using Polymer- Supported Phenyliodinebis(Trifluoroacetate). Synth. Commun.2001,31,3847-3850.
    [27]Herrerias, C. I.; Zhang, T. Y.; Li, C.-J. Catalytic oxidations of alcohols to carbonyl compounds by oxygen under solvent-free and transition-metal-free conditions. Tetrahedron Lett.2006,47,13-17.
    [28]But, T. Y. S.; Tashino, Y.; Togo, H.; Toy, P. H. A multipolymer system for organocatalytic alcohol oxidation. Org. Biomol. Chem.2005,3,970-971.
    [29]Sakuratani, K.; Togo, H. Environmentally-Friendly TEMPO-Mediated Oxidation of Alcohols with Poly[4-(diacetoxyiodo)styrene] Synthesis 2003,21-23.
    [30]Tashino, Y.; Togo, H. TEMPO-mediated environmentally benign oxidation of primary alcohols to carboxylic acids with poly[4-(diacetoxyiodo)styrene]. Synlett 2004, 2010-2012.
    [31]Tohma, H.; Maegawa, T.; Kita, Y Facile and Efficient Oxidative Transformation of Primary Alcohols to Methyl Esters in Water Using Hypervalent Iodine(III) Reagents. Synlett 2003,723-725.
    [32]Tohma, H.; Maegawa, T.; Kita, Y. Facile and efficient oxidation of sulfides to sulfoxides in water using hypervalent iodine reagents. Arkivoc 2003, vi,62-70.
    [33]Ley, S. V.; Schucht, O.; Thomas, A. W.; Murray, P. J. Synthesis of the alkaloids (±)-oxomaritidine and (±)-epimaritidine using an orchestrated multi-step sequence of polymer supported reagents. J. Chem. Soc, Perkin Trans.11999,1251-1252.
    [34]Sakuratani, K.; Togo, H. Preparation of 3,4-dihydro-2,1-benzothiazine 2,2-dioxides with polymer-supported hypervalent iodine reagents Arkivoc 2003, vi,11-20.
    [35]Abe, S.; Sakuratani, K.; Togo, H. Novel Preparation and Reactivity of Poly[4-hydroxy(tosyloxy)iodo]styrenes. Synlett 2001,22-24.
    [36]Abe, S.; Sakuratani, K.; Togo, H. Synthetic Use of Poly[4-hydroxy(tosyloxy)-iodo]styrenes. J. Org. Chem.2001,66,6174-6177.
    [37]Chen, J.-M.; Huang, X. Simple and Efficient Halotosyloxylation Reaction of Alkynes Using Poly{[4-(hydroxy)(tosyloxy)iodo]styrene}. Synthesis 2004,1577-1580.
    [38]范国枝.有机-无机杂化材料负载氯化钯催化翻的制备及其催化羰化性能研究;博士学位论文.武汉:华中科技大学,2006.
    [39]Astruc, D.; Chardac, F. Dendritic catalysts and dendrimers in catalysis. Chem. Rev. 2001,101,2991-3024.
    [40]Van Heerbeek, R.; Kamer, P. C. J.; Van Leeuwen, P. W. N. M.; Reek, J. N. H. Dendrimers as support for recoverable catalysts and reagents. Chem. Rev.2002,102, 3717-3756.
    [41]Ding, K.; Wang, Z.; Wang, X.; Liang, Y.; Wang, X. Self-supported chiral catalysts for heterogeneous enantioselective reactions. Chem. Eur. J.2006,12,5188-5197.
    [42]Wang, Z.; Chen, G.; Ding, K. Self-supported catalysts. Chem. Rev.2008,109, 322-359.
    [43]Lu, A.-H.; Salabas, E. L.; Schiith, F. Magnetic Nanoparticles:Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Edit.2007,46,1222-1244.
    [44]Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N. Magnetic Iron Oxide Nanoparticles:Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev.2008, 108,2064-2110.
    [45]Smallwood, I. M. Handbook of organic solvent properties; Arnold:London,1996.
    [46]邓友全.离子液体:性质、制备与应用;中国石化出版社:北京,2006.
    [47]张锁江;吕兴梅.离子液体:从基础研究到工业应用;科学出版社:北京,2006.
    [48]De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. A Versatile and Highly Selective Hypervalent Iodine (Ⅲ)/2,2,6,6-Tetramethyl-1-piperidinyloxyl-Mediated Oxidation of Alcohols to Carbonyl Compounds. J. Org. Chem.1997,62, 6974-6977.
    [49]Dzyuba, S. V.; Bartsch, R. A. New room-temperature ionic liquids with C-2-symmetrical imidazolium cations. Chem. Commun.2001,1466-1467.
    [50]Bonhote, P.; Dias, A. P.; Armand, M.; Papageorgiou, N.; Kalyanasundaram, K. Gratzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem.1996,35,1168-1178.
    [51]Wu, X.-E.; Ma, L.; Ding, M.-X.; Gao, L.-X. TEMPO-Derived Task-Specific Ionic Liquids for Oxidation of Alcohols. Synlett 2005,607-610.
    [52]Qian, W.; Jin, E.; Bao, W.; Zhang, Y. Clean and selective oxidation of alcohols catalyzed by ion-supported TEMPO in water. Tetrahedron 2006,62,556-562.
    [53]Roy, M.-N.; Poupon, J.-C.; Charette, A. B. Tetraarylphosphonium Salts as Soluble Supports for Oxidative Catalysts and Reagents. J. Org. Chem.2009,74,8510-8515.
    [54]Rocaboy, C.; Gladysz, J. A. Convenient Syntheses of Fluorous Aryl Iodides and Hypervalent Iodine Compounds:ArI(L)n Reagents That Are Recoverable by Simple Liquid/Liquid Biphase Workups, and Applications in Oxidations of Hydroquinones. Chem. Eur. J.2003,9,88-95.
    [55]Qian, W.; Jin, E.; Bao, W.; Zhang, Y Clean and Highly Selective Oxidation of Alcohols in an Ionic Liquid by Using an Ion-Supported Hypervalent Iodine(Ⅲ) Reagent. Angew. Chem. Int. Edit.2005,44,952-955.
    [56]Handy, S. T.; Okello, M. Homogeneous Supported Synthesis Using Ionic Liquid Supports:Tunable Separation Properties. J. Org. Chem.2005,70,2874-2877.
    [57]Latham, A. H.; Williams, M. E. Controlling Transport and Chemical Functionality of Magnetic Nanoparticles. Acc. Chem. Res.2008,41,411-420.
    [58]Shylesh, S.; Schunemann, V.; Thiel, W. R. Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Edit. 2010,49,3428-3459.
    [59]Schatz, A.; Reiser, O.; Stark, W. J. Nanoparticles as Semi-Heterogeneous Catalyst Supports. Chem. Eur. J.2010,16,8950-8967.
    [60]Liu, F.; Laurent, S.; Fattahi, H.; Elst, L. V.; Muller, R. N. Superparamagnetic nanosystems based on iron oxide nanoparticles for biomedical imaging. Nanomedicine (Lond) 2011,6,519-528.
    [61]Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.-M. Magnetically Recoverable Nanocatalysts. Chem. Rev.2011,111,3036-3075.
    [62]Lu, A.-H.; Schmidt, W.; Matoussevitch, N.; Bonnemann, H.; Spliethoff, B.; Tesche, B.; Bill, E.; Kiefer, W.; Schuth, F. Nanoengineering of a Magnetically Separable Hydrogenation Catalyst. Angew. Chem. Int. Edit.2004,43,4303-4306.
