双官能团硫脲催化剂催化的α-氟代-β-羰基三氟甲基偕二醇的不对称反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文中主要介绍两个方面的工作:合成一系列三氟甲基双羰基化合物,进一步氟化得到α-氟代-β-羰基三氟甲基偕二醇合成砌块。研究三氟甲基双羰基化合物和α-氟代-β-羰基三氟甲基偕二醇合成砌块参与的不对称催化反应,进一步研究了脱三氟乙酸反应机理,发展了一种通过脱三氟乙酸策略构建单氟手性中心的不对称催化合成方法。
     第一部分主要介绍了含氟砌块的合成:从三氟乙酸乙酯出发,合成得到三氟甲基1,3-双羰基化合物,进一步利用亲电氟化试剂Selectfluor对双羰基的亚甲基(α-位引入氟原子)进行氟化得到了一系列α-氟代-β-羰基三氟甲基偕二醇合成砌块,利用核磁和单晶衍射对它们的结构进行了表征。
     第二部分主要介绍了含氟双羰基化合物和α-氟代-β-羰基三氟甲基偕二醇合成砌块在双官能团硫脲催化剂催化下的不对称反应,以优异的对映选择性构建了单氟手性中心化合物:1)含氟双羰基化合物和α-氟代-β-羰基三氟甲基偕二醇在Takemoto催化剂的催化下,与硝基苯乙烯衍生物发生脱三氟乙酸的不对称催化Micheal加成反应,ee值达到98%的含两个手性中心的单氟化合物,催化反应最高达到91%的高收率、20:1的非对映选择性和98%ee的对映选择性。2)通过α-氟原子和三氟甲基偕二醇对不活泼的酮类底物进行活化,研究了在金鸡纳碱衍生硫脲催化剂催化下通过脱三氟乙酸的策略构筑单氟手性中心的不对称aldol氟化反应,得到了优异光学纯度的含两个手性中心的含氟3-羟基-2-吲哚酮类化合物,催化反应最高达到99%的收率、99:1的非对映选择性和98%ee的优异对映选择性。3)利用选择性断裂碳-碳键的策略,研究了α-氟代-β-羰基三氟甲基偕二醇和磺酰胺底物的不对称Mannich反应,向有机分子结构中引入单氟手性中心,得到了优异光学纯度的含两个手性中心的含氟胺类化合物,最高达到72%的中等产率、5:1的非对映选择性和98%ee的优异对映选择性。从合成方法学角度丰富不对称催化Mannich反应,并对反应机理及相关应用进行研究。
This dissertation focuses mainly on two aspects: synthesis a series of trifluoromethyl β-dicarbonyl compounds, elcctrophilic fluorination of trifluoromethyl β-dicarbonyl compounds to synthesize a series of trilluoromethyl α-fluorinated gem-diol compounds. Mainly studies on the asymmetric reaction of trilluoromethyl P-dicarbonyl and α-fluorinated trifluoromethyl gem-diol compounds. Then extending the fluorinated building blocks and studying the mechanism of releasing trifluoroacetate group.
     The first part describes the synthesis of fluorinated building blocks: used the ethyl trilluoroacetate and aryl/alkyl/heteroaryl acetophenons to synthesize a series of trilluoromethyl β-dicarbonyl building blocks, then synthesize series of α-fluorinated trilluoromethyl gem-diol compounds by the available fluorinating reagent Selectlluo under mild reaction conditions.
     The second part introduces the asymmetric constructions of chiral fluorinated tertiary center via organocatalytie reactions using trilluoromethyl β-dicarbonyl and α-fluorinated trilluoromelhyl gem-diol compounds:1) In this part has been developed an efficient and highly enantioselective catalytic Michael addition reaction using chiral thiourea tertiary amine derivatives as the catalyst, which stresses on the release of trifluoroacetate as a strategy for cleavage of C-C bond. The resulting decarboxylated y-nitro-α-fluorocarbonyl products with two contiguous centers were obtained in91%yields with good diastereoselcclivities (up to20:1dr) and excellent enantioseleelivics (up to98%ee).2) In this part has been developed a new and efficient direct aldol reaction of gem-diols to isatins catalyzed by cinchona alkaloid hi functional thiourea catalyst. The key step ol' this protocol lies on the release of trilluoroacetate for cleavage of C-C bond by making use of gem-diols as a synthetic equivalent of fluorinaled aryl/alkyl methyl ketone enolates. The resulting deearboxylated chiral lluorinated3-hydroxy-3-phenacyloxindole products were obtained almost quantitatively (up to99%) with excellent diastereoseleetivities (99:1dr) and enantioselectivies (83%-98%ee).3) In this part, the uses the strategy of selective cleavage of carbon-carbon bonds through the mild release of trifluoroacetate group to build lluorinated building blocks and developed a new and efficient direct Mannieh reaction of α-fluorinated trifluoromethyl gem-diol compounds to tert-butyl aryl/alkyl/heteroaryl-(phenylsulfonyl)methylcarbamate catalyzed by cinchona alkaloid bifunctional thiourea catalyst. The resulting decarboxylated fluorinated chiral amino products were obtained almost moderate yield (up to72%), diastereoselectivities (up to5:1dr) and enantioselectivies (up to89%ee).
引文
[1]Trost, B. M. The atom economy--a search for synthetic efficiency. Scinence 1991,254, 1471-1477.
    [2]赵刚(译).不对称有机催化:从生物模拟到不对称合成的应用.上海:华东理工大学出版社,2006年.
    [3]Trost, B. M. Atomokonomische Synthesen-eine Herausforderung in der Organischen Chemie:die Homogenkatalyse als wegweisende Methode. Angew. Chem. 1995,107,285-307.
    [4]Brunet, V. A and O'Hagan, D. Catalytic Asymmetric Fluorination Comes of Age. Angew. Chem. Int. Ed.2008,47,1179-1182.
    [5]Ma, J. A.; Cahard, D. Asymmetric Fluorination, trifluoromethylation and perfluoroalkylation reactions. Chem. Rev.2004,104,6119-6146.
    [6]李月明,范青华,陈新滋.不对称有机反应.北京:化学工业出版社,2005.
    [7]Dalko, P. I.; Moisan, L. In the Golden Age of Organocatalysis. Angew. Chem. Int. Ed. 2004,43,5138-5175.
    [8]Berkessel, A.; Groger, H. Asymmetric organocatalysis-from biomimetic concepts to applications in asymmetric synthesis, Weinheim:Wiley-VCH,2005.
    [9]North, M. Synthesis and Applications of Non-Racemic Cyanohydrins. Tetrahedron: Asymmetry 2003,14,147-176.
    [10]Pracejus, H. Asymmetric syntheses with ketenes.1. Alkaloid-catalyzed asymmetric syntheses of a-phenylpropionate esters. Ann. Chem. 1960,634,9-22.
    [11]Eder, U.; Sauer, G.; Wiechert, R. New Type of Asymmetric Cyclization to Optically Active Steroid CD Partial Structures. Angew. Chem. Int. Ed.1971,10,496-497.
