自由基辅助磁控溅射制备ZnO:Al透明导电薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能电池、平板显示和触摸屏等技术的出现与快速发展对透明导电氧化物薄膜材料提出了越来越多且越来越高的需求。ZnO:Al(简称AZO)透明导电薄膜因其优异的光电学性能、丰富廉价的原材料来源以及环境友好等特点引起了业界的广泛关注,被公认为是取代In203:Sn(简称ITO)透明导电薄膜材料的最佳候选者。随AZO薄膜在薄膜型太阳能电池上的实用化以及金属铟作为ITO薄膜原材料的供需缺口的日益增大,AZO薄膜逐渐步入工业化生产的阶段。
     本文使用AZO陶瓷靶、金属锌靶、铝靶及锌铝合金靶等靶材在日本Shincron公司生产的RAS-1100C大型自由基辅助磁控溅射设备上溅射制备Zn0及AZO薄膜,研究薄膜的电学、光学、微结构、应力、禁带宽度、折射率等物理性能随溅射参数的变化;针对AZO陶瓷靶溅射过程中靶材前方固定衬底上溅射沉积的AZO薄膜中电阻率等多项物理性能出现空间分布不均匀的现象展开了系统的研究,发现溅射过程中产生的高能氧负离子的轰击注入效应是使AZO薄膜物理性能出现空间分布不均匀的根本原因;针对金属靶溅射过程的复杂性研究了金属锌靶溅射制备锌氧化物薄膜过程中薄膜的微结构形貌及结晶性能随溅射功率以及氧化区氧气流速的变化,并对比研究了溅射区内的高能氧负离子轰击造成的反溅射现象;同时本文还结合薄膜在空气及氢气气氛下的退火实验结果对薄膜中各种缺陷的状态展开了讨论,力图揭示薄膜中各种缺陷的状态对薄膜性能的影响,从而为溅射制备性能更加优良的AZO薄膜打下基础。
     通过对比性实验研究,本文主要得到了以下结论和成果:
     l、通过对AZO陶瓷靶溅射参数的优化在RAS圆鼓上沉积得到电阻率达2.4×10-3Ω·cm,载流子浓度为2.49×1020 cm-3,迁移率为10.5cm2V-ls-1,550nm波长处的透过率为85%的AZO薄膜样品;
     2、观察到靶前不同区域处固定衬底上沉积的AZO薄膜的电阻率、载流子浓度、迁移率等多项物理性能出现明显的空间分布现象;靶材溅射沟道正前方沉积的AZO薄膜电阻率最高达2.2×10-2Ω·cm,而两块靶材中间非溅射区域前方沉积的AZO薄膜的电阻率则可低至4.9×10-4Ω·cm,两者相差达45倍左右。
     3、通过XPS、XRD等表征发现高能氧负离子轰击注入效应是靶前电阻率空间分布不均匀的根源。氧负离子源于溅射过程中晶格氧以负离子的形式析出,在靶材负电压电场加速下获得很高的能量轰击到衬底上面,造成薄膜中的晶粒损伤,抑制薄膜沿(0002)方向上的高度取向生长,并且在薄膜中引入大量氧填隙缺陷。大量的氧填隙缺陷俘获薄膜中的自由电子载流子,并造成晶格畸变,增加薄膜中的中性杂质散射,从而引起薄膜载流子浓度及迁移率降低、电阻率升高。
     4、RAS圆鼓上沉积的薄膜的性能是各区域沉积薄膜性能的平均结果。溅射参数主要通过影响氧负离子轰击注入效应的强弱以及薄膜的结晶状况好坏而影响在圆鼓上制备的AZO薄膜的性能。
     5、通过对RAS金属锌靶溅射制备锌氧化物薄膜过程中的正向及反向沉积薄膜的研究观察了锌氧化物薄膜形貌及结晶状态随氧化程度的演化,得到了薄膜微结构随溅射功率及氧化区氧气流速分布的相图,分析了RAS金属靶的典型溅射过程中溅射区内发生的物理过程,为溅射制备结晶性能优良的AZO透明导电薄膜提供了物理依据。
     6、对比研究了各种金属靶溅射过程中溅射区内生成的氧负离子造成的反溅射效应。研究表明反溅射效应不完全等同于高能氧负离子轰击效应,还受到溅射区沉积薄膜薄层氧化程度的影响。反溅射效应降低了靶材的利用率并影响薄膜中的铝含量,应该尽量予以避免。
     7、通过对比实验研究了ZnO及AZO薄膜在空气和氢气中的退火效应并分析了氧填隙缺陷行为对薄膜性能的影响,进一步阐明了氧负离子轰击注入效应影响薄膜物理性能的机制。另外还通过对比实验分析、讨论了RAS金属锌、铝靶共溅射制备AZO薄膜性能受限的原因。
     8、通过氢气500℃退火获得电阻率为4.5×104Ω.cm、载流子浓度为5.15×1020cm-3、迁移率为24.6 cm2V-1s-1、550 nm波长处透射率为89%的AZO薄膜。退火后的AZO薄膜性能稳定,具备实用价值。
The demand of transparent and conductive oxide (TCO) films has been highly stimulated by the appearance of fast growing solar voltaic、flat panel display and touch panel techniques. Transparent and conductive ZnO:Al (AZO) films has attracted lots of research interests and is considered as one of the best candidates for substitution of the traditional In2O3:Sn (ITO) films because of its excellent electrical and optical properties and cheap、abundant and non-toxic raw materials. Practical utilization of AZO films on thin film solar cells together with the aggravation of supply deficiency of In, which is the main raw material of ITO films, have provided the best opportunity for the industrialization and commercialization of AZO films.
     ZnO and AZO films were prepared by a large radical assisted magnetron sputtering apparatus RAS-1100C (Shincron Co.,Ltd.) with AZO ceramic targets, metallic zinc targets and aluminum targets and zinc-aluminum alloy targets. The relation between physics properties of these films, such as electrical and optical properties, microstructures, film stress, energy bandgap and reflective index were systematically studied. In the sputtering process of AZO ceramic targets, several physics quantities including resistivity were found to exhibit significant spatial distributions. Detail works were conducted to disclose the origins of these spatial distributions and find out that a bombarding implantation effect by negative oxygen ions was mainly responsible for these spatial inhomogeneities. As for the situation of sputtering processes of metallic targets, a detail observation of the microstructures and crystallinity evolution of the deposited zinc oxide films related to the sputtering powers and oxygen flow rates were carried out with a extra comparative study on re-sputtering phenomena which was caused also by energetic negative oxygen ions bombardments. Besides, a discussion on the defects states, behaviors and their influences on the properties of deposited films were given base on comparative experimental results of post annealing treatments of the deposited ZnO and AZO films under air or hydrogen atmospheres. We endeavored to shed lights on the deep mechanisms on the influences of sputtering parameters and deposition mode, which are beneficial for improvements of the properties of sputtering prepared AZO films.
