纳秒激光诱导若干金属材料微结构及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自激光出现以来,利用激光进行微细加工一直是该领域的研究热点。纳秒激光具有脉宽窄、功率大和高稳定性等优点,在微加工领域得到了广泛应用。本文主要开展了纳秒级脉冲激光在若干金属表面诱导和制作微结构的研究,在理论上探讨了诱导的物理机理,完成了相关的实验和测试,并将该项技术应用于背光模组导光板模仁和数字衍射光变图像的制作,取得了产业化成果。
     本论文研究内容及主要成果归纳如下:
     1.激光与材料的作用机理与过程非常复杂,可能会引发局部加热、烧蚀、光化学反应、等离子激发等物理化学过程,非常有必要在理论上对纳秒激光对材料的作用机理进行研究。基于热力学理论的热效应模型,本文对激光烧蚀金属表面过程进行了数值模拟,发现纳秒激光与金属材料相互作用过程中的温度场呈高斯型分布,并由此计算得到铜,镍,钛金属材料的热损伤阈值,进而研究了热损伤阈值、激光脉冲数目和刻蚀深度三个物理量的关系,损伤阈值与脉冲数目的关系符合反比关系,最后趋于常数;金属的烧蚀深度与激光脉冲数目近似成平方根关系。
     2.纳秒激光聚焦在金属表面,能够在金属表面形成烧蚀痕迹,这是纳秒激光微加工的直接原因。本文首先设计了紫外波段(波长为351nm)单光束在金属表面烧蚀微结构的实验,得到了不同激光参数下金属铜、镍、钛材料的损伤阈值。实验结果表明,高激光能量可以烧蚀出深的凹坑结构,凹坑深度的可由激光脉冲能量和脉冲数目控制。单光束实验在微机械加工,精密打孔,激光打标等方面具有很大的应用前景。
     3.单光束激光在金属表面烧蚀微结构的精细程度受瑞利判据的限制,无法达到亚微米级的加工精度。双光束干涉法能在一定程度上提高加工精度,得到更加精细的亚微米光栅结构。本文开展了双光束干涉方法在金属铜、镍和钛表面刻蚀光栅的实验研究,得到了亚微米量级线宽的光栅;对激光能量、脉冲数目、光束口径等工艺参数对光栅形貌和衍射效率等的影响做了实验研究。光栅槽深达到200~400nm、衍射效率可以达到14%,双光束干涉法直接作用于金属特别适合于制作数字衍射光变图像。
     4.导光板是平板显示背光模组里的重要组成元件,将点或线光源转化成高亮度且均匀的面光源。传统上制作导光板方法光能利用率较低,本文利用纳秒激光在金属镍表面刻蚀的微锥形凹坑结构,通过改变其直径和深度,制作导光板模仁并结合微纳米压印技术,直接在PMMA或PC材质上进行压印,制作出高均匀度和亮度的导光板。此制作工艺已用到手机按键导光膜制作。
     5.在金属表面双光束干涉刻蚀光栅结构,特别适合于制作数码激光光变图像模版。这种新方法可控制光栅的槽深在200~400 nm之间,提高光栅的衍射效率。本文制作出了良好的数字衍射光变图像模版,相比于传统的LIGA工艺,减少制作流程,图像的衍射效果接近。为数字衍射光变图像存储与制版提供了一种新方法。
     本论文的工作为微锥形结构在激光打标、模仁制作、微机械制作等相关光学领域的应用发展提供了必要的理论基础和技术储备,同时,微光栅结构在立体光刻、数字衍射光变图像的制作及视读防伪器件加工具有很高的研究价值和广泛的应用前景。
Since the first appearance in 1960s, the laser fabrication has been a hot topic in the field of microfabrication. With the characteristics of high stability, high energy and narrow band, nanosecond laser has found wide applications in microfabrication processing. In this thesis, fabrication of microstructures on metals induced by nanosecond laser is presented. The physical mechanism of these phenomena and the related experimental results are demonstrated. As cases of application, Ni-based imprinting template for light guide plate used in backlight system and the digital diffraction optical variable imaging device are fabricated, which have been in mass production for market.
     Generally following items are included in this thesis:
     1. Due to local heating, ablation and excitation of plasma etc, the inter-reaction between the incident laser beam and the matters is very complicated. It is necessary to investigate the physical mechanism of the physical and chemical procedure. Based on the thermal effect model of thermodynamic theory, numerical simulation on the ablating of metal using nanosecond laser is carried out. It can be found that the special distribution of temperature field is Guassian-like and the damage threshold of metal Cu, Ni and Ti is obtained theorecitcaly. Futhermore, the relationship of damage threshold, number of laser pulse and etching depth is discussed. It can be shown that the damage threshold is inverse to and the etching depth is proportional to the number of laser pulse.