    [12]Hajos, Z. G.; Parrish, D. R. Asymmetric Synthesis of Bicyclic Intermediates of Natural Product Chemistry.J. Org. Chem.1974,39,1615-1621.
    [13]List, B.; Lerner, R. A.; Barbas, C. F. III. Proline-Catalyzed Direct Asymmetric Aldol Reactions.J. Am. Chem. Soc.2000,122,2395-2396.
    [14]Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. New Strategies for Organic Catalysis:The First Highly Enantioselective Organocatalytic Diels-Alder Reaction.J. Am. Chem. Soc.2000.122,4243-4244.
    [15](a)Wenzel. A. G.; Jacobsen, E. N. Asymmetric Catalytic Mannich Reactions Catalyzed by Urea Derivatives:Enantioselective Synthesis of β-Aryl-β-Amino Acids.J. Am. Chem. Soc.2002.124,12964-12965. (b) Zhang. Y.;Liu, Y.-K.; Kang. T.-R.; Hu. Z.-K.:Chen, Y.-C. Organocatalytic Enantioselective Mannich-Type Reaction of Phosphorus Ylides: Synthesis of Chiral N-Boc-a-Amino-r-methylene Carboxylic Esters.J. Am. Chem. Soc. 2008, 130, 2456-2457.
    [16]Han B.; Liu, Q. P.; Li, R. et al. Discovery of Bifunctional Thiourea/Secondary- Aminc Organocatalysts for the Highly Stereoselective Nitro-Mannich Reaction of α-Substituted Nitroacetates. Chcm. Eur. J. 2008, 14. 8094-8097. (b) Wang, f; Liu. X.; Feng. X. M. et al. Asymmetric Hydrophosphonylation of α-Ketoesters Catalyzed by Cinchona-Derived Thiourea Organocatalysts. Chem. Eur.J. 2009, 15. 589-592. (c) Wang, J.; Li,H.; Yu, X. et al. Chiral Binaphthyl-Derived Amine-Thiourea Organocatalyst-Promoted Asymmetric Morita-Baylis-Hillman Reaction. Org. Leet. 2005, 7. 4293-4296. (d) Li, P.; Wen, S.; Yu, F. et al. Lnantioselective Organocatalytic Michael Addition of Malonates to a,p-Unsalurated Ketones. Org. Lett. 2009,11, 753-756.
    [17]Zhang, Y.; Liu, Y.-K.; Kang, T.-R.; Hu. Z.-K.; Chen, Y.-C. Organocatalytic Hnantioselective Mannich-Type Reaction of Phosphorus Ylides: Synthesis of Chiral N-Boc-α-Amino-r-methyIene Carboxylic listers.J. Am. Chem. Soc. 2008, 130. 2456-2457.
    |18| Herrera, R. P.; Sagarzani, V.; Bernardi, L.; Ricci, A. Catalytic Lnantioselective Friedel-Crafts Alkylation of Indoles with Nitroalkenes by Using a Simple Thiourea Organocatalyst. Angcw. Chem. Int. Ed 2005, 44. 6576-6579.
    [19]Mansilla.J.; Saa. J. M. Hnantioselective, Organocatalytic Morita-Baylis-Hillman and Aza-Morita-Baylis-Hillman Reactions: Stereoehemical Issues. Molecules 2010, 15. 709-734.
    [20]Okiho, P.; Hoashi. Y.; Takemoto, Y. Hnantioseleclive Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts.J. Am. Chcm. Soc. 2003, 125. 12672-12673.
    [21](a) Banks, B. H; Shard. D. W; Tat low. J. C. Fluorine: The First Hundred Years (1886-1986): Elsevier: New York. 1986 (b) Kirsch. P. Modern Fluoroorganic Chemistry; Wiley-VCH Verlag Cimbll and Co. KgaA. Weinhein. 2004.
    [22]Swarts, F. Bull. Fluorination of organic polyhalides with antimony trifluoride (or zinc and mercury fluorides) in the presence of a trace of a pentavalent antimony salt Soc. Er. 1896. 15, 1134-1139.
    [23]Dieter. S. Organic Synthesis-Where Now. Angcw. Chem. Int. Ed. 1990, 29. 1320-1367.
    [24| Jean. D. B; Daniele. B.D. Recent advances (1995-2005) in fluorinated pharmaceuticals based on natural products.J. Fluorine. Chem. 2006. 127. 992-997.
    [25](a) Uneyama. K. Organolluorine Chemistry Blackwell: Oxford. 2006. (b) Iseki. K. A Versatile and Straightforward Approach to the 21-Oxidation of β- Substituted and α,β-Unsaturated 20-Oxosteroids. Tetrahedron 1998. 54. 13877-13886.
    [26]Shi, M.; Chen, L.-H.; Li, C.-Q. Chiral Phosphine Lewis Bases Catalyzed Asymmetric aza-Baylis-Hillman Reaction of N-Sulfonated Imines with Activated Olefins.J. Am. Chem. Soc.2005,127,3790-3800.
    [27]Walsh, L. M.; Winn, C. L.; Goodman, J. M. Sulfide-BF3-OEt2 mediated Baylis-Hillman reactions. Tetrahedron Lett.2002,43,8219-8222.
    [28]Chukwuemeka Isanbor, David O'Hagan. Fluorine in medicinal chemistry:A review of anti-cancer agents. J. Fluorine. Chem.2006,127,303-319.
    [29]黄维垣编.中国有机氟化学研究.上海科学技术出版社.1996:203-224,307-308.
    [30]Duschinsky, R.; Pleven, E.; Heidelberger, C. THE SYNTHESIS OF 5-FLUOROPYRIMIDINES. J. Am. Chem. Soc.1957,79,4559-4560.
    [31](a) Rozen, S. Elemental Fluorine as a "Legitimate" Reagent for Selective Fluorination of Organic Compounds Acc. Chem. Res.1988,21,307-312. (b) Rozen, S. Elemental Fluorine:Not Only for Fluoroorganic Chemistry. Ace. Chem. Res.1996,29,243-248.
    [32](a) Schack, C. J.; Christe, K. O. Reactions of Fluorine Perchlorate with Fluorocarbons and the Polarity of the O-F Bond in Covalent Hypofluorites. Inorg. Chem.1979,18, 2619. (b) Rozen, S. Selective Fluorinations by Reagents Containing the OF Group. Chem. Rev.1996,96,1717-1736.
    [33](a) Barton D. h. R.; Ganguly A. K.; Pechet M. M. Organic Reactions of Fluoroxy-compounds:Electrophilic Fluorination of Aromatic Rings. Chem. Commun. 1968,806-808. (b) Tius, M. A. Xenon Difluoride in Synthesis. Tetrahedron 1995,51, 6605-6634. (c) Gard, B. G. L; Cady, G. H. Role of Water in the Reaction of Fluorine with Trifluoroacetic Acid to Produce Trifluoroacetyl Hypofluorite. Inorg. Chem.1965,4, 594-596.
    [34]Wilkinson, J. A. Recent Advances in the Selective Formation of the C-F Bond. Chem. Rev.1992,92,505-519.