    [63]Gardimalla, H. M. R.; Mandal, D.; Stevens, P. D.; Yen, M.; Gao, Y. Superparamagnetic nanoparticle-supported enzymatic resolution of racemic carboxylates. Chem. Commun. 2005,4432-4434.
    [64]Hu, A.; Yee, G. T.; Lin, W. Magnetically Recoverable Chiral Catalysts Immobilized on Magnetite Nanoparticles for Asymmetric Hydrogenation of Aromatic Ketones. J. Am. Chem. Soc.2005,127,12486-12487.
    [65]Stevens, P. D.; Fan, J.; Gardimalla, H. M. R.; Yen, M.; Gao, Y. Superparamagnetic Nanoparticle-Supported Catalysis of Suzuki Cross-Coupling Reactions. Org. Lett. 2005,7,2085-2088.
    [66]Zheng, Y.; Stevens, P. D.; Gao, Y. Magnetic Nanoparticles as an Orthogonal Support of Polymer Resins:Applications to Solid-Phase Suzuki Cross-Coupling Reactions. J. Org. Chem.2006,71,537-542.
    [67]Lee, D.; Lee, J.; Lee, H.; Jin, S.; Hyeon, T.; Kim, B. M. Filtration-Free Recyclable Catalytic Asymmetric Dihydroxylation Using a Ligand Immobilized on Magnetic Mesocellular Mesoporous Silica. Adv. Synth. Catal 2006,348,41-46.
    [68]Abu-Reziq, R.; Alper, H.; Wang, D.; Post, M. L. Metal Supported on Dendronized Magnetic Nanoparticles:Highly Selective Hydroformylation Catalysts. J. Am. Chem. Soc.2006,128,5279-5282.
    [69]Phan, N. T. S.; Gill, C. S.; Nguyen, J. V.; Zhang, Z. J.; Jones, C. W. Expanding the Utility of One-Pot Multistep Reaction Networks through Compartmentation and Recovery of the Catalyst. Angew. Chem. Int. Edit.2006,45,2209-2212.
    [70]Phan, N.; Jones, C. Highly accessible catalytic sites on recyclable organosilane-functionalized magnetic nanoparticles:An alternative to functionalized porous silica catalysts. J. Mol. Catal. A Chem.2006,253,123-131.
    [71]Schatz, A.; Grass, R. N.; Stark, W. J.; Reiser, O. TEMPO Supported on Magnetic C/Co-Nanoparticles:A Highly Active and Recyclable Organocatalyst. Chem. Eur. J. 2008,14,8262-8266.
    [72]Yinghuai, Z.; Kuijin, L.; Huimin, N.; Chuanzhao, L.; Stubbs, L. P.; Siong, C. F.; Muihua, T.; Peng, S. C. Magnetic Nanoparticle Supported Second Generation Hoveyda-Grubbs Catalyst for Metathesis of Unsaturated Fatty Acid Esters. Adv. Synth. Catal.2009,351,2650-2656.
    [73]Polshettiwar, V.; Varma, R. S. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst:a selective and sustainable oxidation protocol with high turnover number. Org. Biomol Chem.2009,7,37-40.
    [74]Tucker-Schwartz, A. K.; Garrell, R. L. Simple Preparation and Application of TEMPO-Coated Fe3O4 Superparamagnetic Nanoparticles for Selective Oxidation of Alcohols. Chem. Eur. J.2010,16,12718-12726.
    [75]Jin, M.-J.; Lee, D.-H. A Practical Heterogeneous Catalyst for the Suzuki, Sonogashira, and Stille Coupling Reactions of Unreactive Aryl Chlorides. Angew. Chem. Int. Edit. 2010,49,1119-1122.
    [76]Zeng, T.; Yang, L.; Hudson, R.; Song, G; Moores, A. R.; Li, C.-J. Fe3O4 Nanoparticle-Supported Copper(I) Pybox Catalyst:Magnetically Recoverable Catalyst for Enantioselective Direct-Addition of Terminal Alkynes to Imines. Org. Lett.2011, 13,442-445.
    [77]Shi, F.; Tse, M. K.; Pohl, M.-M.; Bruckner, A.; Zhang, S.; Beller, M. Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis:Improved Activity and Selectivity of Free Nano-Fe2O3 in Selective Oxidations. Angew. Chem. Int. Edit.2007, 46,8866-8868.
    [78]Zhang, D.-H.; Li, G.-D.; Li, J.-X.; Chen, J.-S. One-pot synthesis of Ag-Fe3O4 nanocomposite:a magnetically recyclable and efficient catalyst for epoxidation of styrene. Chem. Commun.2008,3414-3416.
    [79]Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y; Fujioka, H.; Caemmerer, S. B.; Kita, Y. A Chiral Hypervalent Iodine(III) Reagent for Enantioselective Dearomatization of Phenols. Angew. Chem. Int. Edit.2008,47, 3787-3790.
    [80]Fujioka, H.; Komatsu, H.; Nakamura, T.; Miyoshi, A.; Hata, K.; Ganesh, J.; Murai, K.; Kita, Y Organic synthesis using a hypervalent iodine reagent:unexpected and novel domino reaction leading to spiro cyclohexadienone lactones. Chem. Commun.2010, 4133-4135.
    [81]Yakura, T.; Omoto, M. Efficient synthesis of p-quinols using catalytic hypervalent iodine oxidation of 4-arylphenols with 4-iodophenoxyacetic acid and oxone. Chem. Pharm. Bull.2009,57,643-645.
    [82]Muhammet, U.; Takeshi, Y; Kazuaki, I. Enantioselective Kita Oxidative Spirolactonization Catalyzed by In Situ Generated Chiral Hypervalent Iodine(III) Species. Angew. Chem. Int. Edit.2010,49,2175-2177.
    [83]Luo, S.; Zheng, X.; Xu, H.; Mi, X.; Zhang, L.; Cheng, J.-P. Magnetic Nanoparticle-Supported Morita-Baylis-Hillman Catalysts. Adv. Synth. Catal.2007, 349,2431-2434.
    [84]Yoon, T.-J.; Kim, J. S.; Kim, B. G.; Yu, K. N.; Cho, M.-H.; Lee, J.-K. Multifunctional Nanoparticles Possessing A "Magnetic Motor Effect" for Drug or Gene Delivery. Angew. Chem. Int. Edit.2005,44,1068-1071.
    [1]Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. Iodobenzene-Catalyzed α-Acetoxylation of Ketones. In Situ Generation of Hypervalent (Diacyloxyiodo)benzenes Using m-Chloroperbenzoic Acid. J. Am. Chem. Soc.2005, 127,12244-12245.
    [2]Richardson, R. D.; Wirth, T. Hypervalent Iodine Goes Catalytic. Angew. Chem. Int. Ed. 2006,45,4402-4404.
    [3]Ochiai, M. Stoichiometric and catalytic oxidations with hypervalent organo-λ3-iodanes. Chem. Rec.2007,7,12-23.
    [4]Ochiai, M.; Miyamoto, K. Catalytic Version of and Reuse in Hypervalent Organo-λ3-λ5-iodane Oxidation. Eur. J. Org. Chem.2008,4229-4239.
    [5]Dohi, T.; Kita, Y. Hypervalent iodine reagents as a new entrance to organocatalysts. Chem. Commun.2009,2073-2085.
    [6]Ngatimin, M.; Lupton, D. W. The Discovery of Catalytic Enantioselective Polyvalent Iodine Mediated Reactions. Aust. J. Chem.2010,63,653-658.