     The main results and conclusions in this thesis are:
     1、We obtained AZO films with resistivity of 2.4x 10-3Ω·cm, carrier concentration of 2.49×1020 cm-3, mobility of 10.5cm2V-1s-1 and transmittance (at wavelength of 550nm) of 85% through optimizing sputtering parameters with AZO ceramic targets;
     2、The resistivity, carrier concentration, mobility, energy bandgap and reflective index for AZO films deposited on substrates fixed in different regions in front of the AZO ceramic targets were found to exhibited significant spatial distributions. The resistivity of AZO films deposited on substrates facing the erosion areas of targets were found to be high with maximum resistivity of 2.2×10-20Ω·cm while those deposited in the regions facing the non-sputtered areas were relatively much lower, with a minimum resistivity of 4.9×10-4Ω·cm. The gap between the resistivity maximum and minimum was as high as 45 times or more.
     3、We confirmed implantation effect by the bombardments of energetic negative oxygen ions as the main cause of resistivity (and other physics quantities) spatial distribution. The negative oxygen ions originated from the liberation of targets'O anions in the form of negative ions and obtained high energy under the acceleration by electrical field in the cathode fall. The bombardment of O" brought damages to crystalline grains and deteriorated the (0002) preferred oriented growth and introduced lots of oxygen interstitial defects in the deposited AZO films. The oxygen interstitial defects was mainly responsible for the degradation of electrical properties as they can trapped free electron carriers and cause lattice distortions and increase the neutral impurity scattering in AZO films, which ultimately led to decrease in carrier concentration and mobility and thus increased the resistivity of AZO films.
     4、AZO films deposited on the drum of RAS possess average physics properties as compared to those deposited on fixed substrates in different regions in front of the targets. Properties of AZO films were influenced by sputtering parameters through affecting the degree of bombardments by energetic negative oxygen ions and through changing of the thin film crystallinity.
     5、We have studied the microstructure and crystallinity evolution of zinc oxide films in detail in the sputtering process of metallic zinc targets with observation of both forward and backward deposited films. Microstructure zone models for both forward and backward deposited films related to sputtering power and oxygen flow rate have been obtained, which helps to further understand what is going on in the sputtering zone in typical sputtering process of RAS-1100C and helps to determine the suitable working parameters area for preparation of AZO transparent and conductive films by sputtering of metallic targets.
     6、We comparatively studied re-sputtering effect caused by the generation of energetic negative oxygen ions in the sputtering zone through different sputtering processes with several kinds of metallic targets. It was pointed out that although the re-sputtering effect was caused from the energetic negative oxygen ions bombardments, the two effects was not equal, as the former was simultaneously affected by the oxidation degree of the thin layers deposited in sputtering zone. Re-sputtering effect lowers the targets utilization efficiency and affects the aluminum content in the deposited AZO films. It was suggested that the re-sputtering effect should be intentionally avoid.
     7、Investment of the defects states and the influence of their behavior on the properties of AZO films were carried out through comparative post annealing experiments of ZnO and AZO films both in air and hydrogen gas ambient. The experimental results supported the interpretation of implanted oxygen interstitial defects as the main factors which determined the properties of the as-deposited AZO films. Meanwhile the reason for the limitation of properties of AZO films prepared by co-sputtering process with metallic zinc and aluminum targets were analyzed and discussed.
     8、The properties (both resistivity and visible light transmittance) of the deposited AZO films were found to be further improved with post-annealing treatments in hydrogen ambient. AZO films with resistivity of 4.5×10-4Ω·cm, carrier concentration of 5.15×1020cm-3, mobility of 24.6 cm2V-1s-1 and transmittance (at wavelength of 550nm) of 89% was obtained through 500℃annealing treatment for 2h in hydrogen ambient. The improved properties of AZO films are stable under storage in air conditions and thus are valuable for practical applications.
引文
[1]姜辛,孙超,洪瑞江et al.透明导电氧化物薄膜.高等教育出版社,2008.
    [2]Ellmer K. and Wendt R. Dc and rf (reactive) magnetron sputtering of ZnO:Al films from metallic and ceramic targets:a comparative study [J].Surface & Coatings Technology, 1997,93:21-26.
    [3]Minami T. and Miyata T. Present status and future prospects for development of non-or reduced-indium transparent conducting oxide thin films [J].Thin Solid Films,2008,517: 1474-1477.
    [4]Ozgur U., Alivov Y. I., Liu C. et al. A comprehensive review of ZnO materials and devices [J].Journal of Applied Physics,2005,98:041301.
    [5]刘暐昌.ZnO基薄膜和器件的制备及性能研究.浙江大学硕士学位论文,2008.
    [6]吕建国.ZnO半导体光电材料的制备及其性能的研究.浙江大学博士学位论文,2005.
    [7]D.R.Lide(Ed.). [J].CRC Handbook of Chemistry and Physics, CRC, Boca Raton, FL, 2002pp. (5-6)-(5-23) and (29-52)-(29-56).
    [8]Yongan Cai, Liu W., He Q. et al. Influence of negative ion resputtering on Al-doped ZnO thin films prepared by mid-frequency magnetron sputtering [J].Applied Surface Science, 2010,256:1694-1697.
    [9]Pearton S. J., Norton D. P., Ip K. et al. Recent progress in processing and properties of ZnO [J].Progress in Materials Science,2005,50:293-340.
    [10]王卿璞.ZnO薄膜的制备及发光特性的研究.山东大学博士学位论文,2003.
    [11]Chris G. Van de Walle, Hydrogen as a cause of doping in zinc oxide [J].Physical Review Letters,2000,85:1012-1015.
    [12]Kohan A. F., Ceder G., Morgan D. et al. First-principles study of native point defects in ZnO [J].Physical Review B,2000,61:15019-15027.
    [13]Look D. C., Hemsky J. W., and Sizelove J. R. Residual native shallow donor in ZnO [J].Physical Review Letters,1999,82:2552-2555.
    [14]Look D. C. Recent advances in ZnO materials and devices [J].Materials Science and Engineering B-Solid State Materials for Advanced Technology,2001,80:383-387.