    [35](a) Lal, G. S.; Pez, G. P.; Syvert, R. G. Electrophilic NF Fluorinating Agents. Chem. Rev. 1996,96,1737-1756. (b) Singh, R. P.; Shreeve, J. M. Recent Highlights in Electrophilic Fluorination with 1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane Bis(tetrafluoroborate). Acc. Chem. Res.2004,37,31-44.
    [36]Davis, F. A.; Han, W.; Murphy, C. K. Selective, Electrophilic Fluorinations Using N-Fluoro-o-benzenedisulfonimide.J. Org. Chem.1995,60,4730-4737. (b) Auberson, Y.; Bimwala, R. M.; Vogel, P. Substituent effects on the regioselectivity of one-carbon ring expansions of 7-oxabicyclo[2.2.1]heptan-2-one derivatives with diazomethane. Tetrahedron Lett 1991,32,1637-1640. (c) Differding, E.:Lang, R. W. New fluorinating reagents-1. The first enantioselective fluorination reaction. Tetrahedron Lett.1988.29. 6087-6090. (d) Umemoto, T.; Tomizawa, G.; Kawada, K. Power and Structure-Variable Fluorinating Agents. The N-Fluoropyridinium Salt System. J. Am. Chem. Soc. 1990, 112,8563-8575.
    |37J Furuya T, Kaiser H M, Rilter T. Palladium-mediated fluorination of arylboronic acids. Angew. Chem. Int. Ed. 2008, 47, 5993 -5996.
    [38]Furuya, T and Ritter, T. Carbon-fluorine reductive elimination from a high-valent palladium fluoride.J. Am. Chem. Soc. 2008. 130, 10060-10061.
    [39]Hull, K. L; Anani. W. Q.; Sanford, M. S. Palladium-catalyzed fluorination of carbon-hydrogen bonds.J Am. Chem. Soc. 2006, 128, 7134-7135.
    [40]Wang, X.; Mei. T.; Yu, J. Versatile Pd(OTf)2·2H2O-catalyzed ortho-fluorination using NMP as a promoter.J. Am. Chem. Soc. 2009, 131. 7520-7521.
    [41]Watson, D. A.; Su, M.; Teverovskiy. G. et al. Formation of ArF from LPdAr (F): catalytic conversion of aryl triflates to aryl fluorides. Science 2009. 325. 1661-1664.
    [42](a) Patrice C. B.; Lau, C. K.; Dufrcsne, C and Seheigetz, J. Facile preparations of 4-fluororesorcinol. Chin. J. Chem. 1988. 66. 1479-1482. (b) Li, Z. J.; Cui. Z. L and Liu. Z. Q. Copper- and Iron-Catalyzed Decarboxylative Tri- and Difluoromethylation of α, β-Unsaturated Carboxylic Acids with CF3SO2Na and (CG2HSO2)2Zn via a Radical Process. ORg. Lett. 2013, 15, 406-409.
    [43](a) Wu. T.; Yin, G.; Liu, G Palladium-catalyzed intramolecular aMinofluorination of unactivated alkenes. J. Am. Chem. Soc. 2009. 131, 16354-16355. (b) Michael, J. F.; Raymond. T. O.; Rudolph. F. M. Fluorination of Aromatic Derivatives with Fluoroxytrilluoromethane and Bis(fluoroxy)difluorometha ne.J. Org. Chem. 1985, 50. 4576-4582.
    [44](a) Fan. S.; He. C. Y; Zhang. X. Diastereoselective synthesis of propargylic fluorides and its application in preparation of monofluorinated sugar. Tetrahedron 2010. 66. 5218-5228. (b) Walba, D. M.: Razavi. H. A.; Clark, N. A.; Parmar. D. S. Design and Synthesis of New Ferroelectric Liquid Crystals. Properties of Some Crural Fluorinated FLCs: A Direct Connection between Macroscopic Properties and Absolute Configuration in a Fluid Phase.J. Am. Chem. Soc. 1988, 110, 8686-8691.
    [45]Banks. R. H.; Besheesh. M. K. N-Halogeno compounds. Part 15. Synthesis of N-fluoroquinuclidinium salts via direct fluorination of quinuelidine-Lewis acid adduets. and a comparison of their "F" transfer capabilities. J. Fluorine. Chem. 1996. 76. 161-167.
    [46](a) Imbriglio. J. L.: Vasbinder. M. M.; Miller. S. J. Dual Catalyst Control in the Ami no Acid-Peptide-Catalyzed Enantioselective Baylis Hillman Reaction. Org. Lett. 2003. 5. 3741-3743. (b) Deng. Q. H.: Wadcpohl. H and Gade. L. 11. Highly Lnantioselective Copper-Catalyzed Llectrophilic Trilluoromethylation of β-Ketoesters.J. Am. Chem. Soc. 2012,134,10769-10772.
    [47]不对称有机催化-从生物模拟到不对称合成的应用,H. Groger, A. Berkessel著,赵刚译,华东理工大学出版社,2006。
    [48]Jacobsen, C. B.; Nielsen, M.; Worgull, D.; Zweifel, T.; Fisker, E and Jergensen, K. A. Asymmetric Organocatalytic Monofluorovinylations.J. Am. Chem. Soc.2011,133, 7398-7404.
    [49]Shen, X.; Zhang, W.; Ni, C.F.; Gu, Y. C and Hu, J. B. Tuning the Reactivity of Difluoromethyl Sulfoximines from Electrophilic to Nucleophilic:Stereoselective Nucleophilic Difluoromethylation of Aryl Ketones. J. Am. Chem. Soc.2012,134, 16999-17002.
    [50]林国强,陈耀全,陈新滋,李月明著。手性合成.北京科学出版社,2000,1-5.
    [51]尤天耙.《手性化合物的现代研究方法》.中国科学技术大学出版社,1993,6-10.
    [52](a) Anja, S.; Anja, W.; Martin, S.; Andreas, S.; Gerhard, W and Ronald, G. Influence of Chlorine or Fluorine Substitution on the Estrogenic Properties of 1-Alkyl-2,3,5-tris(4-hydroxyphenyl)-1H-pyrroles. J. Med. Chem.2012,55,9607-9618. (b) Brunet, V. A.; O'Hagan, D. Catalytic Asymmetric Fluorination Comes of Age. Angew. Chem. Int. Ed.2008,47,1179-1182. (c) Smits, R.; Cadicamo, C. D.; Koksch, B. Synthetic strategies to a-trifluoromethyl and a-difluoromethyl substituted a-amino acids. Chem. Soc. Rev.2008,37,1727-1739. (d) Rahul, V. P.; Premlata, K.; Dhanji, P. R. Kishor, H. C. Discovery of 2-(4-cyano-3-trifluoromethylphenylamino)-4-(4-quinazolin yloxy)-6-piperazinyl(piperidinyl)-striazines as potential antibacterial agents. Med. Chem. Res.2012,21,4177-4192. (e) Ibrahim, H.; Togni, A. Enantioselective halogenation reactions. Chem. Commun.2004,1147-1155.