    [7]Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Versatile Hypervalent-Iodine(Ⅲ)-Catalyzed Oxidations with m-Chloroperbenzoic Acid as a Cooxidant. Angew. Chem. Int. Edit.2005,44,6193-6196.
    [8]Yamamoto, Y.; Togo, H. PhI-Catalyzed a-Tosyloxylation of Ketones with m-Chloroperbenzoic Acid and p-Toluenesulfonic Acid. Synlett 2006,798-800.
    [9]Dohi, T.; Maruyama, A.; Minamitsuji, Y.; Takenaga, N.; Kita, Y. First hypervalent iodine(Ⅲ)-catalyzed C-N bond forming reaction:catalytic spirocyclization of amides to N-fused spirolactams. Chem. Commun.2007,1224-1226.
    [10]Richardson, R. D.; Page, T. K.; Altermann, S.; Paradine, S. M.; French, A. N.; Wirth, T. Enantioselective α-Oxytosylation of Ketones Catalysed by Iodoarenes. Synlett 2007, 538-542.
    [11]Akiike, J.; Yamamoto, Y.; Togo, H. Efficient Conversion of Ketones to a-Tosyloxyketones with m-Chloroperbenzoic Acid and p-Toluenesulfonic Acid in the Presence of Catalytic Amount of IL-Supported PhI in [emim]OTs. Synlett 2007, 2168-2172.
    [12]Yamamoto, Y.; Kawano, Y.; Toy, P. H.; Togo, H. PhI-and polymer-supported PhI-catalyzed oxidative conversion of ketones and alcohols to a-tosyloxyketones with m-chloroperbenzoic acid and p-toluenesulfonic acid. Tetrahedron 2007,63, 4680-4687.
    [13]Moroda, A.; Togo, H. Iodobenzene-Catalyzed Preparation of 3,4-Dihydro-1H-2,1-benzothiazine 2,2-Dioxides from 2-Aryl-N-methoxyethane-sulfonamides with m-Chloroperoxybenzoic Acid. Synthesis 2008,1257-1261.
    [14]Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y.; Fujioka, H.; Caemmerer, S. B.; Kita, Y. A Chiral Hypervalent Iodine(III) Reagent for Enantioselective Dearomatization of Phenols. Angew. Chem. Int. Edit.2008,47, 3787-3790.
    [15]Miyamoto, K.; Sei, Y.; Yamaguchi, K.; Ochiai, M. Iodomesitylene-Catalyzed Oxidative Cleavage of Carbon-Carbon Double and Triple Bonds Using m-Chloroperbenzoic Acid as a Terminal Oxidant. J. Am. Chem. Soc.2009,131, 1382-1383.
    [16]Thottumkara, A. P.; Bowsher, M. S.; Vinod, T. K. In Situ Generation of o-Iodoxybenzoic Acid (IBX) and the Catalytic Use of It in Oxidation Reactions in the Presence of Oxone as a Co-oxidant. Org. Lett.2005,7,2933-2936.
    [17]Schulze, A.; Giannis, A. Oxidation of Alcohols with Catalytic Amounts of IBX. Synthesis 2006,2,257-260.
    [18]Lei, Z.; Yan, P.; Yang, Y. A simple and efficient oxidation system for the oxidation of alcohols utilizing Oxone? as oxidant catalyzed by polymer-supported 2-iodobenzamide. Catal. Lett.2007,118,69-71.
    [19]Yakura, T.; Konishi, T. A Novel Catalytic Hypervalent Iodine Oxidation of p-Alkoxyphenols to p-Quinones Using 4-Iodophenoxyacetic Acid and Oxone?. Synlett 2007,765-768.
    [20]Yakura, T.; Tian, Y.; Yamauchi, Y.; Omoto, M.; Konishi, T. Catalytic hypervalent iodine oxidation using 4-iodophenoxyacetic acid and oxone:oxidation of p-alkoxyphenols to p-benzoquinones. Chem. Pharm. Bull.2009,57,252-256.
    [21]Yakura, T.; Omoto, M. Efficient synthesis of p-quinols using catalytic hypervalent iodine oxidation of 4-arylphenols with 4-iodophenoxyacetic acid and oxone. Chem. Pharm. Bull.2009,57,643-645.
    [22]Uyanik, M.; Akakura, M.; Ishihara, K.2-Iodoxybenzenesulfonic acid as an extremely active catalyst for the selective oxidation of alcohols to aldehydes, ketones, carboxylic acids, and enones with oxone. J. Am. Chem. Soc.2009,131,251-262.
    [23]R. Ojha, L.; Kudugunti, S.; P. Maddukuri, P.; Kommareddy, A.; R. Gunna, M.; Dokuparthi, P.; B. Gottam, H.; K. Botha, K.; R. Parapati, D.; K. Vinod, T. Benzylic Carbon Oxidation by an in situ Formed o-Iodoxybenzoic Acid(IBX) Derivative. Synlett 2009,117-121.
    [24]Kilic, H.; Catir, M. Benzylic and Allylic Oxidations with Bis(trifluoroacetoxyiodo)-benzene and tert-Butyl Hydroperoxide. Synlett 2010,1319-1322.
    [25]Zhao, Y.; Yim, W.-L.; Tan, C. K.; Yeung, Y.-Y. An Unexpected Oxidation of Unactivated Methylene C-H Using DIB/TBHP Protocol. Org. Lett.2011,13, 4308-4311.
    [26]Zhao, Y.; Yeung, Y.-Y. An Unprecedented Method for the Generation of tert-Butylperoxy Radical Using DIB/TBHP Protocol:Solvent Effect and Application on Allylic Oxidation. Org. Lett.2010,12,2128-2131.
    [27]Kilic, H.; Catir, M. Bis(trifluoroacetoxyiodo)benzene-InducedActivation oftert-Butyl Hydroperoxide for the Direct Oxyfunctionalization of Arenes to Quinones. Synlett 2004,2151-2154.
    [28]Wei, W.; Zhang, C.; Xu, Y.; Wan, X. Synthesis of tert-butyl peresters from aldehydes by Bu4NI-catalyzed metal-free oxidation and its combination with the Kharasch-Sosnovsky reaction. Chem. Commun.2011,10827-10829.
    [29]Koposov, A. Y.; Karimov, R. R.; Pronin, A. A.; Skrupskaya, T.; Yusubov, M. S.; Zhdankin, V. V. RuCl3-Catalyzed Oxidation of Iodoarenes with Peracetic Acid:New Facile Preparation of Iodylarenes.J. Org. Chem.2006,71,9912-9914.
    [30]Minamitsuji, Y.; Kato, D.; Fujioka, H.; Dohi, T.; Kita, Y. Organoiodine-Catalyzed Oxidative Spirocyclization of Phenols using Peracetic Acid as a Green and Economic Terminal Oxidant. Aust. J. Chem.2009,62,648-652.
    [31]Dohi, T.; Yamaoka, N.; Itani, I.; Kita, Y. One-Pot Syntheses of Diaryliodonium Salts from Aryl Iodides Using Peracetic Acid as Green Oxidant. Aust. J. Chem.2011,64, 529-535.
    [32]Dohi, T.; Minamitsuji, Y.; Maruyama, A.; Hirose, S.; Kita, Y. A New H2O2/Acid Anhydride System for the Iodoarene-Catalyzed C-C Bond-Forming Reactions of Phenols. Org. Lett.2008,10,3559-3562.