    [15]Zhang S. B., Wei S. H., and Zunger A. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO [J].Physical Review B,2001,6307:075205.
    [16]Chen L. Y, Chen W. H., Wang J. J. et al. Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering [J].Applied Physics Letters,2004,85: 5628-5630.
    [17]Park K. C., Ma D. Y., and Kim K. H. The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering [J],Thin Solid Films,1997,305:201-209.
    [18]Tominaga K., Umezu N., Mori I. et al. Effects of UV light irradiation and excess Zn addition on ZnO:Al film properties in sputtering process [J].Thin Solid Films,1998,316: 85-88.
    [19]Fang G. J., Li D. J., and Yao B. L. Fabrication and characterization of transparent conductive ZnO:Al thin films prepared by direct current magnetron sputtering with highly conductive ZnO(ZnAl2O4) ceramic target [J].Journal of Crystal Growth,2003,247: 393-400.
    [20]甘柳忠.ZnO:Al透明导电薄膜的自由基辅助磁控溅射制备工艺及性能表征.中国科学技术大学硕士学位论文,2009.
    [21]刘著光.射频磁控溅射ZnO:Al薄膜及其特性研究.厦门大学硕士学位论文,2008.
    [22]McCluskey M. D. and Jokela S. J. Defects in ZnO [J].Journal of Applied Physics,2009, 106:071101.
    [23]Deubler S., Meier J., Schutz R. et al. Pac Studies on Impurities in ZnO [J].Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,1992,63:223-226.
    [24]Selim F. A., Weber M. H., Solodovnikov D. et al. Nature of native defects in ZnO [J].Physical Review Letters,2007,99:085502.
    [25]徐彭寿,孙玉明,施朝淑et al.ZnO及其缺陷的电子结构.中国科学(A辑),2001,3l:358-365.
    [26]于芬.铝原子掺杂的氧化锌薄膜的制备与性能.鲁东大学硕士学位论文,2007.
    [27]Schmidt-Mende. L. and MacManus-Driscoll J. L. ZnO-nanostructures, defects, and devices [J].Materials Today,2007,10:40-48.
    [28]Van de Walle C. G. Defect analysis and engineering in ZnO [J].Physica B-Condensed Matter,2001,308:899-903.
    [29]Kilic C. and Zunger A. n-type doping of oxides by hydrogen [J].Applied Physics Letters, 2002,81:73-75.
    [30]Janotti A. and Van de Walle C. G. Native point defects in ZnO [J].Physical Review B, 2007,76:165202.
    [31]Sernelius B. E. Band-gap tailoring of ZnO by means of heavy Al doping [J].Physical Review B,1988,37:10244.
    [32]Taga N., Odaka H., Shigesato Y. et al. Electrical properties of heteroepitaxial grown tin-doped indium oxide films [J]. Journal of Applied Physics,1996,80:978-984.
    [33]A J. V. and K. L.-H. Transition from Classical to Quantum Statistics in Germanium Semiconductors at Low Temperature [J].Physical Review,1947,71:374-375.
    [34]Erginsoy C. Neutral Impurity Scattering in Semiconductors [J].Physical Review,1950,79: 1013-1014.
    [35]Noh J. H., Jung H. S., Lee J. K. et al. Reversible change in electrical and optical properties in epitaxially grown Al-doped ZnO thin films [J].Journal of Applied Physics, 2008,104:073706.
    [36]Ellmer K. and Mientus R. Carrier transport in polycrystalline ITO and ZnO:Al II:The influence of grain barriers and boundaries [J].Thin Solid Films,2008,516:5829-5835.
    [37]Lennon C., Tapia R. B., Kodama R. et al. Effects of Annealing in a Partially Reducing Atmosphere on Sputtered Al-Doped ZnO Thin Films [J].Journal of Electronic Materials, 2009,38:1568-1573.
    [38]Ellmer K. Resistivity of polycrystalline zinc oxide films:current status and physical limit [J].Journal of Physics D-Applied Physics,2001,34:3097-3108.
    [39]Suzuki A., Nakamura M., Michihata R. et al. Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition [J].Thin Solid Films,2008,517: 1478-1481.
    [40]Agura H., Suzuki A., Matsushita T. et al. Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition [J].Thin Solid Films,2003,445:263-267.
    [41]Minami T, Kuboi T., Miyata T. et al. Stability in a high humidity environment of TCO thin films deposited at low temperatures [J].Physica Status Solidi a-Applications and Materials Science,2008,205:255-260.
    [42]Lee J. H., Chou C. Y., Bi Z. X. et al. Growth-controlled surface roughness in Al-doped ZnO as transparent conducting oxide [J].Nanotechnology,2009,20:395704.
    [43]Exarhos G.J.and Zhou X. D. Discovery-based design of transparent conducting oxide films [J].Thin Solid Films,2007,515:7025-7052.
    [44]Aktaruzzaman A. F., Sharma G. L., and Malhotra L. K. Electrical, Optical and Annealing Characteristics of ZnO-Al Films Prepared by Spray Pyrolysis [J].Thin Solid Films,1991, 198:67-74.
    [45]Olvera M. D., Maldonado A., Asomoza R. et al. Conductive and transparent ZnO:Al thin films obtained by chemical spray [J].Journal of Materials Science-Materials in Electronics,2000,11:383-387.
    [46]Denton P. R., Zimone F. T., and N.J.Arfsten. Forty-third National Symposium of the AVS, Philadelphia,1996.
    [47]Tang W. and Cameron D. C. Aluminum-Doped Zinc-Oxide Transparent Conductors Deposited by the Sol-Gel Process [J].Thin Solid Films,1994,238:83-87.
    [48]Chapman B., Glow Discharge Process-sputtering and plasma etching (JOHN WILEY&SONS, New York,1980).
    [49]赵嘉学,童洪辉.磁控溅射原理的深入探讨.真空,2004,41.
    [50]Angstrom Science, http://www.angstromsciences.com/technology/angstrom-advantage/ profiled-magnets/index.html.
    [51]Ellmer K. Magnetron sputtering of transparent conductive zinc oxide:relation between the sputtering parameters and the electronic properties [J].Journal of Physics D-Applied Physics,2000,33:R17-R32.
    [52]Sahu D. R., Lin S. Y., and Huang J. L. Improved properties of Al-doped ZnO film by electron beam evaporation technique [J].Microelectronics Journal,2007,38:245-250.