    [53](a) Shibata, N.; Ishimaru, T.; Nakamura, S. New approaches to enantioselective fluorination:Cinchona alkaloids combinations and chiral ligands/metal complexes../. Fluorine. Chem.2007,128,469-483. (b) Muthu, K. K.; Mukta, M.; Manisha, S. P. Synthesis and antihyperlipidemic activity of novel condensed 2-fluoromethylpyrimidines. Med. Chem. Res.2012,17,678-685. (c) Vishal, G.; Upama, M. Synthesis and cardiovascular activity of difluro-substituted hexahydroquinoline. Med. Chem. Res.2008.17.437-444. (d) Iseki, K. Tetrahedron 1998,54,13887-13891.
    [54]Shibatomi, K.; Narayama. A.; Soga, Y.; Muto, Tsubasa and Iwasa, Seiji Enantioselective gem-Chlorofluorination of Active Methylene Compounds Using a Chiral Spiro Oxazoline Ligand. Org. Lett.2011,13.11.2944-2947.
    [55](a) Katcher, M.H.; Sha, A and Doyle, A. G. Palladium-Catalyzed Regio-and Enantioselective Fluorination of Acyclic Allylic Halides.J. Am. Chem. Soc.2011.133. 15902-15905. (b) Wang, L.; Meng. W.; Zhu, C. L.; Zheng, Y; Ma, J. A. The Long-Arm Effect: Influence of Axially Chiral Phosphoramidite Ligands on the Diastereo- and Enantioselectivity of the Tandem 1,4-Addition/Fluorination. Angew.Chem. Int. Ed. 2011, 123,9614-9618.
    [56]Evans, D. A.; Britton, T. C.; Dorow, R. L. The Asymmetric Synthesis of a-Amino Acids. Electrophilic Azidation of Chiral Imide Enolates. a Practical Approach to the Synthesis of (R)-and (S)-α-Azido Carboxylic Acids.J. Am, Chem. Sac. 1990, 112, 4011-4030.
    [57]Shimizu, R.; Egami, H.; Hamashima, Y and Sodcoka, M. Direct C2-trifluoromethylation of indole derivatives catalyzed by copper acetate. Tetrahedron Lett. 2010, 51, 5947-5949.
    [58]Hintermann, L.; Togni, A. Catalytic Enantioselective Fluorination of β-Ketoesters. Angew. Chem. Int. Ed. 2000, 39, 4359-4362.
    [59]Nakamura, M.; Hajra. A.; Endo, K.; Nakamura, E. Synthesis of Chiral α-Fluoroketones through Catalytic Enantioselective Decarboxylation. Angew. Chem. Int. Ed. 2005, 44, 7248-7251.
    [60]Xu, X. Y.; Wang, Y. Z.; Gong, E. Z. Design of Organocatalysts for Asymmetric Direct Syn-Aldol Reactions. Org. Lett. 2007, 9, 4247-4249.
    [61]Zhong, G. F.; Fan, J. H.; Barbas. C. F. Amino alcohol catalyzed direct asymmetric aldol reactions: enantioselective synthesis of anti-α-fluoro-β-hydroxy ketones. Tetrahedron Lett. 2004, 45. 5681-5684.
    [62]Han, X.; Euo, J.; Lu, Y. X. Asymmetric generation of fluorine-containing quaternary carbons adjacent to tertiary stcreocenters: uses of fluorinaled methines as nueleophiles. Chem. Commun. 2009, 2044-2046.
    [63]Li,H.; Zhang, S. L.; Yu, G. G.; Wang, W. Organocatalytic asymmetric synthesis of chiral fluorinated quaternarycarbon containing β-ketoesters. Chem. Commun. 2009. 2136-2138.
    [64]Hai. F, C.; Peng, E.; Xiao, W. W.; Zhuo. C.; Ying, Q. Y.;Gang, Z. Highly enantioselective synthesis of α-fluoro-u-nitro esters via organoeatalyzed asymmetric Michael addition. Tetrahedron 2011, 67, 312-317.
    [65]Han. X.; Kwaitkowski, J.; Xue. F.; Eu. Y. X. Asymmetric Mannich Reaction of Fluorinated Ketoesters with a Tryptophan-Derived Bilunctional Thiourea Catalyst. Angew: Chem. Int. Ed. 2009,48,7604-7607.
    [66]Jiang. Z. Y.; Pan. Y. H.;Huang. K. W.; Tan. C.H. Synthesis of a Chiral Quaternary Carbon Center Bearing a Fluorine Atom: Enantio- and Diastereoselective Guanidine-Catalyzed Addition of Fluorocarbon Nucleophiles. Angeu: Chem. Int. Ed. 2009, 48, 3627-3631.
    [67]Takashi, O, Takahito, K, Yosuke, T, Takahiro, K,Takanori, I, Takayuki, Y, Hajime, M, Hisao, N, and Kazushi, M. C1-Symmetric Rh/Phebox-Catalyzed Asymmetric Alkynylation of a-Ketoesters. Angew. Chem. Int. Ed.2011,50,6296-6300.
    [68]Kazumasa F.; Yuya, I.; Yasuhiro K and Masaki, M. Organocatalytic Asymmetric Direct Aldol Reactions of Trifluoroacetaldehyde Ethyl Hemiacetal with Aromatic Methyl Ketones. J. Org. Chem,2011,76,3545-3550.
    [69]Kazumasa, F.; Kei, M.; Hiroshi, G.; Hitoshi, Y.; Takao, A.; Yasuhiro, K. and Masaki, M. Reversal of Diastereoselectivity in Reactions of the Trifluoroacetaldehyde Ethyl Hemiacetal with Enamines and Imines:Metal-Free, Complementary anti-and syn-Selective Synthesis of 4,4,4-Trifluoro-l-aryl-3-hydroxy-2-methyl-1-butanones. J. Org. Chem.2011,76,285-288.
    [70]Carole, P and Stephen, J. C. A New Class of Urea Substituted Cinchona Alkaloids Promote Highly Enantioselective Nitroaldol reactions of Trifluoromethylketones. Org. Lett.2011,13,1298-1301.
    [71]Li, P.; Zhao, Gang.; Zhu, S. Z. Highly Enantioselective Synthesis of a-Trifluoromethyldihydropyrans Using a Chiral Trifluoroethyl-substituted Thiourea Catalyst Derived from Amino Acid. Chin. J. Chem.2011,29,2749-2758.
    [72]Wataru, K.; Keiji, M. and Takahiko, A. Chiral Phosphoric Acid Catalyzed Enantioselective Synthesis of β-Amino-a,a-difluoro Carbonyl Compounds. Org. Lett, 2011,13,1860-1863.
    [73](a) Payette, J. N.; Yamamoto, H. Nitrosobenzene-Mediated C-C Bond Cleavage Reactions and Spectral Observation of an Oxazetidin-4-one Ring System. J. Am. Chem. Soc.2008,130,12276-12278. (b) Draghici, C.; Brewer, M. Lewis Acid Promoted Carbon-Carbon Bond Cleavage of y-Silyloxy-β-hydroxy-a-diazoesters. J. Am. Chem. Soc.2008,130,3766-3767.