    [33]Sheng, J.; Li, X.; Tang, M.; Gao, B.; Huang, G. An Efficient Method for the α-Acetoxylation of Ketones. Synthesis 2007,1165-1168.
    [34]Sheldon, R. A.; Arends, I. W. C. E. Organocatalytic Oxidations Mediated by Nitroxyl Radicals. Adv. Synth. Catal.2004,346,1051-1071.
    [35]Ishii, Y.; Sakaguchi, S. Recent progress in aerobic oxidation of hydrocarbons by N-hydroxyimides. Catal. Today 2006,117,105-113.
    [36]Sheldon, R. A.; Arends, I. W. C. E. Catalytic oxidations mediated by metal ions and nitroxyl radicals. J. Mol. Catal. A Chem.2006,251,200-214.
    [37]Yasutaka Ishii, S. S. T. I. Innovation of Hydrocarbon Oxidation with Molecular Oxygen and Related Reactions. Adv. Synth. Catal.2001,343,393-427.
    [38]Sheldon, R. A.; Arends, I. W. C. E.; Brink, G.-J. T.; Dijksman, A. Green, catalytic oxidation of alcohols. Acc. Chem. Res.2002,35,774-781.
    [39]Arends, I. W. C. E.; Sheldon, R. A. Modern Oxidation Methods; Wiley-VCH: Weinheim,2010.
    [40]Bruckner, C. Stable Radicals; John Wiley & Sons:Chichester,2010.
    [41]Hossain, M. D.; Kitamura, T. Direct and Convenient Synthesis of [Bis(trifluoro-acetoxy)iodo]arenes from Iodoarenes. Bull. Chem. Soc. Jpn.2006,79,142-144.
    [42]Studer, A.; Vogler, T. Applications of TEMPO in Synthesis. Synthesis 2008, 1979-1993.
    [43]Ciriminna, R.; Pagliaro, M. Industrial Oxidations with Organocatalyst TEMPO and Its Derivatives. Org. Process. Res. Dev.2010,14,245-251.
    [44]Souza, M. V. N. D. TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl) an Important Reagent in Alcohol Oxidation and its Application in Synthesis of Natural Products. Mini-Rev. Org. Chem.2006,3,155-165.
    [45]De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. A Versatile and Highly Selective Hypervalent Iodine (III)/2,2,6,6-Tetramethyl-l-piperidinyloxyl-Mediated Oxidation of Alcohols to Carbonyl Compounds. J. Org. Chem.1997,62, 6974-6977.
    [46]Pozzi, G.; Quici, S.; Shepperson, I. A convenient access to (F-alkyl)alkanals. Tetrahedron Lett.2002,43,6141-6143.
    [47]T. Matthew Hansen; Gordon J. Florence; Lugo-Mas, P.; Chen, J.; Abrams, J. N.; Forsyth, C. J. Highly chemoselective oxidation of 1,5-diols to 8-lactones with TEMPO/BAIB. Tetrahedron Lett.2003,44,57-59.
    [48]Piancatelli, G.; Leonelli, F.; Do, N.; Ragan, J. Oxidation of Nerol to Neral with Iodobenzene and TEMPO. Org. Synth.2006,83,18-23.
    [49]Vatele, J.-M. One-pot selective oxidation/olefination of primary alcohols using TEMPO-BAIB system and stabilized phosphorus ylides. Tetrahedron Lett.2006,47, 715-718.
    [50]Danielle, J. V.; Lars, V.; Kanar, a.-M.; Renske, L.; Rob, F. S.; Frans, J. J. d. K.; Marinus, B. G.; Ulf, H.; Romano, V. A. O. A Mild Chemo-Enzymatic Oxidation-Hydrocyanation Protocol. Eur. J. Org. Chem.2006,1672-1677.
    [51]Vatele, J.-M. Yb(OTf)3-Catalyzed Oxidation of Alcohols with Iodosylbenzene Mediated by TEMPO. Synlett 2006,2055-2058.
    [52]Zhao, X.-F.; Zhang, C. Iodobenzene Dichloride as a Stoichiometric Oxidant for the Conversion of Alcohols into Carbonyl Compounds; Two Facile Methods for Its Preparation. Synthesis 2007,551-557.
    [53]Vatele, J.-M. Lewis Acid Promoted Oxidative Rearrangement of Tertiary Allylic Alcohols with the PhIO/TEMPO System. Synlett 2008,1785-1788.
    [54]Li, X.-Q.; Zhang, C. An Environmentally Benign TEMPO-Catalyzed Efficient Alcohol Oxidation System with a Recyclable Hypervalent Iodine(III) Reagent and Its Facile Preparation. Synthesis 2009,1163-1169.
    [55]Yakura, T.; Ozono, A. Novel 2,2,6,6-Tetramethylpiperidine 1-Oxyl-Iodobenzene Hybrid Catalyst for Oxidation of Primary Alcohols to Carboxylic Acids. Adv. Synth. Catal.2011,353,855-859.
    [56]Li, Y.; Hale, K. J. Asymmetric Total Synthesis and Formal Total Synthesis of the Antitumor Sesquiterpenoid (+)-Eremantholide A. Org. Lett.2007,9,1267-1270.
    [57]Nicolaou, K. C.; Jiang, X.; Lindsay-Scott, P. J.; Corbu, A.; Yamashiro, S.; Bacconi, A.; Fowler, V. M. Total Synthesis and Biological Evaluation of Monorhizopodin and 16-epi-Monorhizopodin. Angew. Chem. Int. Edit.2011,50,1139-1144.
    [58]Nicolaou, K. C.; Aversa, R. J.; Jin, J.; Rivas, F. Synthesis of the ABCDEFG Ring System of Maitotoxin. J. Am. Chem. Soc.2010,132,6855-6861.
    [59]Paterson, I.; Anderson, E. A.; Dalby, S. M.; Lim, J. H.; Genovino, J.; Maltas, P.; Moessner, C. Total Synthesis of Spirastrellolide A Methyl Ester-Part 1:Synthesis of an Advanced C17-C40 Bis-spiroacetal Subunit. Angew. Chem. Int. Edit.2008,47, 3016-3020.
    [60]Nicolaou, K. C.; Zhang, H.; Ortiz, A.; Dagneau, P. Total Synthesis of the Originally Assigned Structure of Vannusal B. Angew. Chem. Int. Edit.2008,47,8605-8610.
    [61]Nicolaou, K. C.; Sarlah, D.; Wu, T. R.; Zhan, W. Total Synthesis of Hirsutellone B. Angew. Chem. Int. Edit.2009,48,6870-6874.
    [62]Nicolaou, K. C.; Zhang, H.; Ortiz, A. The True Structures of the Vannusals, Part 1: Initial Forays into Suspected Structures and Intelligence Gathering. Angew. Chem. Int. Edit.2009,48,5642-5647.
    [63]Nicolaou, K. C.; Ortiz, A.; Zhang, H. The True Structures of the Vannusals, Part 2: Total Synthesis and Revised Structure of Vannusal B. Angew. Chem. Int. Edit.2009, 48,5648-5652.
    [64]Marchart, S.; Gromov, A.; Mulzer, J. Total Synthesis of the Antibiotic Branimycin. Angew. Chem. Int. Edit.2010,49,2050-2053.
    [65]Kleinbeck, F.; Carreira, E. M. Total Synthesis of Bafilomycin A1. Angew. Chem. Int. Edit.2009,48,578-581.