    [53]Minami T., Sonohara H., Takata S. et al. Transparent and Conductive ZnO Thin-Films Prepared by Atmospheric-Pressure Chemical-Vapor-Deposition Using Zinc Acetylacetonate [J].Japanese Journal of Applied Physics Part 2-Letters,1994,33: L743-L746.
    [54]Ray S., Das R., and Barua A. K. Performance of double junction a-Si solar cells by using ZnO:Al films with different electrical and optical properties at the n/metal interface [J].Solar Energy Materials and Solar Cells,2002,74:387-392.
    [55]Chopra K. L., Paulson P. D., and Dutta V. Thin-film solar cells:An overview [J].Progress in Photovoltaics,2004,12:69-92.
    [56]http://www.elecfans.com/yuanqijian/dianchi/taiyangnen/20100308182072.html.
    [57]Tark S. J,Kang M. G., Park S. et al Development of surface-textured hydrogenated ZnO:Al thin-films for mu c-Si solar cells [J].Current Applied Physics,2009,9: 1318-1322.
    [58]Guillen C. and Herrero J. Structure, optical and electrical properties of Al:ZnO thin films deposited by DC sputtering at room temperature on glass and plastic substrates [J].Physica Status Solidi a-Applications and Materials Science,2009,206:1531-1536.
    [59]Jiang X., Wong F. L., Fung M. K. et al. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices [J].Applied Physics Letters,2003, 83:1875-1877.
    [60]Bergh A., Craford G., Duggal A. et al. The promise and challenge of solid-state lighting [J].Physics Today,2001,54:42-47.
    [61]http://mep128.mofcom.gov.cn/mep/yjfx/127029.asp.
    [62]http://www.isuppli.com.cn/products/displays/Emerging-Displays-Technologies/and 170308.
    [63]http://www.isuppli.com.cn/products/solar-energy/090423.
    [64]https://fcpv2009.tems-system.com/exhiSearch/PV/eng/searchResult and_detail.aspx? id=507050ab-36f6-48d3-bd57-9f0f252fa84f.
    [65]http://www.bmlink.com/product/message/default_68802.html.
    [66]http://www.leyboldoptics.com/zh/apollon.html.
    [67]http://www.cerac.com/pubs/proddata/AZO.pdf.
    [68]http://www.agcc.jp/2005/en/databank/06_01_05.html.
    [69]Minami T., Sato H., Nanto H. et al. Group Ⅲ Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering [J].Japanese Journal of Applied Physics,1985,24: 781-784.
    [70]Minami T., Sato H., Sonoda T. et al. Influence of substrate and target temperatures on properties of transparent and conductive doped ZnO thin films prepared by RF magnetron sputtering [J].Thin Solid Films,1989,171:307-311.
    [71]Igasaki Y. and Saito H. The Effects of Deposition Rate on the Structural and Electrical-Properties of ZnO-Al Films Deposited on (1120) Oriented Sapphire Substrates [J].Journal of Applied Physics,1991,70:3613-3619.
    [72]H. M. R. and H.W. S. [J].Proc.10th Euro. Photovoltatic Solar Energy Conf. (Lisbon) (Dordrecht:Kluwer),199188-91.
    [73]R K., K N., H H. et al. The preparation of transparent ZnO:Al thin films [J].JOURNAL OF CRYSTAL GROWTH,1992,117:939-942.
    [74]Ellmer K., Kudella F., Mientus R. et al. Influence of Discharge Parameters-on the Layer Properties of Reactive Magnetron-Sputtered ZnO-Al Films [J].Thin Solid Films,1994, 247:15-23.
    [75]Tominaga K., Umezu N., Mori I. et al. Transparent conductive ZnO film preparation by alternating sputtering of ZnO:Al and Zn or Al targets [J].Thin Solid Films,1998,334: 35-39.
    [76]Pei Z. L., Sun C., Tan M. H. et al. Optical and electrical properties of direct-current magnetron sputtered ZnO:Al films [J].Journal of Applied Physics,2001,90:3432-3436.
    [77]Ko H. T. W. P., Kim K. C. et al. Growth of Al-doped ZnO thin films by pulsed DC magnetron sputtering [J]. J Cryst Growth 2005,277:352-358.
    [78]Hao X. T., Tan L. W., Ong K. S. et al. High-performance low-temperature transparent conducting aluminum-doped ZnO thin films and applications [J].Journal of Crystal Growth,2006,287:44-47.
    [79]Minami T., Ohtani Y., Miyata T. et al. Transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering with dc and rf powers applied in combination [J].Journal of Vacuum Science & Technology A,2007,25:1172-1177.
    [80]Cornelius S., Vinnichenko M., Shevchenko N. et al. Achieving high free electron mobility in ZnO:Al thin films grown by reactive pulsed magnetron sputtering [J].Applied Physics Letters,2009,94:042103.
    [81]Imanishi Y., Taguchi M., and Onisawa K. Effect of sublayer surface treatments on ZnO transparent conductive oxides using dc magnetron sputtering [J].Thin Solid Films,2010, 518:2945-2948.
    [82]Swanepoel R. Determination of the Thickness and Optical-Constants of Amorphous-Silicon [J].Journal of Physics E-Scientific Instruments,1983,16:1214-1222.
    [83]Van der Pauw L. J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape [J].Philips Research Reports,1958,13:9.
    [84]http://www.nist.gov/eeel/semiconductor/hall.cfin.
    [1]Dao V. A., Tran L., Tuan T. et al. Electrical and optical studies of transparent conducting ZnO:Al thin films by magnetron dc sputtering [J] Journal of Electroceramics,2009,23: 356-360.
    [2]Fang G. J., Li D. J., and Yao B. L. Fabrication and vacuum annealing of transparent conductive AZO thin films prepared by DC magnetron sputtering [J].Vacuum,2002,68: 363-372.
    [3]Fu E. G., Zhuang D. M., Zhang G. et al. Effect of technologic parameters on the performances of ZAO thin films deposited by magnetron sputtering [J].Rare Metal Materials and Engineering,2002,31:523-527.
    [4]王卿璞.ZnO薄膜的制备及发光特性的研究.山东大学博士学位论文,2003.
    [5]Kono A. and Shoji F. Deterioration and recovery in the resistivity of Al-doped ZnO films prepared by the plasma sputtering [J].Vacuum,2009,84:625-628.
    [6]Fu E. G, Zhuang D. M., Zhang G. et al. Substrate temperature dependence of the properties of ZAO thin films deposited by magnetron sputtering [J].Applied Surface Science,2003,217:88-94.