     2. Nanosecond pulsed laser ablation is especially appropriate for metal ablation as high power level for short period of time enabling the creation of deep trenches. A single beam experimental setup has been built to ablate metal with operating wavelength of 351nm in the UV range. The damage threshold of Cu, Ni and Ti are achieved experimentally. The experimental results also show that the trenches can be created by high laser energy and the trench’s depth is decided by the incident energy and the number of pulses. Submicron focal spots in this setup enable the creation of very small feature which is useful in micromachining, holes drilling, laser marking, etc..
     3. The resolution of single-beam pulsed laser ablation is determined by the Rayleigh criterion. By interfering two pulsed laser beams to produce grating, the resolution of the proposed approach can be enhanced by a factor of more than 2 times. To implement two beams interference, it is important to find how the incident energy, the number of laser pulse, the aperture of lens, etc can have influence on surface profile and diffraction efficiency of microstructures. In our experiment, the grating depth is about 200~400nm and the diffraction efficiency measured is 14%. This approach is suitable for fabricating digital diffraction optical variable imaging device (DOVID).
     4. As an indispensable component in backlight system, the light guide plate has the function of changing the irradiation pattern of point/line source to uniform lighting. The conventional method of fabricating LGP suffers from the deficiency of low efficiency. In our study, nanosecond laser is used as an ablation tool to drill substrate (Ni) to creat the template for the following nanoimprinting lithography process. The fabricated LGP has the advantage of good uniformity and high brightness, whose substrate is PC or PMMA. This novel type of LGP has already been in mass production for mobile telephone.
     5. The method of two beam interference on metal is suitable for fabricating digital diffraction optical variable imaging device (DOVID). This new and novel approach can fabricate gratings with high diffraction efficiency and the grating depth can vary from 200 to 400nm. Compared with the conventional LIGA process, the proposed method is simple and provides a new fabrication method of making DOVID and optical devices used in optical storage.
     In summary, the work presented will lay solid foundation for the laser marking, fabrication of imprint template, micromachine, theoretically and experimentally. It can be predicted that the method will find wide applications in fabrication of DOVID and readable security authentication solutions.
引文
1. Roger Newman, Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in CaAs[J], J. Appl. Phys., 1963, 34:437~440
    2. R. J. Keys, T. M. Quist, Injection lμminescent pμmping of CaF2:U3+ with CaAs diode lasers[J], Appl. Opt., 1964, 4:50~54
    3. Monte Ross, YAG laser operation by semiconductor laser pμmping[J], Proceeding ofthe IEEE, 1968, 56:196~201
    4. F. W. Ostermayer, Jr., R. B. Allen et al. Room-temperature CW operation of a GaAs1-xPx diode-pμmped Nd:YAG laser[J], Appl. Phys. Lett., 1971, 18:289~295
    5.从征,两种输出3.3kW的二极管抽运固体激光器[J],激光与光电子学进展,2000,37(2):46-47.
    6.友清,二极管泵浦的千瓦级固体激光器[J],激光与光电子学进展,1999,37(3):7-11.
    7. S. C. Tidwell, J. F. Seamans, M. S. Bowers, High efficiency 60-W TEM00 diode-end- pμmped Nd:YAG laser[J], Opt. Lett., 1993, 18:116~221
    8. Susμmu Konno, Shuichi Fujikawa, Koji Yasui, 80 W CW TEM00 1064nm beam generation by use of a laser-diode-side-pumped Nd:YAG rod laser[J], Appl. Phys. Lett., 1997, 70:2650~2656
    9. B. J. Comasky, G. Albrecht, R. Beach, et al. A One Kilowatt Average Power Diode Pumped Nd:YAG Folded Zig-Zag Slab Laser," Diode Pumping of Average Power Solid State Lasers[J], Proceedings SPIE 1865, 1993, 9
    10. E. C. Honea, R. J. Beach, S. C. Mitchell et al., High-power dual-rod Yb:YAG laser[J], Opt. Lett., 2000, 25:805~809
    11. Project yields a pair of 3.3-kW solid-state lasers[J], Laser Focus World, 1999: 38~40
    12.姚建铨,非线性光学频率变换及激光调谐技术[M],北京:科学出版社,1995,61~74
    13. Tetsuo Kojima, Susμmu Konno, Shuichi Fujikawa et al., 20-W ultraviolet-beamgeneration by fourth-harmonic generation of an all- solid-state laser[J], Opt. Lett., 2000, 25:58~64
    14.从征,二极管泵固体激光器产生315W脉冲绿光[J],激光与光电子进展,1999,1:40~42
    15. John V. Conceptual, design of a 100 kW-elass solid state laser[A]. Fourteenth Annual on Solid-State and Diode Laser Technology Review, 2001[C]:100-103.
    16. Gola D, Knoke S, Schone W, et al. 300 W CW diode-laser side-pumped Nd:YAG rod laser[J]. Opt Lett, 1995, 20(10): 1148-1150.
    17. Xu D G, Yao J Q. High power high efficiency CW operation of a LD-pumped Nd:YAG rod laser[A]. Proc of SHE[C]. 2002,4914:160-162.