    [74](a) Yin, L.; Kanai, M.; Shibasaki, M. Nucleophile Generation via Decarboxylation: Asymmetric Construction of Contiguous Trisubstituted and Quaternary Stereocenters through a Cu(I)-Catalyzed Decarboxylative Mannich Type Reaction.J. Am. Chem. Soc. 2009,131,9610-9611. (b) Trost, B. M.; Xu, J.; Schmidt. T. Ligand Controlled Highly Regio-and Enantioselective Synthesis of a-Acyloxyketones by Palladium-Catalyzed Allylic Alkylation of 1,2-Enediol Carbonates.J. Am. Chem. Soc.2008.130, 11852-11853.
    [75]Pan, Y. H; Tan, C. H. Catalytic Decarboxylative Reactions:Biomimetic Approaches Inspired by Polyketide Biosynthesis. Synthesis 2011,13,2044-2053.
    [76]Zhong, F.; Yao. W.; Dou X.; Lu Y. Enantioselective Construction of 3-Hydroxy Oxindoles via Decarboxylative Addition of β-Ketoacids to Isatins. Org. Lett.2012.14, 4018-4021.
    [77]Zheng, Y.; Xiong, H. Y; Nie, J.; Hua. M. Q.; Ma. J. A. Biomimetic catalytic cnantioselective dccarboxylative aldol reaction of b-ketoacids with trifluoromethyl ketones. Chem. Commun. 2012, 48, 4308-4310.
    [78]Prager, J. H.; Ogden. P. H. Metal Derivatives of Huorinated gem-Diols.J. Org. Chem. 1968, 33, 2100-2102.
    [79](a) Han. C. H.; Kim, E.H and Colby, D. A. Cleavage of Carbon-Carbon Bonds through the Mild Release of Trifluoroacetate: Generation of α,α-Difluoroenolates for Aldol Reactions.J. Am. Chem. Sac. 2011, 133. 5802-5805. (b) Riofski, M. V.; John, J. P.; Zheng, M. M.; Kirshner, J.; Colby, D. A.J.Org. Chem. 2011. 76, 3676. (c) John, J. P.; Colby, D. A. Synthesis of α-Halo-α,α-difluoromethyl Ketones by a Trifluoroacetate Release/Halogenation Protocol. J. Org. Chem. 2011, 76, 9163-9168. (d) Zhang , P and Wolf, C. Synthesis of Pentalluorinated β-Hydroxy Ketones.J. Org. Chem. 2012, 77 8840-8844.
    [80]Raju, B. C.; Suman. P. New and Facile Approach for the Synthesis of (E)-α,β-Unsaturated Esters and Ketones. Chem. Eur.J. 2010, 16, 11840-11842.
    [1](a) Gawro, J.; Gawro, K. Tartaric and Malic Acids in Synthesis: A Sourse Book of Building Blocks, Figands, Auxiliaries and Resolving Agents. John and Sons, 1999. (b) Slrcmlcr, K. E.; Poulter, C. D.J. Am. Chem. Soc. 1987, 109. 5542-5544. (c) Hagmann, W. K. The Many Roles for Fluorine in Medicinal Chemistry. J. Med. Chem. 2008, 51, 4359-4369.
    [2](a) Castalr, J.; Rabasseda, X.; Graul, A. Drugs Fut. 1999, 24, 1324. (b) Nie, J.; Guo,H. C; Cahard, D and Ma. J. A. Asymmetric Construction of Stereogenic Carbon Centers Featuring a Trifluoromethyl Group from Prochiral Trifluoromethylated Substrates. Chem. Rev. 2011, 111, 455-529.
    [3](a) Tomashenko, O. A. and Grushin, V. V. Aromatic Trifluoromethylation with Metal Complexes. Chem. Rev. 2011,111,4475-4521. (b) Ma, J. A and Cahard. D. Asymmetric Fluorination, Trifluoromethylation, and Perfluoroalkylation Reactions. Chem. Rev. 2004, 104,6119-6146.
    [4](a) Shimizu, R.; Fgami, H.; Nagi, T.; Hamashima, Y.; Sodeoka, M. Direct C2-trifluoromethylation of indole derivatives catalyzed by copper acetate. Tetrahedron Letters. 2010, 51, 5947-5949. (b) Zhao, Y. C and Hu, J. B. Palladium-Catalyzed 2,2,2-Trifluoroethylation of Organoboronic Acids and Fsters. Angew. Chem. 2012, 124, 1057-1060.
    [5]Kirk, K. F. Fluorine in medicinal chemistry: Recent therapeutic applications of fluorinated small molecules (Invited review).J. Fluor. Chem. 2006,127, 1013-1029.
    [6](a) Song, F. P.; Chu, Q. F.;Zhu. S. Z.J. Fluor. Chem. 2001, 107,107. (b) Crouse, G. D.: Mcgowan, M. J.; Biosvenue, R. J. Poly fluoro 1,3-Diketones as Systemic Insecticides.J. Mcd. Chem. 1989, 32, 2148-2151.
    [7](a) Shchegolkov. E. V.; Khudina. O. G.; Anikina. F. V.; Burgart, Y. V.; Saloutin, V. I. MOFF:CUFAR-BIOLOGICAFPROBLEMSOFDRUGDESIGN AND MECHANISMO FDRUGACTION. Pharm. Chem. J. 2006, 40. 373-377. (b) Hdehiko. N.; Ryo,O.; Ayako. K.; Naoki. M. Hydroxyl radical scavenging by edaravone derivatives: Efficient scavenging by 3-methyl-l-(pyridin-2-yl)-5-pyrazolone with an intramolecular base. Bioorg. Med. Chem. Lett. 2006. 16. 5939-5942.
    [8](a)朱士正,王彦利,金桂芳.含氟活泼亚甲基类化合物的研究[J]0.化学学报.2002,60.556-579. (b) Gowravaram. S.; Kumar. K. R. G. S.: Srinivas. R.; Yadav. J. S. One-Pot Synthesis of Dihydropyrimidinones Using Iodolrimelhylsilane. Facile and New Improved Protocol for the Biginelli Reaction at Room Temperature. Synleet. 2003. 06. 858-860.
    [9](a) Bose D. S.; Rudradas, A. P and Babu, M. H. The indium (III) chloride-catalyzed von Pechmann reaction:a simple and effective procedure for the synthesis of 4-substituted coumarins. Tetrahedron Letters 2002,43,9195-9197. (b) Sharma, G. V. M; Laxmi, R. K.; Sree, L. P.; Radha, K. P.'In situ' Generated'HCl'-An Efficient Catalyst for Solvent-Free Hantzsch Reaction at Room Temperature:Synthesis of New Dihydropyridine Glycoconjugates. Synthesis,2006,1,55-58.
    [10]Dai, Q.; Yang, W. R and Zhang, X. M. Efficient Rhodium-Catalyzed Asymmetric Hydrogenation for the Synthesis of a New Class of N-Aryl a-Amino Acid Derivatives. Org. Lett.2005,7,5343-5345.
    [11]Doering, W. V. E and Depuy, C. H. Diazocyclopentadiene.J. Am. Chem. Soc.1953,75, 5955-5957.