    [66]Giannis, A.; Heretsch, P.; Sarli, V.; StoBel, A. Synthesis of Cyclopamine Using a Biomimetic and Diastereoselective Approach. Angew. Chem. Int. Edit.2009,48, 7911-7914.
    [67]Yamakawa, T.; Ideue, E.; Shimokawa, J.; Fukuyama, T. Total Synthesis of Tryprostatins A and B. Angew. Chem. Int. Edit.2010,49,9262-9265.
    [68]Zeng, X.-M.; Chen, J.-M.; Middleton, K.; Zhdankin, V. V. Recyclable silica-supported iodoarene-RuCl3 bifunctional catalysts for oxidation of alcohols and alkylarenes. Tetrahedron Lett.2011,52,5652-5655.
    [69]Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev.1999,99,2071-2083.
    [70]Wasserscheid, P.; Keim, W. Ionic Liquids-New "Solutions" for Transiton Metal Catalysis. Angew. Chem. Int. Ed.2000,39,3772-2789.
    [71]Dupont, J.; Souza, R. F. d.; Suarez, P. A. Z. Ionic Liquid (Molten Salt) Phase Organometallic Catalysis. Chem. Rev.2002,102,3667-3692.
    [72]Muzart, J. Ionic Liquids as Solvents for Catalyzed Oxidations of Organic Compounds. Adv. Synth. Catal.2006,348,275-295.
    [73]Chowdhury, S.; Mohan, R. S.; Scott, J. L. Reactivity of ionic liquids. Tetrahedron 2007,63,2363-2389.
    [74]Parvulescu, V. I.; Hardacre, C. Catalysis in Ionic Liquids. Chem. Rev.2007,107, 2615-2665.
    [75]Miao, W.; Chan, T. H. Ionic-Liquid-Supported Synthesis:A Novel Liquid-Phase Strategy for Organic Synthesis. Acc. Chem. Res.2006,39,897-908.
    [76]Giernoth, R. Task-Specific Ionic Liquids. Angew. Chem. Int. Edit.2010,49, 2834-2839.
    [77]Yoshida, Y.; Saito, G. Design of functional ionic liquids using magneto-and luminescent-active anions. Phys. Chem. Chem. Phys.2010,12,1675-1684.
    [78]Paquette, L. A.; Crich, D.; Fuchs, P. L.; Molander, G. A. Encyclopedia of Reagents for Organic Synthesis; John Wiley & Son:Chichester,2009.
    [79]Zhao, M.; Li, J.; Mano, E.; Song, Z.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J. Oxidation of Primary Alcohols to Carboxylic Acids with Sodium Chlorite Catalyzed by TEMPO and Bleach. J. Org. Chem.1999,64,2564-2566.
    [80]Yasuyuki, K.; Tohma, H.; Hatanaka, K.; Yakura, T. A Novel Oxidative Azidation of Aromatic Compounds with Hypervalent Iodine Reagent, Phenyliodine(III) Bis(trifluoroacetate) (PIFA) and Trimethylsilyl Azide. Tetrahedron Lett.1991,32, 4321-4324.
    [81]Kita, Y.; Takada, T.; Tohma, H. Hypervalent iodine reagents in organic synthesis: Nucleophilic substitution of p-substituted phenol ethers. Pure Appl. Chem.1996,68, 627-630.
    [82]Dohi, T.; Ito, M.; Morimoto, K.; Minamitsuji, Y.; Takenaga, N.; Kita, Y. Versatile direct dehydrative approach for diaryliodonium(III) salts in fluoroalcohol media. Chem. Commun.2007,4152-4154.
    [83]Dohi, T.; Yamaoka, N.; Kita, Y. Fluoroalcohols:versatile solvents in hypervalent iodine chemistry and syntheses of diaryliodonium(III) salts. Tetrahedron 2010,66, 5775-5785.
    [84]Ito, M.; Ogawa, C.; Yamaoka, N.; Fujioka, H.; Dohi, T.; Kita, Y. Enhanced Reactivity of [Hydroxy(tosyloxy)iodo]benzene in Fluoroalcohol Media. Efficient Direct Synthesis of Thienyl(aryl)iodonium Salts. Molecules 2010,15,1918-1931.
    [85]Handy, S. T.; Okello, M. Homogeneous Supported Synthesis Using Ionic Liquid Supports:Tunable Separation Properties. J. Org. Chem.2005,70,2874-2877.
    [86]Miyamoto, K.; Tada, N.; Ochiai, M. Activated Iodosylbenzene Monomer as an Ozone Equivalent:Oxidative Cleavage of Carbon Carbon Double Bonds in the Presence of Water. J. Am. Chem. Soc.2007,129,2772-2773.
    [87]Horton, D. A.; Bourne, G. T.; Smythe, M. L. The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures. Chem. Rev.2003,103,893-930.
    [88]Velik, J.; Baliharova, V.; Fink-Gremmels, J.; Bull, S.; Lamka, J.; Skalova, L. Benzimidazole drugs and modulation of biotransformation enzymes. Res. Vet. Sci. 2004,76,95-108.
    [89]Boiani, M.; Gonzalez, M. Imidazole and Benzimidazole Derivatives as Chemotherapeutic Agents. Mini-Rev. Med. Chem.2005,5,409-424.
    [90]Bhattacharya, S.; Chaudhuri, P. Medical implications of benzimidazole derivatives as drugs designed for targeting DNA and DNA associated processed. Curr. Med. Chem. 2008,15,1762-1777.
    [91]夏敏.2,5’-双苯并咪唑衍生物的合成.化学通报2003,66,207-209.
    [92]Preston, P. N. Synthesis, reactions, and spectroscopic properties of benzimidazoles. Chem. Rev.1974,74,279-314.
    [93]Grimmett, M. R. Imidazole and Benzimidazole Synthesis; Academic Press:London, 1997.
    [94]Huang, W.; Scarborough, R. M. A new "traceless" solid-phase synthesis strategy: Synthesis of a benzimidazole library. Tetrahedron Lett.1999,40,2665-2668.
    [95]Huang, S.-T.; Hsei, I. J.; Chen, C. Synthesis and anticancer evaluation of bis(benzimidazoles), bis(benzoxazoles), and benzothiazoles. Bioorg. Med. Chem.2006, 14,6106-6119.
    [96]Gong, B.; Hong, F.; Kohm, C.; Bonham, L.; Klein, P. Synthesis and SAR of 2-arylbenzoxazoles, benzothiazoles and benzimidazoles as inhibitors of lysophosphatidic acid acyltransferase-β. Bioorg. Med. Chem. Lett.2004,14, 1455-1459.
    [97]Kumar, D.; Jacob, M. R.; Reynolds, M. B.; Kerwin, S. M. Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1. Bioorg. Med. Chem. 2002,10,3997-4004.
    [98]Dunwell, D. W.; Evans, D.; Smith, C. E.; Williamson, W. R. N. Synthesis and antiinflammatory activity of some 2-substituted.alpha.-methyl-5-benzimidazoleacetic acids. J. Med. Chem.1975,18,692-694.
    [99]Dzvinchuk, I. B.; Vypirailenko, A. V.; Lozinskii, M. O. Synthesis of 1-(5-Pyrazolyl)benzimidazoles by Cyclocondensation of 5-[(o-Acylaminophenyl)-amino]pyrazoles. Russian. J. Org. Chem.1998,34,685-687.
    [100]Biasotti, B.; Dallavalle, S.; Merlini, L.; Farina, C.; Gagliardi, S.; Parini, C.; Belfiore, P. Synthesis of photoactivable inhibitors of osteoclast vacuolar ATPase. Bioorg. Med. Chem.2003,11,2247-2254.