    18. John V. Ultra-high-average power solid-state laser[A]. Proc of SPIE[C]. 2002, 4760.
    19. Hirano Y. Yamamoto S. Yamamoto S. , 208-W TEMoo operation of a diode-pumped Nd:YAG rod laser[J]. Optics Letters, 1999, 24 (10): 679-681.
    20. Stewen C , Contag K, Larinov M, et al. 1 kW CW thin disk laser[J]. IEEE J Selected Topics in Quantum Electr, 2000, 16(4): 650-657.
    21. Fan T Y., Heat generation in Nd:YAG and Yb: YAG[J]. IEEE J Quantum Electronics, 1993, (29):1457-1459.
    22. C.Bibeau, R.J.Beach, et al, High-average-power performance and frequency conversion of a diode-end-pμmped Yb:YAG laser[J], IEEE J. Quantum Electron. 1998, 34(10):2010~2019
    23. E.C.Honea, R.J.Beach, S.C.Mitchell et al, 183-W, M2=2.4 Yb:YAG Q-switched laser[J], Opt. Lett. 1999 24(3):154~156,
    24. Shi Peng, et al. A 110W Nd:YVO4 slab laser with high beam quality output [J]. Opt.Commun, 2004, 229(1-6):349~354.
    25. Qiang Jin, Xiaoyu Wei, Jiancun Gao et al., Diode end pumped hybrid cavity Nd:YVO4 slab laser[J], Chinese Journal Of Quantum Electronics, 2005, 22(4):528~529
    26. Beach R. J., Honea E. C., Sutton S. B., et al., High-Average-Power Diode-Pumped Yb:YAG Laser[J].SPIE 2000,l3889:246~260
    27. Gola D, Knoke S, Schone W, et al. 300 W CW diode-laser side-pumped Nd:YAG rod laser[J]. Opt Lett, 1995, 20(10): 1148-1150.
    28. Xu D G, Yao J Q. High power high efficiency CW operation of a LD-pumped Nd:YAG rod laser[A]. Proc of SHE[C]. 2002,4914:160-162.
    29. John V. Ultra-high-average power solid-state laser[A]. Proc of SPIE[C]. 2002, 4760.
    30.徐介平,声光器件的原理设计和应用[M]北京,科学出版社,1982,67-340
    31. Walter Koechner. Solid-state Laser Engineering[M], Berlin, Heidelberg: Springer-Verlag, 1996: 459-462, 487-489.
    32.过振,王石语,文建国登,高重复频率二极管泵浦激光器窄脉宽调Q技术[J],红外与激光工程,2001,30(4):287-289.
    33. P.-F. Chauvy, P. Hoffmann, D. Landolt, Application of laser lithography on oxide film to titaniμm micromachining[J], Applied Surface Science, 2003, 208-209:165-170
    34. G. Kamlage,T. Bauer, A. Ostendorf et al, Deep drilling of metals by femtosecond laser pulses[J], Applied Physics A, 2003, 77:307-310
    35.戴亚春,周建忠,王匀等,MEMS的微细加工技术[J],机床与液压,2006,5:15-19
    36. Yuanyuan Dong, Christian Zorman, Pal Molian, Femtosecond pulsed laser microma- chining of single crystalline 3C–SiC structures based on a laser-induced defectactivat- ion process[J], Journal of Micromechanics and Microengineering. 2003, 13:680-685
    37.李呈德,万盈,陈涛等,准分子激光投影直刻微加工制作微机械[J],中国科学(E辑),2001,31(2):13~18
    38. Frazier A. B., Fiedrich C., Warrington R. O., The miniaturization technologies: past, present, and future[J]. IEEE Trans on Industrial Electronics,1995 , 42(5):423-430
    39.王玉英高功率单模光纤激光器在微焊接和微机械加工中的应用[J]光机电信息2006.4:28-32
    40. Y. Li, W. Watanabe, K. Yamada,et al., Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses[J], Appl. Phys. Lett., 2002, 80(9): 1508-1510
    41. T. Kondo, S. Matsuo, S. Juodkazis, et al. Femtosecond laser interference techniquewith diffractive beam splitter for fabrication of three-dimensional photonic crystals[J], Appl. Phys. Lett., 2001, 79(6): 725-727.
    42. S. Qu, C. Zhao, Q. Zhao,et al. One-off writing of multimicrogratings on glass by two interfered femtosecond laser pulses[J], Opt. Lett., 2004, 29(17): 2058-2060.
    43. K. Kawamura, N. Sarukura, M. Hirano, Periodic nanostructure array in crossed holographic gratings on silica glass by two interfered infrared-femtosecond laser pulses [J], Appl. Phys. Lett., 2001, 79(9): 1228-1230.
    44. Y. Nakata, T. Okada, M. Maeda, Lines of periodic hole structures produced by laser ablation using interfering femtosecond lasers split by a transmission grating[J], Appl. Phys. A, 2003, 77: 399-401.
    45. K. Kawamura, T. Ogawa, N. Sarukura, et al. Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses[J], Appl. Phys. B, 2000, 71: 119-121.