    [12](a) Michael, G. H and Ernest, W. A new and efficient synthesis of 2-trifluoromethyl substituted pyrroles and ethyl-2,3-bis(ethoxycarbonyl)-1H-pyrrole-1-propionate. Tetrahedron 1993,49,1057-1062. (b) Michel, G.; Zdenek J.; Chantal, W.; Jean-Paul, D.; Bernard, T. Unexpected trifluoromethylated pyrazoles from ethyl 2-diazo-4,4,4-trifluoro acetoacetate and 1-diethylamino-prop-l-yne. J. Fluor Chem.1994,69,253-256.
    [13]Sloop, J. C.; Bumgardner, C. L.; Washington, G.; Loehle, W. D.; Lewis, A. B. Keto-enol and enol-enol tautomerism in trifluoromethyl-β-diketones. J. Fluor. Chem.2006,127, 780-786.
    [14](a) Prakash, G. K. S.; Chacko, S.; Vaghoo, H.; Shao, N.; Gurung, L.; Olah, G. A. Efficient Nucleophilic Fluoromethylation and Subsequent Transformation of Alkyl and Benzyl Halides Using Fluorobis (phenylsulfonyl) methane. Org. Lett.2009,11, 1127-1130. (b) John, J. P. and Colby, D. A. Synthesis of a-Halo-a,a-difluoromethyl Ketones by a Trifluoroacetate Release/Halogenation Protocol. J. Org. Chem.2011,76, 9163-9168.
    [15]Kumar, V.; Aggarwal, Ranjana.; Singh, S. P. The reaction of hydroxylamine with aryl trifluoromethyl-b-diketones:Synthesis of 5-hydroxy-5-trifluoromethyl-2-isoxazolines and theirdehydration to 5-trifluoromethylisoxazoles.J. Fluor. Chem.2006,127, 880-888.
    [16]Wang, J. J.; Hu, Z. P.; Liu, J. L.; Yan, M. Asymmetric synthesis of trifluoromethyl substituted dihydropyrans via organocatalytic cascade Michaelehemiketalization reaction.Tetrahedron 2011,67.4578-4583.
    [17]Sloop, J. C.; Boyle, P. D.; Pearman, W. F and Swann, J. A. Electron-Deficient Aryl β-Diketones:Synthesis and Novel Tautomeric Preferences. Eur. J. Org. Chem.2011. 936-941.
    [18]Stavbera, G and Stavber, S. Towards Greener Fluorine Organic Chemistry: Direct Electrophilic Fluorination of Carbonyl Compounds in Water and Under Solvent-Free Reaction Conditions. Adv. Synth. Catal. 2010. 352. 2838-2846.
    [19]Han, C. H.; Kim. E.H and Colby. D. A. Cleavage of Carbon-Carbon Bonds through the Mild Release of Trifluoroacetate: Generation of α,α-Difluoroenolates for Aldol Reactions.J. Am. Chcm. Sot: 2011, 133,5802-5805.
    [1](a) Wenzel, A. G.; Jacobsen, E. N. Asymmetric Catalytic Mannich Reactions Catalyzed by Urea Derivatives:Enantioselective Synthesis of β-Aryl-P-Amino Acids. J. Am. Chem. Soc.2002,124,12964-12965. (b) McGarraugh, P. G.; Brenner, S. E. Novel bifunctional sulfonamides catalyze an enantioselective conjugate addition. Tetrahedron 2009,65, 449-455. (c) Yoon, T. P.; Jacobsen, E. N. Highly Enantioselective Thiourea-Catalyzed Nitro-Mannich Reactions. Angew. Chem. Int. Ed.2005,44,466-468.
    [2](a) Li, H. M.; Wang, Y.; Tang, L and Deng, L. Highly Enantioselective Conjugate Addition of Malonate and a-Ketoester to Nitroalkenes:Asymmetric C-C Bond Formation with New Bifunctional Organic Catalysts Based on Cinchona Alkaloids. J. Am. Chem. Soc.2004,126,9906-9907. (b) Okiho, T.; Hoashi, Y.; Furukawa, T.; Xu, X. N.; Takemoto, Y. Enantio-and Diastereoselective Michael Reaction of 1,3-Dicarbonyl Compounds to Nitroolefins Catalyzed by a Bifunctional Thiourea. J. Am. Chem. Soc. 2005,127,119-125. (c) Wang, J.; Li, H.; Duan, W.; Zu, L.; Wang, W. Organocatalytic Asymmetric Michael Addition of 2,4-Pentandione to Nitroolefins. Org. Lett.2005,7, 4713-4716.
    [3]Ye, J. X.; Dixon, D. J and Hynes, P. S. Enantioselective organocatalytic Michael addition of malonate esters to nitro olefins using bifunctional cinchonine derivatives. Chem. Commun.2005,4481-4483.
    [4](a) Terada, M.; Ube, H and Yaguchi, Y. Axially Chiral Guanidine as Enantioselective Base Catalyst for 1,4-Addition Reaction of 1,3-Dicarbonyl Compounds with Conjugated Nitroalkenes. J. Am. Chem. Soc.2006,128,1454-1455. (b) Sohtome, Y.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Development of Bis-Thiourea-Type Organocatalyst for Asymmetric Baylis-Hillman Reaction. Tetrahedron Lett.2004,45, 5589-5592.
    [5]Andres, J. M.; Manzano, R and Pedrosa, R. Novel Bifunctional Chiral Urea and Thiourea Derivatives as Organocatalysts:Enantioselective Nitro-Michael Reaction of Malonates and Diketones. Chem. Eur.J.2008,14,5116-5119.
    [6]Tan, Bin.; Torres, G. H and Barbas, C. F. Rationally Designed Amide Donors for Organocatalytic Asymmetric Michael Reactions. Angew. Chem. Int. Ed.2012,124, 5477-5481.
    [7]Almasi, D.; Alonso, D. A.; Bengoa, E. G and Najera, C. Chiral 2-Aminobenzimidazoles as Recoverable Organocatalysts for the Addition of 1.3-Dicarbonyl Compounds to Nitroalkenes.J. Org. Chem.2009,74,6163-6168.
    [8]Okino. T.; Hoashi, S.; Takemoto, Y. Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. J. Am. Chem. Soc. 2003. 125, 12672-12673.
    [9]Okino, T.; Moashi, Yasutaka.; Furukawa. Tomihiro.; Xu, X and Takemoto. Y. Enantio-and Diastereoselective Michael Reaction of 1,3-Dicarbonyl Compounds to Nitroolcflns Catalyzed by a Bifunctional Thiourca.J Am. Chem. Soc. 2005, 127, 119-125.
    [10]Wang, J.; Li, H.; Duan, W.; Zu, L.; Wang. W. Organocatalytic Asymmetric Michael Addition of 2,4-Pentandionc to Nitroolcilns. Org. Lett. 2005, 7, 4713-4716.
    [11]Peng. F. Z.; Shao, Z. M.; Fan. B. M.; Song. He.; Li. G. P and Zhang.H. B. Organocatalytic Enantioselective Michael Addition of 2,4-Pentandione to Nitroalkcncs Promoted by Bifunctional Thiourcas with Central and Axial Chiral Elemenls. J. Org. Chem. 2008, 73, 5202-5205.