    [7]Minami T., Sato H., Imamoto H. et al. Substrate-Temperature Dependence of Transparent Conducting Al-Doped ZnO Thin-Films Prepared by Magnetron Sputtering [J] Japanese Journal of Applied Physics Part 2-Letters,1992,31:L257-L260.
    [8]Igasaki Y. and Saito H. Substrate-Temperature Dependence of Electrical-Properties of Zno-Al Epitaxial-Films on Sapphire (12bar10) [J].Journal of Applied Physics,1991,69: 2190-2195.
    [9]姜辛,孙超,洪瑞江 et al.透明导电氧化物薄膜.北京:高等教育出版社,2008:P3-4;P169-172;P255-258;P185.
    [10]Zafar S., Ferekides C. S., and Morel D. L. Characterization and Analysis of Zno-Al Deposited by Reactive Magnetron Sputtering [J].Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,1995,13:2177-2182.
    [11]Tominaga K., Yuasa T., Kume M. et al. Influence of energetic oxygen bombardment on conductive ZnO films [J].Japanese Journal of Applied Physics, Part 1 (Regular Papers & Short Notes),1985,24:944-949.
    [12]Minami T., Miyata T., Yamamoto T. et al. Origin of electrical property distribution on the surface of ZnO:Al films prepared by magnetron sputtering [J].Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,2000,18:1584-1589.
    [13]Zhang X. B., Pei Z. L., Gong J. et al. Investigation on the electrical properties and inhomogeneous distribution of ZnO:Al thin films prepared by dc magnetron sputtering at low deposition temperature [J].Journal of Applied Physics,2007,101:014910.
    [14]Yongan Cai, Liu W., He Q. et al. Influence of negative ion resputtering on Al-doped ZnO thin films prepared by mid-frequency magnetron sputtering [J].Applied Surface Science, 2010,256:1694-1697.
    [15]Tominaga K., Sueyoshi Y., Munfei C. et al. Energetic O-Ions and O Atoms in Planar Magnetron Sputtering of Zno Target [J] Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,1993,32:4131-4135.
    [16]Tominaga K., Iwamura S., Fujita I. et al. Influence of bombardment by energetic atoms on c-axis orientation of ZnO films [J].Japanese Journal of Applied Physics, Part 1 (Regular Papers & Short Notes),1982,21:999-1002.
    [17]Song Q. M., Wu B. J., Xie B. et al. Resputtering of zinc oxide films prepared by radical assisted sputtering [J] Journal of Applied Physics,2009,105:044509.
    [18]Rieth L. W. and Holloway P. H. Influence of negative ion resputtering on ZnO:Al thin films [J].Journal of Vacuum Science & Technology A,2004,22:20-29.
    [19]Noh J. H., Jung H. S., Lee J. K. et al. Reversible change in electrical and optical properties in epitaxially grown Al-doped ZnO thin films [J].Journal of Applied Physics, 2008,104:073706.
    [20]Tominaga K., Kuroda K., and Tada O. Radiation effect due to energetic oxygen atoms on conductive Al-doped ZnO films [J].Japanese Journal of Applied Physics, Part 1 (Regular Papers & Short Notes),1988,27:1176-1180.
    [21]范丽琴,裴瑜,林丽梅et al.溅射功率对掺铝氧化锌薄膜光电学性质的影响[J].福建师范大学学报(自然科学版),2008,24:44-48.
    [22]Das R. and Ray S. Thickness dependence of the properties of magnetron sputtered ZnO: Al films and its application in a-Si:H thin film solar cell [J].Indian Journal of Physics and Proceedings of the Indian Association for the Cultivation of Science,2004,78: 901-906.
    [23]Tanaka H., Ihara K., Miyata T. et al. Low resistivity polycrystalline ZnO:Al thin films prepared by pulsed laser deposition [J].Journal of Vacuum Science & Technology A,2004, 22:1757-1762.
    [24]Lu J. G., Ye Z. Z., Zeng Y. J. et al. Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions [J].Journal of Applied Physics,2006, 100:073714.
    [25]Hsu C. Y, Ko T. F., and Huang Y. M. Influence of ZnO buffer layer on AZO film properties by radio frequency magnetron sputtering [J].Journal of the European Ceramic Society,2008,28:3065-3070.
    [26]Li C, Furuta M., Matsuda T. et al. Effects of substrate on the structural, electrical and optical properties of Al-doped ZnO films prepared by radio frequency magnetron sputtering [J].Thin Solid Films,2009,517:3265-3268.
    [27]Wang P., Zhao Q. N., Zhou X. et al. Influence of homo-buffer layer thickness on the structure and optical and electric properties of AZO thin films prepared on glass substrates by magnetron sputtering [J].Rare Metal Materials and Engineering,2007,36: 589-593.
    [28]Van de Walle C. G. Hydrogen as a cause of doping in zinc oxide [J].Physical Review Letters,2000,85:1012-1015.
    [29]Minami T., Sato H., Takata S. et al. Large-Area Milky Transparent Conducting Al-Doped Zno Films Prepared by Magnetron Sputtering [J].Japanese Journal of Applied Physics Part 2-Letters,1992,31:L1106-L1109.
    [30]Fan Q. H., Chen X. H., and Zhang Y. Computer-Simulation of Film Thickness Distribution in Symmetrical Magnet Magnetron Sputtering [J].Vacuum,1995,46: 229-232.
    [31]Xiong G., Wilkinson J., Mischuck B. et al. Control of p-and n-type conductivity in sputter deposition of undoped ZnO [J].Applied Physics Letters,2002,80:1195-1197.
    [32]Park K. C., Ma D. Y., and Kim K. H. The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering [J].Thin Solid Films,1997,305:201-209.
    [33]Kim K. H., Park K. C., and Ma D. Y. Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by rf magnetron sputtering (vol 81, pg 7764, 1997) [J].Journal of Applied Physics,1998,84:660-660.
    [34]Ekem N., Korkmaz S., Pat S. et al. Some physical properties of ZnO thin films prepared by RF sputtering technique [J].International Journal of Hydrogen Energy,2009,34: 5218-5222.
    [35]Dimitrov V. and Sakka S. Electronic oxide polarizability and optical basicity of simple oxides.1. [J]. Journal of Applied Physics,1996,79:1736-1740.
    [36]Lee Y. E., Lee J. B., Kim Y. J. et al. Microstructural evolution and preferred orientation change of radio-frequency-magnetron sputtered ZnO thin films [J].Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,1996,14:1943-1948.