    46. J. Si, J. Qiu, J. Zhai, et al. Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser[J], Appl. Phys. Lett., 2002, 80(3): 359-361.
    47. B. Tan, N. R. Sivakμmar, K. Venkatakrishnan, Direct grating writing using femtosecond laser interference fringes formed at the focal point[J], J. Opt. A, 2005, 7: 169-174.
    48.赵全忠,邱建荣,姜雄伟等,飞秒激光诱导金属功能微结构的机理与应用[J],光与光电子学进展,2004,41(6):46~50
    49.胡晓,赵全忠,姜雄伟等,飞秒激光烧蚀玻璃基质金属薄膜直写衍射光栅[J],中国激光,2006,33(1):17-20
    50. Y. Nakata, T. Okada, M. Maeda, Transfer of laser dye by laser-induced forward transfer[J], Jpn. J. Appl. Phys., Part 2, 2002, 41: L839-L841.
    51. Q.-Z. Zhao, J.-R. Qiu, C.-J. Zhao,et al. Optical transfer of periodic microstructures by interfering femtosecond laser beams[J], Opt. Express, 2005, 13(8): 3104-3109.
    52. I. Zergioti, S. Mailis, N. A. Vainos,et al. Microdeposition of metal and oxide structuresduring ultrashort laser pulses[J], Appl. Phys. A, 1998, 66: 579-582.
    53. D. Yong, R. C. Y. Auyeung, A. Piqué, et al. Time-resolved optical microscopy of a laser-based forward transfer process[J], Appl. Phys. Lett., 2001, 78(21): 3169-3171.
    54. K. M. Davis, K. Miura, N. Sugimoto, et al. Writing waveguides in glass with a femtosecond laser[J], Opt. Lett., 1996, 21(21): 1729-1731.
    55. D. Homoelle, S. Wielandy, A. L. Gaeta, et al. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses[J], Opt. Lett., 1999, 24(18), 1311-1313.
    56. K. Yamada, W. Watanabe, T. Toma, et al. In situ observation of photoinducd refractive-index changes in filaments formed in glasses by femtosecond laser pulses[J], Opt. Lett., 2001, 26(1): 19-21.
    57. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, Photonwritten optical waveguides in various glasses with ultrashort pulse laser[J], Appl. Phys. Lett., 1997, 71(23): 3329-3331.
    58. M. Streltsov, N. F. Borrelli, Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses[J], Opt. Lett., 2001, 26(1): 42-44.
    59. M. Will, S. Nolte, B. N. Chichkov, et al. Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses[J], Appl. Opt., 2002, 41(21): 4360-4364.
    60. K. Kawamura, M. Hirano, T. Kurobori, et al. Fetosecond laser encoded distributed-feedback color center laser in lithiμm fluoride single crystals[J], Appl. Phys. Lett., 2004, 84(3): 311-313
    61. L. Gui, B. Xu, T. C. Chong, Microstructure in lithiμm niobate by use of focused femtosecond laser pulses[J], 2004, IEEE Photon. Technol. Lett., 16(5): 1337-1339.
    62. C. Mitterer, F. Holler, F. Ustel et al. Application of hard coating in alμminiμm die casting oldering, erosion and thermal fatigue behavior[J], Surface and Coatings Technology, 2000, 125:233-239
    63. Martin Sundqvist, Erosion, Corrosion and soldering of die casting dies as related to surface coating[J], Symposiμm of surfaces of Forming Tools, 1997,28-29: 117-127
    64.王智勇,苏国强,张辉,丁鹏,虎跃,李娜,左铁钏.大功率半导体激光相变硬化U74钢轨的实验研究[J],铁道科学与工程学报.2007(1)Vol.4
    65.杨永强.大功率半导体激光熔覆高速钢研究[J].红外与激光工程.2003,32(3): 251-254.
    66.薛松柏,姚立华,韩宗杰等.半导体激光工艺参数对Sn-Ag-Cu钎料润湿性影响分析[J].焊接学报.2005, 26(12):39-42
    67. Ji-Yen Cheng, Meng-Hua Yen, Cheng-Wey Wei et al. Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip[J], Journal of Micromechanics and Microengineering, 2005, 15: 1147–1156
    68. M. Joseph, H. Tabata, T. Kawai, Ferroelectric behavior of Li-doped ZnO thin films on Si (100) by pulsed laser deposition[J], Appl. Phys. Lett., 1999, 74(17): 2534-2536.
    69. K. G. Cho, D. Kμmar, D.G. Lee, S. L. Jones, P. H. Holloway, R. K. Singh, Improved lμminescence properties of pulsed laser deposited Eu: Y2O3 thin films on diamond coated silicon substrates[J], Appl. Phys. Lett., 1997, 71(23): 3335-3337.