    [12]Becker, C.; Hoben, C.; Kunz, h.Enantioselective Organocatalysis of Strecker and Mannich Reactions Based on Carbohydrates. Adv. Synth. Catal. 2007, 349. 417-424.
    [13]Li. X. J.; Liu. K.; Ma. H.; Nie. J.; Ma, J. A. Highly Hnantioselective Michael Addition of Malonates to Nitroolefins Catalyzed by Chiral Bifunctional Tertiary Amine-Thioureas Based on Saccharides. Synlett 2008, 20, 3242-3246.
    [14]Pu. X. W.; Li, P. H.; Zhang. H.H and Shao. Z..H. Asymmetric Conjugate Addition of Acetylacetone to Nitroolefins with Chiral Organocatalysts Derived from Both α-Amino Acids and Carbohydrates. Eur.J. Org. Chem. 2009. 4622-4626.
    [15]Malerich, J. P.; Hagihara. K. J and Rawal. V. H. Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts.J. Am. Chem. Soc. 2008. 130, 14416-14417.
    [16]Bae, H.Y.; Some. S.; Oh, J. S.; Lee, Y. S and Song. C. L. Hydrogen bonding mediated enantioselective organocatalysis in brine: significant rate acceleration and enhanced stereoselectivity in enantioselective Michael addition reactions of 1,3-dicarbonyls to b-nitroolefins. Chem. Comnnm. 2011. 47, 9621-9623.
    [17](a) Hagmann. W. K. The Many Roles for Fluorine in Medicinal Chemistry. J. Mod. Chem. 2008. 51, 4359-4369. (b) Kirk. K. Fluorine in medicinal chemistry: Recent therapeutic applications of fluorinated small molecules.J. Fluorine. Chem. 2006. I27 1013-1029. (c) Kirk. K. L. Fluorination in Medicinal Chemistry: Methods, Strategies, and Recent Developments. Org. Process. Res. Dev. 2008, 12, 305-321. (d) Pueser. S.; Moore. P. R.: Swallow. S.; Gouveineur, V. Fluorine in medicinal chemistrv. Chem. Soc. Rev. 2008, 37, 320-330.
    [18]Bohm,H.J.; Banner. D.; Bendels. S.: Obst-Sander, U.; Stahl. M. Fluorine in Medicinal Chemistry. Chem. Bio. Chem. 2004. 5. 637-643.
    [19](a) Nie. J.; duo.H. C.; Cahard. D and Ma.J. A. Asymmetric Construction of Stereogenic Carbon Centers Featuring a Trifluoromethyl Group from Prochiral Trifluoromethylated Substrates. Chem. Rev.2011,111,455-529. (b) Cahard, D and Ma, J. A. Asymmetric Fluorination, Trifluoromethylation, and Perfluoroalkylation Reactions. Chem. Rev.2008,108, PR1-PR43. (c) Cahard, D and Ma, J. A. Asymmetric Fluorination, Trifluoromethylation, and Perfluoroalkylation Reactions. Chem. Rev.2004, 104,6119-6146.
    [20]Kwon, B. K.; Kim, S. M.; Kim, D. Y. Highly enantioselective conjugate addition of fluoromalonates to nitroalkenes using bifunctional organocatalysts. J. Fluor. Chem. 2009,130,759-761.
    [21]Oh, Y.; Kim, S. M.; Kim, D. Y. Organocatalytic synthesis of quaternary stereocenter bearing a fluorine atom:enantioselective conjugate addition of a-fluoro-b-ketoesters to nitroalkenes. Tetrahedron Lett 2009,50,4674-4676.
    [22]Alba, A. N.; Company, X.; Moyano, A and Rios, R. Formal Highly Enantioselective Organocatalytic Addition of Fluoromethyl Anion to a, β-Unsaturated Aldehydes. Chem. Eur. J.2009,15,7035-7038.
    [23]Zhang, S. L.; Zhang, Y. N.; Ji, Y. F.; Li, H and Wang, W. Catalytic enantioselective conjugate addition of fluorobis(phenylsulfonyl)methane to enals:synthesis of chiral monofluoromethyl compounds. Chem. Commun.2009,4886-4888.
    [24](a) Raju, B. C and Suman, P. New and Facile Approach for the Synthesis of (E)-a, β-Unsaturated Esters and Ketones. Chem. Eur. J.2010,16,11840-11842. (b) Fioravanti, S.; Pellacani, L.; Ramadori, F and Tardella, P. A. A novel deacylation during the animation of trifluoromethyl β-dicarbonyl compounds. Tetrahedron Letters.2007,48, 7821-7824.
    [1]Ender, U.; Sauer, G; Wiechert, R. New Type of Asymmetric Cyclization to Optically Active Steroid CD Partial Structures. Angew. Chem. Int. Ed. 1971, 10, 496-497.
    [2]Hajos, Z. G; Parrish, D. R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry,J. Org. C 'hem. 1974,39, 1615-1621.
    [3]List, B.; Lerner, R. A.; Barbas Ⅲ, C. F. Proline-Catalyzed Direct Asymmetric Aldol Reactions.J Am. Chem. Soc. 2000, 122, 2395-2396.
    [4]Sakthivel, K.; Notz. W.; Bui, T.; Barbas, C. F., Ⅲ, Amino Acid Catalyzed Direct Asymmetric Aldol Reactions: A Bioorganic Approach to Catalytic Asymmetric Carbon-Carbon Bond-Forming Reactions.J. Am. Chem. Soc. 2001, 123, 5260-5267.
    [5]Nakadai, M.; Saito, S,; Yamamoto, H. Diversity-based strategy for discovery of environmentally benign organoeatalyst: diamine-protonic acid catalysts for asymmetric direct aldol reaction. Tetrahedron 2002, 58, 8167-81 77.
    [6](a) Wadamoto, M.; Ozasa, N.; Yanagisawa, A and Yamamoto, H. BINAP/AgOTf/KF18-Crown-6 as New Bifunctional Catalysts for Asymmetrie Sakurai-Hosomi Allylation and Mukaiyama Aldol Reaction.J. Org. Chem. 2003, 68, 5593-5601. (b) Cheon, C. H and Yamamoto,H. N-Triflylthiophosphoramide Catalyzed Enantioselective Mukaiyama Aldol Reaction of Aldehydes with Silyl Enol Ethers of Ketones. Org. Lett. 2010, 12, 2476-2479.
    [7]Ramasastry. S. S. V.;Zhang, H. L.; Tanaka. F.; Barbas, C. F. Direct Catalytic Asymmetric Synthesis of anti-l,2-Amino Alcohols and syn-1.2-Diols through Organocatalytic anti-Mannich and syn-Aldol Reactions.J. Am. Chem. Soc. 2007,129, 288-289.
    [8]Luo, S. Z.; Xu. H.; Li. J. Y.; Zhang. L.; Cheng. J. P. A Simple Primary-Tertiary Diamine-Bronsted Acid Catalyst for Asymmetric Direct Aldol Reactions of Linear Aliphatic Ketones.J. Am. Chem. Soc. 2007, 129,3074-3075.