    [37]Minami T., Miyata T., Ohtani Y. et al. New transparent conducting Al-doped ZnO film preparation techniques for improving resistivity distribution in magnetron sputtering deposition [J], Japanese Journal of Applied Physics Part 2-Letters & Express Letters,2006, 45:L409-L412.
    [38]Nomoto J., Miyata T., and Minami T. Transparent conducting Si-codoped Al-doped ZnO thin films prepared by magnetron sputtering using Al-doped ZnO powder targets containing SiC [J].Journal of Vacuum Science & Technology A,2009,27:1001-1005.
    [39]宋秋明.SiOx渐变折射率薄膜与ZnO透明导电薄膜的反应磁控溅射工艺及机理研究.中国科学技术大学博士学位论文,2008.
    [1]Chen M., Pei Z. L., Wang X. et al. Structural, electrical, and optical properties of transparent conductive oxide ZnO:Al films prepared by dc magnetron reactive sputtering [J] Journal of Vacuum Science & Technology A,2001,19:963-970.
    [2]Ellmer K. and Wendt R. Dc and rf (reactive) magnetron sputtering of ZnO:Al films from metallic and ceramic targets:a comparative study [J].Surface & Coatings Technology, 1997,93:21-26.
    [3]Hong R. J., Qi H. J., Huang J. B. et al. Influence of oxygen partial pressure on the structure and photoluminescence of direct current reactive magnetron sputtering ZnO thin films [J].Thin Solid Films,2005,473:58-62.
    [4]Chen J. J., Gao Y., Zeng F. et al. Effect of sputtering oxygen partial pressures on structure and physical properties of high resistivity ZnO films [J].Applied Surface Science,2004,223:318-329.
    [5]Wang C. Z., Xu D. R., Xiao X. G. et al. Effects of oxygen pressure on the structure and photoluminescence of ZnO thin films [J].Journal of Materials Science,2007,42: 9795-9800.
    [6]Hsieh P. T., Chen Y. C., Kao K. S. et al. Structural and luminescent characteristics of non-stoichiometric ZnO films by various sputtering and annealing temperatures [J].Physica B-Condensed Matter,2008,403:178-183.
    [7]Bachari E. M., Baud G., Ben Amor S. et al. Structural and optical properties of sputtered ZnO films [J].Thin Solid Films,1999,348:165-172.
    [8]N.Croitoru, A.Seidman, and K.Yassin. Secondary electron emission of ZnO sputtered films [J].Physica Scripta,1988,37:555-558.
    [9]Lin Y. H. and Joy D. C. A new examination of secondary electron yield data [J].Surface and Interface Analysis,2005,37:895-900.
    [10]Ellmer K. Magnetron sputtering of transparent conductive zinc oxide:relation between the sputtering parameters and the electronic properties [J].Journal of Physics D-Applied Physics,2000,33:R17-R32.
    [11]Hsueh T. J. and Hsu C. L. Fabrication of gas sensing devices with ZnO nanostructure by the low-temperature oxidation of zinc particles [J].Sensors and Actuators B-Chemical, 2008,131:572-576.
    [12]Lu J. G., Ye Z. Z., Zeng Y. J. et al. Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions [J].Journal of Applied Physics,2006, 100:073714.
    [13]Maniv S., Westwood W. D., and Colombini E. Pressure and angle of incidence effects in reactive planar magnetron sputtered ZnO layers [J].Journal of Vacuum Science and Technology,1982,20:162-170.
    [14]Kohan A. F., Ceder G., Morgan D. et al. First-principles study of native point defects in ZnO [J].Physical Review B,2000,61:15019-15027.
    [15]Oba F., Nishitani S. R., Isotani S. et al. Energetics of native defects in ZnO [J]. Journal of Applied Physics,2001,90:824-828.
    [16]Van de Walle C. G. Defect analysis and engineering in ZnO [J].Physica B-Condensed Matter,2001,308:899-903.
    [17]Lee J., Gao W., Li Z. et al. Sputtered deposited nanocrystalline ZnO films:A correlation between electrical, optical and microstructural properties [J].Applied Physics a-Materials Science & Processing,2005,80:1641-1646.
    [18]Schmid M., IAP/TU Wien Surface Physics Group, A Simple Sputter Yield Calculator http://eaps4.iap.tuwien.ac.at/www/surface/script/sputteryield.html
    [19]宋秋明.SiOx渐变折射率薄膜于ZnO透明导电薄膜的反应磁控溅射工艺及机理研究.中国科学技术大学博士学位论文,2008.
    [20]Song Q. M., Wu B. J., Xie B. et al. Resputtering of zinc oxide films prepared by radical assisted sputtering [J].Journal of Applied Physics,2009,105:044509.
    [21]甘柳忠.ZnO:Al透明导电薄膜的自由基辅助磁控溅射制备工艺及性能表征.中国科学技术大学硕士学位论文,2009.
    [1]Oh B. Y., Jeong M. C., Kim D. S. et al. Post-annealing of Al-doped ZnO films in hydrogen atmosphere [J].Journal of Crystal Growth,2005,281:475-480.
    [2]Kono A. and Shoji F. Deterioration and recovery in the resistivity of Al-doped ZnO films prepared by the plasma sputtering [J]. Vacuum,2009,84:625-628.
    [3]Chang J. F., Lin W. C., and Hon M. H. Effects of post-annealing on the structure and properties of Al-doped zinc oxide films [J].Applied Surface Science,2001,183:18-25.
    [4]Ozgur U., Alivov Y. I., Liu C. et al. A comprehensive review of ZnO materials and devices [J] Journal of Applied Physics,2005,98:041301.
    [5]Kohan A. F., Ceder G., Morgan D. et al. First-principles study of native point defects in ZnO [J].Physical Review B,2000,61:15019-15027.
    [6]Studenikin S. A., Golego N., and Cocivera M. Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films [J].Journal of Applied Physics,2000,87:2413-2421.
    [7]Exarhos G. J., Rose A., and Windisch C. F. Spectroscopic characterization of processing-induced property changes in doped ZnO films [J].Thin Solid Films,1997,308: 56-62.
    [8]Haneda H., Tanaka J., Hishita S. et al. Oxygen diffusion in zinc oxide single crystals [JJ.Electroceramics in Japan 1,1999,157-1:221-225.
    [9]Sabioni A. C. S. About the oxygen diffusion mechanism in ZnO [J].Solid State Ionics, 2004,170:145-148.