    70. S. R. Shinde, S. B. Ogale, R. L. Greene, et al. Superconducting MgB2 thin films by pulsed laser deposition[J], Appl. Phys. Lett., 2001, 79(2): 227-229
    71. Mayer S.W., Kwek M.A., Gross R.W.F., et al., Appl. Phys. Letts., 1970, 17, 516.
    72. .胡宗超.激光分离同位素的发展及现状[J].自然杂志, 1990,(03) 140~144,160
    73.路轶群,原子法激光分离铀同位素技术发展概况[J],光电子技术与信息,1991,4:6~11
    74.陈林,陶永祥,尹宪华等,高功率铜蒸汽激光器的研究[J],科学通报,1998,01:
    75. Haynam C., Comaskey B., Conway J., et al. Status of gadoliniμm enrichment technology at LLNL[J]. SPIE , 1993 , 1859 : 24
    76.从征,二极管泵浦固体机关其的发展及其在激光核聚变和工业上的应用[J],激光与光电子学进展,1999,3:1~7
    77.郑权,赵岭,钱龙生,大功率二极管泵浦固体激光器的应用与发展[J],光学精密工程,2002,9(1):6~9
    78.孙海轶,飞秒激光诱导多层介质膜损伤及其超快动力学[D],博士学位论文2006,35~38
    79. Z. L. Wu, M. Reichling, Z. X. Fan, et al. An understanding of the abnormalwavelength effect of overcoats[J], Proc. SPIE, 1990, 1441: 200-213.
    80. D. Du, X. Liu, G. Korn, et al., Laser-Induced Breakdown by Impact Ionization in SiO2 with Pulse Widths from 7 ns to150 fs[J], Appl. Phys. Lett., 1994, 64(23): 3071-3073.
    81. B. C. Stuart, M. D. Feit, A. M. Rubenchik et al., Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses[J], Phys. Rev. Lett., 1995, 74(12): 2248-2251.
    82. B. C. Stuart, M. D. Feit, S. Herman, et al., Optical ablation by high-power short-pulse lasers[J], J. Opt. Soc. Am. B, 1996, 13(2): 459-468
    83. C. Chaléard et al., Influence of laser pulse duration on the ablation efficiency of metals[J]. SPIE Proceedings "Laser Surface Processing", 1998, 3404:441-448.
    84. A. Semerok, et al.,Experimental Investigations of Laser Ablation Efficiency of Pure Metals with Femto, Pico and Nanosecond Pulses[J]. Applied Surface Science, 1999, 138-139: 311-314
    85. B. Sallé, et al. Laser Ablation Efficiency of Metal Samples with UV Laser Nanosecond Pulses[J], Applied Surface Science, 1999, 138-139:302-305.
    86. B. Salléet al. Femtosecond and Picosecond Laser Microablation: Ablation Efficiency and Laser Microplasma Exansion[J], Appl. Phys.A., 1999, 69:S381-S383.
    87. A.Semerok et al., Femtosecond, picosecond, and nanosecond laser microablation: laser plasma and crater investigation[J], SPIE Proceedings, 2001, 4424:574-579
    88.赵建君,宋春荣,刘进,重复脉冲激光辐照光学材料的热力效应[J],2006,35(12):1856~1860.
    89.范正修,吴周令,汤雪飞,重复率激光对光学薄膜的破坏[J],中国激光,1994,A21(9):734~738.
    90.王涛,黄建兵,赵元安等,重复率激光作用下光学薄膜损伤的累积效应[J],强激光与粒子束,2005,17(S0):171~174.
    91. A. A. Manenkov, V. S. Nechitailo, Physics of multishot laser damage to optical materials[J], Proc. SPIE, 1991, 1441: 392-405.
    92. C. R. Wolfe, M. R. Kozlowski, J. H. Campbell, et al., Laser conditioning of opticalthin film, Laser induced damage in optical materials[J], NIST (USA), 1989, 801: 360-375.
    93. F. Rainer, T. F. Deaton, Laser damage thresholds at short wavelengths[J], Appl. Opt., 1982, 21(10): 1722-1724.
    94. D. M. Simanovskii, H. A. Schwetman, H. Lee, et al., Midinfrared optical breakdown in Transparent dielectrics[J], Phys. Rev. Lett., 2003, 91(10): 107601-1-107601-4.
    95. A. P. Schwarzenbach, H. P. Weber, J. E. Balmer, Laser damage test on Balzers thin film coatings[J], Appl. Opt., 1984, 23(21): 3764-3766.
    96.王永玉,许龙江,戚诒让,用光偏转方法对金属激光烧蚀阈值的研究[J],青岛海洋大学学报, 1998, 28(1): 89-92.
    97. M. Li, S. Menon, J. P. Nibarger, G. N. Gibson, Ultrafast electron dynamics in femtosecond optical optical breakdown of dielectrics[J], Phys. Rev. Lett., 1999, 82(11): 2394-2397.
    98.许谊,徐毓娴,惠梅等,微分相衬干涉显微镜定量测量表面形貌[J],光学精密工程, 2001, 9(3): 226-229.
    99. A. A. Said, T. Xia, A. Dogariu,et al., Measurement of the optical damage threshold in fused quartz[J], Appl. Opt., 1995, 34(18): 3374-3376.