    [9]Luo. S. Z.; Xu, H.; Zhang. L.; Li. J.; Cheng. J. P. Highly Enantioselective Direct syn-and anti-Aldol Reactions of Dihydroxyacetones Catalyzed by Chiral Primary Amine Catalysts. Org. Lett. 2008, 10, 653-656.
    [10]Iltoh, T.; Ishikawa,H.; Hayashi. Y. Asymmetric Aldol Reaction of Acetaldehyde and Isatin Derivatives for the Total Syntheses of ent- Convolutamydine E and CPC-I and a Half Fragment of Madindoline A and B. Org. Lett. 2009, 11, 3854-3857.
    [11]Cassani. C and Melchiorre. P. Direct Catalytic Enantioselcctive Vinylogous Aldol Reaction of α-Branched Enals with Isatins. Org. Lett. 2012, 14, 5590- 5593.
    [12]Malkov, A. V.; Bella, K. M.; Kysilka, O.; Malyshev, D. A. and Kocovsky, P. Vicinal Amino Alcohols as Organocatalysts in Asymmetric Cross-Aldol Reaction of Ketones: Application in the Synthesis of Convolutamydine. Org. Lett.2007,9,5473-5476.
    [13]Guang, J.; Guo, Q. S and Zhao, C. G. Acetylphosphonate as a Surrogate of Acetate or Acetamide in Organocatalyzed Enantioselective Aldol Reactions. Org. Lett.2012,14, 3174-3177.
    [14]Guo, Q. S.; Bhanushali, M.; Zhao, C. G. Quinidine Thiourea-Catalyzed Aldol Reaction of Unactivated Ketones:Highly Enantioselective Synthesis of 3-Alkyl-3-hydroxy-indolin-2-ones. Angew. Chem. Int. Ed.2010,49,9460-9464. (b) Penthala, N. R.; Yerramreddy, T. R.; Madadi, N. R.; Crooks, P. A. Synthesis and in vitro evaluation of N-alkyl-3-hydroxy-3-(2-imino-3-methyl-5-oxoimidazo lidin-4-yl)indolin-2-one analogs as potential anticancer agents. Bioorg. Med. Chem. Lett. 2010,20,4468-4471. (c) Li, W.; Liu, X. H.; Hao, X. Y.; Lin, L. L and Feng, X. M. A Catalytic Asymmetric Ring-Expansion Reaction of Isatins and a-Alkyl-a-Diazoesters: Highly Efficient Synthesis of Functionalized 2-Quinolone Derivatives. Angew. Chem. Int. Ed.2012,124,8772-8775.
    [1](a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. New Strategics for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels-Aldcr Reaction.J. Am. Chem. Soc. 2000, 122, 4243-4244. (b) Sigman, M. S. and Jacobsen, H. N. Schiff Base Catalysts for the Asymmetric Strecker Reaction Identified and Optimized from Parallel Synthetic Libraries.J. Am. Chem. Soc. 1998, 120, 4901-4902.
    [2]List. B. The Direct Catalytic Asymmetric Three-component Mannich Reaction. J. Am. Chem. Soc. 2000. 122, 9336-9337.
    [3](a) Cordova, A.; Notz, W.; Betancortz J. M and Barbas, C. F. A Highly Enantioselective Amino Acid-Catalyzed Route to Functionalized a-Amino Acids.J Am. Chem. Soc. 2002, 124, 1842-1843. (b) Cordova. A.; Watanabe, S.; Tanaka, F. and Barbas, C. F. A Highly Enantioselective Route to Either Enantiomer of Both α- and β-Amino Acid Derivatives.J. Am. Chem. Soe. 2002, 124. 1866-1867. (c) Watanabe, S. I.; Cordova, A. Tanaka, F. J and Barbas, C. F. One-Pot Asymmetric Synthesis of β-Cyanohydroxymcthyl α-Amino Acid Derivatives: Formation of Three Contiguous Stereogenic Centers. Org. Lett. 2002, 4, 4519-4522.
    [4]Akiyama. T.; Itoh. J.; Yokata. K. Enantioseleclive Mannich-Type Reaction Catalyzed by a Chiral Bransted Acid. Angew. Chem. Int. Ed. 2004, 43, 1566-1568.
    [5]Guo, Q. X.; Liu. H.; Luo, S. W.; Yi Ciu and Gong, L. Z.; Chiral Brunsted Acid-Catalyzed Direct Asymmetric Mannich Reaction. J. Am. Chem. Soc. 2007, 129, 3790-3791.
    [6]Hatano, M.; Moriyama. K.; Maki, T and Ishihara, K.; Which Is the Actual Catalyst: Chiral Phosphoric Acid or Chiral Calcium Phosphate. Angew. Chem. Int. Ed 2010, 49, 3823-3826.
    [7]Zhao, D.; Yang, D. X.; Wang, Y. J.; Mao. L.J and Wang. R. Enantioselective Mannich reaction of a highly reactive Horner-Wadsworth-Emmons reagent with imines catalyzed by a bifunctional thiourea. ('hem. Sci. 2011, 2, 1918-1921.
    [8]Probst, N.; Valkonen, A.; Rissanen. K.; Neuvonen. A and Pihko. P. M. Cooperative Assistance in Bifunctional Organocatalysis: Enantioselective Mannich Reactions with Aliphatic and Aromatic Imines. Angew. Chem. Int. Ed. 2012, 124, 8623-8627.
    [9]Song. J.; Shih, H. W and Deng. L. Asymmetric Mannich Reactions with in Situ Generation of Carbamate-Protected Imines by an Organic Catalyst. Org. Lett. 2007, 4. 603-606.
    [10]Song. J.; Wang. Y and Deng. L.; The Mannich Reaction of Malonates with Simple Imines Catalyzed by Bifunctional Cinchona Alkaloids:Enantioselective Synthesis of β-Amino Acids. J. Am. Chem. Soc.2006,128,6048-6049.
    [11]Marianacci, O.; Micheletti, G.; Fochi, M.; Pettersen, D.; Sgarzani, V and Ricci, A. Organocatalytic Asymmetric Mannich Reactions with N-Boc and N-Cbz Protected a-Amido Sulfones (Boc:tert-Butoxycarbonyl, Cbz:Benzyloxycarbonyl). Chem. Eur. J. 2007,13,8338-8351.
    [12]Pan, Y. H,; Zhao, Y. J.; Liu, H.J.; Jiang, Z. Y and Tan, C. H. Enantioselective Synthesis of a-Fluorinated β-Amino Acid Derivatives by an Asymmetric Mannich Reaction and Selective Deacylation/Decarboxylation Reactions. Chem. Eur. J.2010,16,779-782.
    [13]Zhao, M. X.; Tang, W. H.; Chen, M. X and Min, Shi. Highly Enantioselective Michael Addition of 3-Aryloxindoles to Phenyl Vinyl Sulfone Catalyzed by Cinchona Alkaloid-Derived Bifunctional Amine-Thiourea Catalysts Bearing Sulfonamide as Multiple Hydrogen-Bonding Donors. Eur. J. Org. Chem.2011,6078-6084.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700