    [10]Sabioni A. C. S., Daniel A. M. J. M., Ferraz W. B. et al. Oxygen Diffusion in Bi2O3-doped ZnO [J].Materials Research-Ibero-American Journal of Materials,2008,11:221-225.
    [11]McCluskey M. D. and Jokela S. J. Defects in ZnO [J].Journal of Applied Physics,2009, 106:071101.
    [12]Selim F. A., Weber M. H., Solodovnikov D. et al. Nature of native defects in ZnO [J].Physical Review Letters,2007,99:085502.
    [13]Van de Walle C. G. Defect analysis and engineering in ZnO [J].Physica B-Condensed Matter,2001,308:899-903.
    [14]Noh J. H., Jung H. S., Lee J. K. et al. Reversible change in electrical and optical properties in epitaxially grown Al-doped ZnO thin films [J].Journal of Applied Physics, 2008,104:073706.
    [15]Tahar R. B. H. and Tahar N. B. H. Mechanism of carrier transport in aluminum-doped zinc oxide [J].Journal of Applied Physics,2002,92:4498-4501.
    [16]Hong R. J., Jiang X., Szyszka B. et al. Studies on ZnO:Al thin films deposited by in-line reactive mid-frequency magnetron sputtering [J].Applied Surface Science,2003,207: 341-350.
    [17]Fang G. J., Li D. J., and Yao B. L. Fabrication and vacuum annealing of transparent conductive AZO thin films prepared by DC magnetron sputtering [J].Vacuum,2002,68: 363-372.
    [18]Singh A. V, Mehra R. M., Yoshida A. et al. Doping mechanism in aluminum doped zinc oxide films [J]. Journal of Applied Physics,2004,95:3640-3643.
    [19]Dingle R. B. [J].Philos.Mag,1955,46:831.
    [20]Frank G. and Kostlin H. Electrical properties and defect model of tin-doped indium oxide layers [J].Appl. Phys. A,1982,27:197-206.
    [21]C.Erginsoy. [J].Phys.Rev,1950,79:1013.
    [22]Taga N., Odaka H., Shigesato Y. et al. Electrical properties of heteroepitaxial grown tin-doped indium oxide films [J].Journal of Applied Physics,1996,80:978-984.
    [23]SERNELIUS B. E. BAND-GAP TAILORING OF ZNO BY MEANS OF HEAVY AL DOPING [J].PHYSICAL REVIEW B,1988,37:10244.
    [24]吕建国.ZnO半导体光电材料的制备及其性能的研究.浙江大学博士学位论文,2005.
    [25]Lennon C., Tapia R. B., Kodama R. et al. Effects of Annealing in a Partially Reducing Atmosphere on Sputtered Al-Doped ZnO Thin Films [J].Journal of Electronic Materials, 2009,38:1568-1573.
    [26]Quaranta F., Valentini A., Rizzi F. R. et al. Dual-Ion-Beam Sputter-Deposition of Zno Films [J].Journal of Applied Physics,1993,74:244-248.
    [27]Thornton J. A. The microstructure of sputter-deposited coatings [J].Journal of Vacuum Science & Technology A Vacuum Surfaces and Films,1986,6:3059-3065.
    [28]Messier R., Giri A. P., and Roy R. A. Revised structure zone model for thin film physical structure [J],Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, 1983,2:500-503.
    [29]Petrov I., Barna P. B., Hultman L. et al. Microstructural evolution during film growth [J].Journal of Vacuum Science & Technology A,2003,21:S117-S128.
    [30]Kilic C. and Zunger A. n-type doping of oxides by hydrogen [J].Applied Physics Letters, 2002,81:73-75.
    [31]甘柳忠.ZnO:Al透明导电薄膜的自由基辅助磁控溅射制备工艺及性能表征.中国科学技术大学硕士学位论文,2009.
    [32]姜辛,孙超,洪瑞江et al.透明导电氧化物薄膜.高等教育出版社,200834.
    [33]Halliburton L. E., Giles N. C., Garces N. Y. et al. Production of native donors in ZnO by annealing at high temperature in Zn vapor [J].Applied Physics Letters,2005,87:172108.
    [1]姜辛,孙超,洪瑞江 et al.透明导电氧化物薄膜.高等教育出版社,2008291.
    [2]B. F. D. and D. C. H. Highly conductive transparent films of sputtered In2-xSnxO3-y [J]. Journal of Electrochemical Society,1972,119:1368-1374.
    [3]G. H. New figure of merit for transparent conductors [J] Journal of Applied Physics,1976, 47:4086-4089.
    [4]Gordon R. G. Criteria for choosing transparent conductors [J].Mrs Bulletin,2000,25: 52-57.
    [5]Yongan Cai, Liu W., He Q. et al. Influence of negative ion resputtering on Al-doped ZnO thin films prepared by mid-frequency magnetron sputtering [J].Applied Surface Science, 2010,256:1694-1697.
    [6]Nomoto J., Miyata T., and Minami T. Transparent conducting Si-codoped Al-doped ZnO thin films prepared by magnetron sputtering using Al-doped ZnO powder targets containing SiC [J]. Journal of Vacuum Science & Technology A,2009,27:1001-1005.
    [7]Minami T., Miyata T, Ohtani Y. et al. New transparent conducting Al-doped ZnO film preparation techniques for improving resistivity distribution in magnetron sputtering deposition [J].Japanese Journal of Applied Physics Part 2-Letters & Express Letters,2006, 45:L409-L412.
    [8]Ip K., Overberg M. E., Heo Y. W. et al. Hydrogen incorporation and diffusivity in plasma-exposed bulk ZnO [J].Applied Physics Letters,2003,82:385-387.
    [9]McCluskey M. D. and Jokela S. J. Defects in ZnO [J]. Journal of Applied Physics,2009, 106:071101.
    [10]Sun Y. F., Liu W. F., He Z. D. et al. Novel properties of AZO film sputtered in Ar+H-2 ambient at high temperature [J].Vacuum,2006,80:981-985.
    [11]Chung Y. M., Moon C. S., Jung W. S. et al. The low temperature synthesis of Al doped ZnO films on glass and polymer using pulsed co-magnetron sputtering:H2 effect [J].Thin Solid Films,2006,515:567-570.
    [12]Tark S. J., Ok Y. W., Kang M. G. et al. Effect of a hydrogen ratio in electrical and optical properties of hydrogenated Al-doped ZnO films [J].Journal of Electroceramics,2009,23: 548-553.