    100.D. Diso, M. R. Perrone, A. Piegari, et al., Single shot laser damage in ultraviolet mirrors with a stepwise reflectivity profile[J], J. Vac. Sci. Technol. A, 2000, 18(2): 477-484.
    101.Petzo ldt S, Elg A , Reich ing M. Surface laser damage th resho lds determ ined by pho toacoustic deflection[J]. App.Phys Lett, 1988, 53: 2005
    102.Sigrist M W. L aser generation of acoustic waves in liquids and gases[J]. J App l Phys, 1986, 60 (7) : R83
    103.E. Stenzel, S. Gogoll, J. Sils, et al., Laser damage of alkaline-earth fluorides at 248 nm and the influence of polishing grades[J], App. Surf. Sci., 1997, 109-110: 162-167.
    104.J.-Y. Natoli, L. Gallais, H. Akhouayri, et al., Laser-induced damage of materials in bulk, thin-film, and liquid forms[J], Appl. Opt., 2002, 41(16): 3156-3166.
    105.X. C. Wang, G. C. Lim, H. Y. Zheng, et al. Femtosecond pulse laser ablation of sapphire in ambient air[J], App. Surf. Sci., 2004, 228(1-4): 221-226.
    106.孙晓慧,周常河,飞秒激光加工最新进展[J],激光与光电子学进展,2004,41(9):37-45
    107.P. Sprangle, J. R. Penano, B. Hafizi, Propagation of intense short laser pulses in the atmosphere [J]. Phys. Rev. E. 2002, 66:060418-060438.
    108.Yu. K. Danileiko, A. A. Manenkov, et al. Surface damage of ruby crystals by laser. Radiation[J]. Sov. Phys. JETP 1970, 31:18
    109.T. W. Walker, A. H. Guenther, P. E. Nelsen, Pulsed laser-induced damage to thin-film optical coatings-part I:experimental[J]. IEEE J. Quantum Electron 1981, 17:2041~53.
    110.R. W. Hopper, D. R. Uhlman., Mechanism of inclusion damage in laser glass[J]. J. Appl. Phys. 1970,41:4023~37
    111.A. A. Manenkov, A. M. P rokhorov. Laser-induced damage in. solids[J], Sov. Phys. Usp. 1986,29:104~22
    112.E. Hacker, H. Lauth, P. Weibrodt, Review of structural. influences on the laser damage thresholds of oxide coatings[J], Proc. SPIE, 1996, 2714: 316-330.
    113.Yu. K. Danileiko, Yu. P. Minaev, A. V. Sidorin. Sov. J. Quantum E lectron, 1984, 14:511.
    114.I. V. Aleshin, S. I. Ainsimov, A. M. Bonch-Bruevich. Sov. P. JETP 197031:18.
    115.E. Wolf. Progress in Optics[M] 1974, l. XII: 10
    116.S. A. Akhmanov, V. E. Guse. Sov. Phys. Usp. 1992, 35:153.
    117.D. T. Kyrazis, T. L. Weil, SPIE Laser-induced Damage in Optical Materials, 1990, 1441:469.
    118.J. R. Smith, J. R. Murray, et al. Proceedings of the Symposium on Optical Materials for High Power Lasers, (Boulder Colorado, October 1988) . 44
    119.J. R. Smith, et al. SPIE Symposiμm on Lasers and Optics[A] , Los Angeles, California, 1989, 1047
    120.N. M. Kroll. Excitation of hypersonic vibrations by means of photoelastic coupling of high intensity light waves[J], J. Appl. Phys. 1965, 36:34~43.
    121.Kroll N.M, Kelly P L. Temporal and stpatial gain in stimulated light scattering[J]. Phys Rev A, 1971, 4(2):763-776.
    122.於海武,孟绍贤.光学材料破坏的超声模型[J],光学学报1996,16 (10) 1446~1450.
    123.B. A. Auld. Acoustic Fields and Waves in Solids[M]. John Wiley, 1973, 3.
    124.H. Scholze. Glasss Nature, Struktur and Eigenschaften[M], Spring-Verlag,1977,Chp.3.
    125.Eli Yablonovitch, N. Bloembergen. Avalanche Ionization and the Limiting Diameter of Filaments Induced by Light Pulses in Transparent Media[J], Phys. Rev. Lett. 1972, 29:907~10
    126.B. G. Gorshkov, A. S. Epifanov, A. Manenkov. Sov. Phys. JETP , 1979,49:309.
    127.P. Braunlich, A. Schmid, P. Kelley. Contributions of multi- photon absorption to laser-induced intrinsic damage in NaC1[J], Appl. Phys. Lett 1975, 26:150.
    128.A. V. Vinogradov, F. S. Faizullov. Sov. J. Quantμm Electron 1977, 7:650.
    129.L. V. Keldysh, Ionization in the field of a strong electromagnetic wave [J], Sov. Phys. JETP, 1965, 20(5): 1307-1314.