    [101]White, A. W.; Almassy, R.; Calvert, A. H.; Curtin, N. J.; Griffin, R. J.; Hostomsky, Z.; Maegley, K.; Newell, D. R.; Srinivasan, S.; Golding, B. T. Resistance-Modifying Agents.9.1 Synthesis and Biological Properties of Benzimidazole Inhibitors of the DNA Repair Enzyme Poly(ADP-ribose) Polymerase. J. Med. Chem.2000,43, 4084-4097.
    [102]Gungor, T.; Fouquet, A.; Teulon, J. M.; Provost, D.; Cazes, M.; Cloarec, A. Cardiotonic agents. Synthesis and cardiovascular properties of novel 2-arylbenzimidazoles and azabenzimidazoles. J. Med. Chem.1992,35,4455-4463.
    [103]Hendrickson, J. B.; Hussoin, M. S. Seeking the ideal dehydrating reagent. J. Org. Chem.1987,52,4137-4139.
    [104]Barni, E.; Savarino, P. Quaternary salts from 2-(methylpyridyl or quinolyl)benz-imidazoles and related polymethine dyes. J. Heterocyclic. Chem.1979,16,1583-1587.
    [105]Bhatnagar, I.; George, M. V. Oxidation with metal oxides Ⅱ:Oxidation of chalcone phenylhydrazones, pyrazolines, o-aminobenzylidine anils and o-hydroxy benzylidine anils with manganese dioxide. Tetrahedron 1968,24,1293-1298.
    [106]Stephens, F. F.; Bower, J. D. The preparation of benziminazoles and benzoxazoles from Schiffs bases. Part I. J. Chem. Soc.1949,2971-2972.
    [107]Du, L.-H.; Wang, Y.-G. A Rapid and Efficient Synthesis of Benzimidazoles Using Hypervalent Iodine as Oxidant. Synthesis 2007,675-678.
    [108]Beaulieu, P. L.; Hache, B.; von Moos, E. A Practical Oxone?-Mediated, High-Throughput, Solution-Phase Synthesis of Benzimidazoles from 1,2-Phenylenediamines and Aldehydes and its Application to Preparative Scale Synthesis. Synthesis 2003,1683-1692.
    [109]Lee, K. J.; Janda, K. D. Traceless solid-phase synthesis of 5-benzoylbenzimidazoles. Can. J. Chem.2001,79,1556-1561.
    [110]Gogoi, P.; Konwar, D. An efficient and one-pot synthesis of imidazolines and benzimidazoles via anaerobic oxidation of carbon-nitrogen bonds in water. Tetrahedron Lett.2006,47,79-82.
    [111]Chikashita, H.; Nishida, S.; Miyazaki, M.; Morita, Y.; Itoh, K. In Situ Generation and Synthetic Application of 2-Phenylbenzimidazoline to the Selective Reduction of Carbon-Carbon Double Bonds of Electron-Deficient Olefins. Bull. Chem. Soc. Jpn. 1987,60,737-746.
    [112]Uyanik, M.; Okamoto, H.; Yasui, T.; Ishihara, K. Quaternary ammonium (hypo)iodite catalysis for enantioselective oxidative cycloetherification. Science 2010,328, 1376-1379.
    [113]Lindstrom, U. M. Stereoselective Organic Reactions in Water. Chem. Rev.2002,102, 2751-2772.
    [114]Chanda, A.; Fokin, V. V. Organic Synthesis "On Water". Chem. Rev.2009,109, 725-748.
    [115]Li, C.-J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev.2006,35,68-82.
    [116]Tohma, H.; Takizaw, S.; Maegaw, T.; Kita, Y. Facile and Clean Oxidation of Alcohols in Water Using Hypervalent Iodine(III) Reagents. Angew. Chem. Int. Edit.2000,39, 1306-1308.
    [117]Tohma, H.; Maegawa, T.; Takizawa, S.; Kita, Y. Facile and Clean Oxidation of Alcohols in Water Using Hypervalent Iodine(III) Reagents. Adv. Synth. Catal. 2002, 344,328-337.
    [118]Das, B.; Holla, H.; Venkateswarlu, K.; Majhi, A. Organic reactions in water:an efficient one-pot synthesis of acyloxiranes from Baylis-Hillman adducts using hypervalent iodine. Tetrahedron Lett.2005,46,8895-8897.
    [119]Dohi, T.; Takenaga, N.; Goto, A.; Fujioka, H.; Kita, Y. Clean and Efficient Benzylic C-H Oxidation in Water Using a Hypervalent Iodine Reagent:Activation of Polymeric Iodosobenzene with KBr in the Presence of Montmorillonite-K10. J. Org. Chem.2008, 73,7365-7368.
    [120]Takenaga, N.; Goto, A.; Yoshimura, M.; Fujioka, H.; Dohi, T.; Kita, Y. Hypervalent iodine(III)/Et4N+Br- combination in water for green and racemization-free aqueous oxidation of alcohols. Tetrahedron Lett.2009,50,3227-3229.
    [121]Ye, Y.; Wang, L.; Fan, R. Aqueous Iodine(III)-Mediated Stereoselective Oxidative Cyclization for the Synthesis of Functionalized Fused Dihydrofuran Derivatives. J. Org. Chem.2010,75,1760-1763.
    [122]Panchan, W.; Chiampanichayakul, S.; Snyder, D. L.; Yodbuntung, S.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Kuhakarn, C. Facile oxidative hydrolysis of acetals to esters using hypervalent iodine(Ⅲ)/LiBr combination in water. Tetrahedron 2010,66, 2732-2735.
    [1]Li, C.-J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev.2006,35,68-82.
    [2]Lindstrom, U. M. Stereoselective Organic Reactions in Water. Chem. Rev.2002,102, 2751-2772.
    [3]Chanda, A.; Fokin, V. V. Organic Synthesis "On Water". Chem. Rev.2009,109, 725-748.
    [4]Klijn, J. E.; Engberts, J. B. F. N. Fast reactions "on water". Nature 2005,435,746-747.
    [5]Dack, M. R. J. The importance of solvent internal pressure and cohesion to solution phenomena. Chem. Soc. Rev.1975,4,211-229.
    [6]Blomberg, M. R. A.; Siegbahn, P. E. M.; Nagashima, U.; Wennerberg, J. Theoretical study of the activation of alkane carbon-hydrogen and carbon-carbon bonds by different transition metals. J. Am. Chem. Soc.1991,113,424-433.
    [7]Lubineau, A. Water-promoted organic reactions:aldol reaction under neutral conditions.J. Org. Chem.1986,51,2142-2144.
    [8]Breslow, R.; Maitra, U.; Rideout, D. Selective diels-alder reactions in aqueous solutions and suspensions. Tetrahedron Lett.1983,24,1901-1904.
    [9]Moriarty, R. M.; Rani, N.; Condeiu, C.; Duncan, M. P.; Prakash, O. Hypervalent Iodine Oxidation of Trimethylsilyl Ketene Acetals:A Convenient Route to a-Methoxylation of Esters and Lactones. Synth. Commun.1997,27,3273-3277.
    [10]Moriarty, R. M.; Prakash, O.; Duncan, M. P.; Vaid, R. K.; Rani, N. Hypervalent iodine oxidation of trimethylsilyl ketene acetals:a convenient route to a-methoxylation of esters and lactones. J. Chem. Res. (S) 1996,432-433.