    [13]Liu W. F., Du G. T., Sun Y. F. et al. Effects of hydrogen flux on the properties of Al-doped ZnO films sputtered in Ar+H-2 ambient at low temperature [J].Applied Surface Science, 2007,253:2999-3003.
    [14]Liu W. F., Du G. T., Sun Y. F. et al. Al-doped ZnO thin films deposited by reactive frequency magnetron sputtering:H'2-induced property changes [J].Thin Solid Films,2007, 515:3057-3060.
    [15]Ellmer K. Magnetron sputtering of transparent conductive zinc oxide:relation between the sputtering parameters and the electronic properties [J] Journal of Physics D-Applied Physics,2000,33:R17-R32.
    [16]Szyszka B. and Jager S. Optical and electrical properties of doped zinc oxide films prepared by ac reactive magnetron sputtering [J] Journal of Non-Crystalline Solids,1997, 218:74-80.
    [17]Szyszka B. Transparent and conductive aluminum doped zinc oxide films prepared by mid-frequency reactive magnetron sputtering [J].Thin Solid Films,1999,351:164-169.
    [18]Szyszka B., Sittinger V., Jiang X. et al. Transparent and conductive ZnO:Al films deposited by large area reactive magnetron sputtering [J].Thin Solid Films,2003,442: 179-183.
    [19]Hong R. J., Jiang X., Heide G. et al. Growth behaviours and properties of the ZnO:Al films prepared by reactive mid-frequency magnetron sputtering [J] Journal of Crystal Growth,2003,249:461-469.
    [1]Silva M. F. V. and Nicholls J. R. A model for calculating the thickness profile of TiB2 and Al multilayer coatings produced by planar magnetron sputtering [J].Surface & Coatings Technology,2001,142:934-938.
    [2]Fan Q. H., Chen X. H., and Zhang Y. Computer-Simulation of Film Thickness Distribution in Symmetrical Magnet Magnetron Sputtering [J].Vacuum,1995,46: 229-232.
    [3]Rieth L. W. and Holloway P. H. Influence of negative ion resputtering on ZnO:Al thin films [J].Journal of Vacuum Science & Technology A,2004,22:20-29.
    [4]Zhao H. Y. and Mu Z. X. Particle-in-Cell/Monte Carlo Collision simulation of planar DC magnetron sputtering [J].Chinese Physics B,2008,17:1475-1479.
    [5]Kondo S. and Nanbu K. Axisymmetrical particle-in-cell/Monte Carlo simulation of narrow gap planar magnetron plasmas. Ⅱ. Radio frequency-driven discharge [J].Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,2001,19:838-847.
    [6]Kolev I. and Bogaerts A. PIC-MCC numerical simulation of a DC planar magnetron [J].Plasma Processes and Polymers,2006,3:127-134.
    [7]Fan Q. H., Zhou L. Q., and Gracio J. J. A cross-corner effect in a rectangular sputtering magnetron [J].Journal of Physics D-Applied Physics,2003,36:244-251.
    [8]Shidoji E., Nemoto M., Nomura T. et al. Three-Dimensional Simulation of Target Erosion in DC Magnetron Sputtering [J].Japanese Journal of Applied Physics,1994,33: 4281-4284.
    [9]Yongan Cai, Liu W., He Q. et al. Influence of negative ion resputtering on Al-doped ZnO thin films prepared by mid-frequency magnetron sputtering [J].Applied Surface Science, 2010,256:1694-1697.
    [1]Kim S., Jeong M. C., Oh B. Y. et al. Fabrication of Zn/ZnO nanocables through thermal oxidation of Zn nanowires grown by RF magnetron sputtering [J].Journal of Crystal Growth,2006,290:485-489.
    [2]Lu H. B., Li H., Liao L. et al. Low-temperature synthesis and photocatalytic properties of ZnO nanotubes by thermal oxidation of Zn nanowires [J].Nanotechnology,2008,19: 045605.
    [3]Chen Z., Shan Z. W., Li S. X. et al. A novel and simple growth route towards ultra-fine ZnO nanowires [J]. Journal of Crystal Growth,2004,265:482-486.
    [4]Liu Z. W., Yeo S. W., and Ong C. K. An alternative approach to in situ synthesize single crystalline ZnO nanowires by oxidizing granular zinc film [J].Journal of Materials Science,2007,42:6489-6493.
    [5]Zhang J. and Shao L. X. Photocatalytic activity of ZnO thin films prepared by two-step thermal oxidation of Zn films [J].Journal of Optoelectronics and Advanced Materials, 2007,9:3808-3811.
    [6]Hsu C. L., Hsueh T. J., and Chang S. P. Preparation of ZnO nanoflakes and a nanowire-based photodetector by localized oxidation at low temperature [J]. Journal of the Electrochemical Society,2008,155:K59-K62.
    [7]Hernandez-Alonso M. D., Fresno F., Suarez S. et al. Development of alternative photocatalysts to TiO2:Challenges and opportunities [J].Energy & Environmental Science, 2009,2:1231-1257.
    [8]Hou M. F., Li F. B., Liu X. M. et al. The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron [J]. Journal of Hazardous Materials,2007,145: 305-314.
    [9]Fan J., Guo Y. H., Wang J. J. et al. Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles [J].Journal of Hazardous Materials,2009,166:904-910.
    [10]Qamar M. and Muneer M. A comparative photocatalytic activity of titanium dioxide and zinc oxide by investigating the degradation of vanillin [J].Desalination,2009,249: 535-540.
    [11]白雪莲.氧化物纳米材料的合成、表征及光催化应用研究.中国科学技术大学博士学位论文,2006.
    [12]Noubactep C. The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron-Comments [J].Journal of Hazardous Materials,2007,148:773-774.
    [13]Kaneva N. V., Yordanov G. G., and Dushkin C. D. Photocatalytic action of ZnO thin films prepared by the sol-gel method [J].Reaction Kinetics and Catalysis Letters,2009,98: 259-263.
    [14]Galindo C, Jacques P., and Kalt A. Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes:UV/H2O2 UV/TiO2 and VIS/TiO2 Comparative mechanistic and kinetic investigations [J].Journal of Photochemistry and Photobiology a-Chemistry,2000,130:35-47.
    [15]Hsieh W. P., Pan J. R., Huang C. P. et al. Enhance the photocatalytic activity for the degradation of organic contaminants in water by incorporating TiO2 with zero-valent iron [J].Science of the Total Environment,2010,408:672-679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700