    130.B. C. Stuart, M. D. Feit, S. Herman, et al., Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J], Phys. Rev. B, 1996, 53(4): 1749-1761.
    131.B. G. Gorshkov, Yu. K. Danilenko, A. S. Epifanov. Sov. Phys. JETP, 1977, 45:612.
    132.G. V. Gomelauri, A. A. Manenkov. Investigation of damage induced in crystals by radiation from a CaF2:Er3+ laser (λ=2.76μ), Sov. J. Quantμm Electron. 1979, 9:23~25
    133.B. C. Stuart, M. D. Feit, A. M. Rubench ik. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses[J], Phys. Rev. Lett. 1995, 74:2248
    1. Shen Z H ,Zhang S Y,Lu J ,et al. Mathematical modeling of laser induced heating and melting in solids[J]. Optic & Laser Technology, 2001, 33:533~537
    2. Felter T E , Hrubesh L , Kubota A , et al. Laser damage probability studies of fused silica modified by MeV ion implantation[J]. Nuclear Instrμments and Methods in Physics Research B, 2003, 27:72~79
    3. Ngoi B K A.,Venkatakrishnan K., Lim E N L.,et al.. Effect of Energy above laser induced damage threshold in the micromachining of silicon by femtosecond pulse laser[J]. Optic and Lasers in Engineering, 2001 ,35 :361~369
    4.赵建君,宋春荣,牛燕雄,强激光辐照光学材料的热力效应研究[J],激光杂志,2005,26(1):31~34
    5.牛燕雄,张鹏,姚建铨等,强激光对星载光电探测系统的干扰与破坏研究[J],光子学报,2004,33(7):793~796
    6.高卫东,张伟丽,范树海等,HfO2薄膜的结构对抗激光损伤阈值的影响[J],光子学报,2005,34(2):176~179
    7.刘青,刘卜,程光华等,激光导致的透明固体损伤模型[J],光子学报,2003,32(5):525~528
    8.郭少锋,陆启生,邓少永等.ns脉冲激光对K9玻璃的破坏实验[J],强激光与粒子束,2004,16(7):817~820
    9.赵元安,王涛,张东平等.脉冲激光辐照光学薄膜的缺陷损伤模型[J],光子学报,2005,34(9):1372~1375
    10.郭少锋,陆启生,舒柏宏,DF激光作用下氟玻璃破坏阈值的测量及机理[J].红外与激光工程,2002,3(3):272~274
    11.沈中华,陈建平,陆建等,结晶硅材料的单脉冲和多脉冲激光损伤研究[J].南京大学学报(自然科学),2001,37(2):79~83
    12.甘荣兵,林理彬,卢勇等,UBK7玻璃后表面缺陷诱导体内激光损伤[J].强激光与粒子束,2001,13(5):603~606
    13.高卫东,田光磊,范正修等,单晶硅材料的1064nmNd∶YAG脉冲激光损伤特征研究[J],材料科学与工程学报,2005,23(3):317~320
    14.赵建君,宋春荣,刘进,重复脉冲激光辐照光学材料的热力效应[J],光子学报,2006,35(12):1856~1860
    15. M. Sparks, D. L. Mills, R. Warren, et al. Theory of electron-avalanche breakdown in solids[J], Phys. Rev. B, 1981, 24(6): 3519~3536
    16. W. L. Smith, J. H. Bechtel, N. Bloembergen, Picosecond laser-induced breakdown at 5321 and 3547 :observation of frequency-dependent behavior[J], Phys. Rev. B, 1977,
    17. D. Du, X. Liu, G. Korn, et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J], Appl. Phys. Lett., 1994, 64(23): 3071~3073
    18. S. Guizard, A. Semerok, J. Gaudin, et al. Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles[J], Appl. Surf. Sci., 2002, 186(1-4): 364~368.
    19. D. Ashkenasi, H. Varel, A. Rosenfeld, et al. Pulse-width influence on the laser-induced structuring of CaF2 (111) [J], Appl. Phys. A, 1996, 63(2): 103~107.
    20. B. C. Stuart, M. D. Feit, S. Herman, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J], Phys. Rev. B, 1996, 53(4): 1749~1761.
    21. J. Jasapara, A. V. V. Nampoothiri, W. Rudolph, et al. Femtosecond laser pulse induced breakdown in dielectric thin films[J], Phys. Rev. B, 2001, 63(4): 045117-1~045117-5.
    22. B. Rethfeld, Unified Model for the free-electron avalanche in laser-irradiated dielectrics[J], Phys. Rev. Lett., 2004, 92(18): 187401-1~187401-4.
    23. Y. Dong, P. Molian, Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser[J], Appl. Phys. Lett., 2004, 84(1): 10~12.
    24. N. M. Bulgakova, R. Stoian, A. Rosenfeld, et al. Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials[J], Phys. Rev. B, 2004, 69(5): 054102-1~054102-12.