    [11]Das, B.; Holla, H.; Venkateswarlu, K.; Majhi, A. Organic reactions in water:an efficient one-pot synthesis of acyloxiranes from Baylis-Hillman adducts using hypervalent iodine. Tetrahedron Lett.2005,46,8895-8897.
    [12]Ye, Y.; Wang, L.; Fan, R. Aqueous Iodine(III)-Mediated Stereoselective Oxidative Cyclization for the Synthesis of Functionalized Fused Dihydrofuran Derivatives. J. Org. Chem.2010,75,1760-1763.
    [13]Huang, W.-J.; Singh, O. V.; Chen, C.-H.; Chiou, S.-Y.; Lee, S.-S. Activation of Iodosobenzene by Catalytic Tetrabutylammonium Iodide and Its Application in the Oxidation of Some Isoquinoline Alkaloids. Helv. Chim. Acta 2002,85,1069-1078.
    [14]Tada, N.; Miyamoto, K.; Ochiai, M. Oxidation of 3-Hydroxypiperidines with Iodosylbenzene in Water:Tandem Oxidative Grob Fragmentation-Cyclization Reaction. Chem. Pharm. Bull.2004,52,1143-1144.
    [15]Chatterjee, N.; Pandit, P.; Halder, S.; Patra, A.; Maiti, D. K. Generation of Nitrile Oxides under Nanometer Micelles Built in Neutral Aqueous Media:Synthesis of Novel Glycal-Based Chiral Synthons and Optically Pure 2,8-Dioxabicyclo-[4.4.0]decene Core. J. Org. Chem.2008,73,7775-7778.
    [16]Ochiai, M.; Miyamoto, K.; Shiro, M.; Ozawa, T.; Yamaguchi, K. Isolation, Characterization, and Reaction of Activated Iodosylbenzene Monomer Hydroxy(phenyl)iodonium Ion with Hypervalent Bonding:Supramolecular Complex PhI+OH?18-Crown-6 with Secondary I…O Interactions. J. Am. Chem. Soc.2003,125, 13006-13007.
    [17]Miyamoto, K.; Tada, N.; Ochiai, M. Activated Iodosylbenzene Monomer as an Ozone Equivalent:Oxidative Cleavage of Carbon Carbon Double Bonds in the Presence of Water. J. Am. Chem. Soc.2007,129,2772-2773.
    [18]Panchan, W.; Chiampanichayakul, S.; Snyder, D. L.; Yodbuntung, S.; Pohmakotr, M.; Reutrakul, V.; Jaipetch, T.; Kuhakarn, C. Facile oxidative hydrolysis of acetals to esters using hypervalent iodine(Ⅲ)/LiBr combination in water. Tetrahedron 2010,66, 2732-2735.
    [19]Li, X.; Xu, Z.; DiMauro, E. F.; Kozlowski, M. C. Unusual oxidative rearrangement of 1,5-diazadecalin. Tetrahedron Lett.2002,43,3747-3750.
    [20]Moriarty, R. M.; Penmasta, R.; Prakash, I. Possible role of Lewis acid catalysis in the oxidation of alkenes and α, β-unsaturated ketones using bleomycin-zn(ii) and bleomycin-fe(iii)-iodosylbenzene in aqueous methanol. Tetrahedron Lett.1985,26, 4699-4702.
    [21]Yang, Y.; Diederich, F.; Valentine, J. S. Lewis acidic catalysts for olefin epoxidation by iodosylbenzene. J. Am. Chem. Soc.1991,113,7195-7205.
    [22]Fukase, K.; Kinoshita, I.; Kanoh, T.; Nakai, Y.; Hasuoka, A.; Kusumoto, S. A novel method for stereoselective glycosidation with thioglycosides:Promotion by hypervalent iodine reagents prepared from PhIO and various acids. Tetrahedron 1996, 52,3897-3904.
    [23]Muler, P.; Godoy, J. Catalyzed oxidation of alcohols and aldehydes with iodosylbenzene. Tetrahedron Lett.1981,22,2361-2364.
    [24]Yokoo, T.; Matsumoto, K.; Oshima, K.; Utimoto, K. Ytterbium Catalyzed Oxidation of Alcohols to Aldehydes and Ketones by Means of Iodosylbenzene. Chem. Lett.1993, 22,571-572.
    [25]Vatele, J.-M. Yb(OTf)3-Catalyzed Oxidation of Alcohols with Iodosylbenzene Mediated by TEMPO. Synlett 2006,2055-2058.
    [26]Vatele, J.-M. Lewis Acid Promoted Oxidative Rearrangement of Tertiary Allylic Alcohols with the PhIO/TEMPO System. Synlett 2008,1785-1788.
    [27]Tohma, H.; Takizaw, S.; Maegaw, T.; Kita, Y. Facile and Clean Oxidation of Alcohols in Water Using Hypervalent Iodine(Ⅲ) Reagents. Angew. Chem. Int. Edit.2000,39, 1306-1308.
    [28]Tohma, H.; Maegawa, T.; Takizawa, S.; Kita, Y. Facile and Clean Oxidation of Alcohols in Water Using Hypervalent Iodine(III) Reagents. Adv. Synth. Catal.2002, 344,328-337.
    [29]Ten Brink, G. J.; Arends, I.; Sheldon, R. A. Green, catalytic oxidation of alcohols in water. Science 2000,287,1636-1639.
    [30]Ten Brink, G. J.; Arends, I.; Sheldon, R. A. Catalytic conversions in water. Part 21: Mechanistic investigations on the palladium-catalysed aerobic oxidation of alcohols in water. Adv. Synth. Catal.2002,344,355-369.
    [31]Tascioglu, G. Micellar solutions as reaction media. Tetrahedron 1996,52, 11113-11152.
    [32]Graciaa, A.; Lachaise, J.; Morel, G.; Salager, J. L.; Bourrel, M. Optimal Phase Behavior of Water/Oil Blend/Surfactant Systems; Springer:Berlin,2008.
    [33]Tohma, H.; Takizawa, S.; Watanabe, H.; Kita, Y. Hypervalent iodine(III) oxidation catalyzed by quaternary ammonium salt in micellar systems. Tetrahedron Lett.1998, 39,4547-4550.
    [34]Mehta, S. K.; Chaudhary, S.; Kumar, R.; Bhasin, K. K. Facile solubilization of organo-chalcogen compounds in mixed micelle formation of binary and ternary cationic-nonionic surfactant mixtures. J. Phys. Chem.B 2009,113,7188-7193.
    [35]Tohma, H.; Takizawa, S.; Watanabe, H.; Fukuoka, Y.; Maegawa, T.; Kita, Y. Hypervalent Iodine(V)-Induced Asymmetric Oxidation of Sulfides to Sulfoxides Mediated by Reversed Micelles:Novel Nonmetallic Catalytic System. J. Org. Chem. 1999,64,3519-3523.
    [36]Marszall, L; Lin, I. J. Partition Coefficient, HLB, and Effective Chain Length of Surface-Active Agents; Springer:Berlin,2007.
    [37]Villiers, A. Nahrungs-Genussmittel Gebrauchsgegenstande. Compt. Rend. Acad. Sci. 1891,112,536-538.
    [38]Takahashi, K. Organic Reactions Mediated by Cyclodextrins. Chem. Rev.1998,98, 2013-2033.
    [39]Douhal, A. Ultrafast Guest Dynamics in Cyclodextrin Nanocavities. Chem. Rev.2004, 104,1955-1976.
    [40]Uekama, K.; Hirayama, F.; Irie, T. Cyclodextrin Drug Carrier Systems. Chem. Rev. 1998,98,2045-2076.
    [41]Hapiot, F.; Tilloy, S.; Monflier, E. Cyclodextrins as Supramolecular Hosts for Organometallic Complexes. Chem. Rev.2006,106,767-781.
    [42]Wenz, G.; Han, B.-H.; Muller, A. Cyclodextrin Rotaxanes and Polyrotaxanes. Chem. Rev.2006,106,782-817.
    [43]童林荟.环糊精化学-基础与应用;科学出版社:北京,2001.
    [44]Reddy, L. R.; Bhanumathi, N.; Rao, K. R. Dynamic kinetic asymmetric synthesis of aminoalcohols from racemic epoxides in cyclodextrin complexes under solid state conditions. Chem. Commun.2000,2321-2322.
    [45]Reddy, M. A.; Bhanumathi, N.; Rao, K. R. Asymmetric synthesis of 2-azido-l-arylethanols from azido aryl ketone-β-cyclodextrin complexes and sodium borohydride in water. Chem. Commun.2001,1974-1975.
    [46]Reddy, M. A.; Reddy, L. R.; Bhanumathi, N.; Rao, K. R. Selective deprotection of tetrahydropyranyl ethers catalysed by β-cyclodextrin in water. New J. Chem.2001,25, 359-360.
    [47]Arjun Reddy, M.; Bhanumathi, N.; Rama Rao, K. A mild and efficient biomimetic synthesis of hydroxymethylarylketones from oxiranes in the presence of cyclodextrin and NBS in water. Tetrahedron Lett.2002,43,3237-3238.
    [48]Krishnaveni, N. S.; Surendra, K.; Rao, K. R. A Simple and Highly Selective Biomimetic Oxidation of Alcohols and Epoxides with N-Bromosuccinimide in the Presence of β-Cyclodextrin in Water. Adv. Synth. Catal.2004,346,346-350.
    [49]Reddy, M. A.; Surendra, K.; Bhanumathi, N.; Rao, K. R. Highly facile biomimetic regioselective ring opening of epoxides to halohydrins in the presence of cyclodextrin. Tetrahedron 2002,58,6003-6008.
    [50]Liu, Y.; Han, B.-H.; Sun, S.-X.; Wada, T.; Inoue, Y. Molecular Recognition Study on Supramolecular Systems.20. Molecular Recognition and Enantioselectivity of Aliphatic Alcohols by L-Tryptophan-Modified β-Cyclodextrin. J. Org. Chem.1999, 64,1487-1493.
    [51]Hong-Bing, J. Highly Shape-Selective, Biomimetic, and Efficient Deprotection of Carbonyl Compounds Masked as Ethylene Acetals or Dioxolanes Produced from 1,2-Ethanediol. Eur. J. Org. Chem.2003,3659-3662.
    [52]Ji, H.-B.; Shi, D.-P.; Shao, M.; Li, Z.; Wang, L.-F. Transition metal-free and substrate-selective oxidation of alcohols using water as an only solvent in the presence of p-cyclodextrin. Tetrahedron Lett.2005,46,2517-2520.
    [53]Chan, W.-K.; Yu, W.-Y.; Che, C.-M.; Wong, M.-K. A Cyclodextrin-Modified Ketoester for Stereoselective Epoxidation of Alkenes. J. Org. Chem.2003,68,6576-6582.
    [54]Ji, H.-B.; Hu, X.-F.; Shi, D.-P.; Li, Z. Controllable oxidation of sulfides to sulfoxides and sulfones with aqueous hydrogen peroxide in the presence of β-cyclodextrin. Russ J. Org. Chem.2006,42,959-961.
    [55]Shi, D. P.; Ji, H. B. β-Cyclodextrin promoted oxidation of aldehydes to carboxylic acids in water. Chinese. Chem. Lett.2009,20,139-142.
    [56]Karakhanov, E. A.; Filippova, T. Y.; Martynova, S. A.; Maximov, A. L.; Predeina, V. V.; Topchieva, I. N. New catalytic systems for selective oxidation of aromatic compounds by hydrogen peroxide. Catal. Today 1998,44,189-198.
    [57]Fraschini, C.; Vignon, M. R. Selective oxidation of primary alcohol groups of β-cyclodextrin mediated by 2,2,6,6-tetramethylpiperidine-l-oxyl radical (TEMPO). Carbohyd. Res.2000,328,585-589.
    [58]Narender, M.; Reddy, M. S.; Kumar, V. P.; Nageswar, Y. V. D.; Rao, K. R. Direct synthesis of carbonyl compounds from THP ethers with IBX in the presence of P-cyclodextrin in water. Tetrahedron Lett.2005,46,1971-1973.
    [59]Surendra, K.; Krishnaveni, N. S.; Rao, K. R. A simple biomimetic protocol for the oxidation of alcohols with sodium hypochlorite in the presence of P-cyclodextrin in water. Can. J. Chem.2004,82,1230-1233.
    [60]Shi, D.; Ji, H.; Li, Z. β-Cyclodextrin promoted oxidation of primary amines to nitriles in water. Front. Chem. Eng. China.2009,3,196-200.
    [61]Surendra, K.; Krishnaveni, N. S.; Reddy, M. A.; Nageswar, Y. V. D.; Rao, K. R. Mild Oxidation of Alcohols with o-Iodoxybenzoic Acid (IBX) in Water/Acetone Mixture in the Presence of β-Cyclodextrin. J. Org. Chem.2003,68,2058-2059.
    [62]Surendra, K.; Krishnaveni, N. S.; Reddy, M. A.; Nageswar, Y. V. D.; Rao, K. R. Highly Selective Oxidative Cleavage of β-Cyclodextrin-Epoxide/Aziridine Complexes with IBX in Water. J. Org. Chem.2003,68,9119-9121.
    [63]Koposov, A. Y.; Netzel, B. C.; Yusubov, M. S.; Nemykin, V. N.; Nazarenko, A. Y.; Zhdankin, V. V. Preparation and Structure of Oligomeric Iodosylbenzene Sulfate (PhIO)3?SO3: Stable and Water-Soluble Analog of Iodosylbenzene. Eur. J. Org. Chem. 2007,4475-4478.
    [64]Nemykin, V. N.; Koposov, A. Y.; Netzel, B. C.; Yusubov, M. S.; Zhdankin, V. V. Self-Assembly of Hydroxy(phenyl)iodonium Ions in Acidic Aqueous Solution: Preparation, and X-ray Crystal Structures of Oligomeric Phenyliodine(III) Sulfates. Inorg. Chem.2009,48,4908-4917.
    [65]Yusubov, M. S.; Yusubova, R. Y.; Funk, T. V.; Chi, K.-W.; Zhdankin, V. V. Oligomeric Iodosylbenzene Sulfate:A Convenient Hypervalent Iodine Reagent for Oxidation of Organic Sulfides and Alkenes. Synthesis 2009,2505-2508.
    [66]Yoshimura, A.; Neu, H. M.; Nemykin, V. N.; Zhdankin, V. V. Metalloporphyrin/ Iodine(III)-Cocatalyzed Oxygenation of Aromatic Hydrocarbons. Adv. Synth. Catal. 2010,352,1455-1460.
    [67]Moriarty, R. M.; Kosmeder, J. W.; Zhdankin, V. V. Encyclopedia of reagents for organic synthesis; Wiley:Chichester,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700