    25.强希文,刘峰,张建泉,脉冲强激光辐照半导体材料损伤效应的解析研究[J],光电子技术, 2000,20(1):52~58
    26.陆解等激光与材料的相互作用[M],南京:机械工业出版社1996:18 ~19
    27. Hassan A. F. et al., Mathematical modeling of laser induced heating and melting in solids[J], Opt . Laser Technol. 1993 25:155~159
    28.张端明,侯思普,关丽等,脉冲激光制备薄膜材料的烧蚀机理[J],物理学报,2004,53(7):2237~2243
    29. Chmel A E. Fatigue laser2induced damage in t ransparent materials[J] . Mater Sci Eng B , 1997 ,49 :175~190.
    30.范正修,吴周令,汤雪飞,重复率激光对光学薄膜的破坏[J],中国激光,1994,21(9):734~738
    31. Manenkov A. A., Nechitailo V. S.,Physics of multishot laser damage to optical materials[A] . Proc of SPIE[C]. 1991, 1441:392-404
    32. Manenkov A. A., Matyushin G. A., Nechitailo V. S., et al., On the nature of accμmulation effect in t he laser-induced damage to optical materials[J]. NBSS pec Pub, 1982, 669:436~447
    33.王涛,赵元安,黄建兵等,重复率激光作用下光学薄膜损伤的累积效应[J] ,强激光与粒子束17( S0):171~174
    34.郑启光等,激光与物质相互作用[M]武汉:华中科技大学出版社,1996:55
    35.倪晓昌,王清月,飞秒、皮秒激光烧蚀金属表面的有限差分热分析[M],中国激光,2004,31(3):277~28
    36.沈中华,陆建,倪晓武.强激光作用下半导体材料的加热与熔融的解析计算[J].中国激光, 1998, 25(7): 632~636
    37.张端明,李智华,黄明涛等,脉冲激光烧蚀块状靶材的双动态界面研究[J],2001,50(5):914-920
    38. B. S. Yilbas, S. Z. Shuja, Heat transfer analysis of laser heated surfaces—conduction limited case [J], Appl.surf. sci. 1997, 108 :167-175
    1. T. W. Walker, A. H. Guenther, P. Nielsen, Pulsed laser-induced damage to thin-film optical coatings-partⅡ: theory[J], IEEE J. Quantμm Electron. 1981, 17(10): 2053-2065.
    2. C. J. Stolz, R. J. Tech, M. R. Kozlowski, A. Fornier, A comparison of nodular defect geometries from different deposition techniques[J], Proc. SPIE, 1995, 2714: 374-382.
    3. Guangyu Liua, Dario J Toncichb, Erol C Harvey. Evaluation of excimer laser ablation of thin Cr filmon glass substrate by analysing acoustic emission[J]. Optics and Lasers in Engineering. 2004.42:639–651
    4. Yung-Chun Lee, Chun-Ming Chen, Chun-Ying Wu. A new excimer laser micromachining method for axially symmetric 3D microstructures with continuous surface profiles[J]. Sensors and Actuators A. 2005 117:349–355
    5. a. bensaoula, c. boney r. pillai1, g.a. shafeev et al. Arrays of 3D micro-colμmns generatedby laser ablation of Ta and steel:modelling of a black body emitter[J]. Appl. Phys. A. 2004,79:, 973–975
    6.管自生,张强,激光刻蚀硅表面的形貌及其对浸润性的影响[J],化学学报2005,63(10):880~884
    7. Mroz W.,Prokopiuk A., Mularczyk-oliwa M., et al. Nickel and iron-based intermetallics deposited using KeF laser[J]. Applied Surface Science, 2002,197(198): 371~375
    8. Alex A.Puretzky, David B Grohegan, Henrik Schittenhilm, et al. .Time-resolved diagnostics of single wall carbon nanotube synthesis by laser baporization [J]. Applied Surface Science ,2002, 197(198):552~562
    9. Song R G, yamaguchi M. Nishimura O. et al. Effect of laser ablated copper nanoparticles on polymerization of 1,1,3,3-tetrapheny,1,1,3-disilacyclobutane[-J]. Applied Physics A Materials Science & Processiing, 2004,78:867~875
    10.冯杰,李三伟,丁永坤等,碳氢靶强激光烧蚀特性[J],强激光与粒子束,1997,4:547~550
    11.李力钧,现代激光加工及其装备[M].北京:北京理工大学出版社,1993,2
    12.陈林森;解剑锋;沈雁等.衍射光变图像的高速激光直写方法和系统.专利号:200510095775
    13. A. P. Schwarzenbach, H. P. Weber, J. E. Balmer, Laser damage test on Balzers thin film coatings, Appl. Opt., 1984, 23(21): 3764-3766.
    14. Di Feng. Novel integrated light-guide plates for liquid crystal display backlight [J]. Journal of optics, 2005, 7(3):111~117.
    15.邹跃军,任丁.背光源结构分析及几种提高亮度的途径,液晶与显示,2002,17(6):465~470
    16. Di Feng. High quality light guide plates that can control the illμmination angle based on microprism structures [J]. Applied Physics Letters., 2004, 85(24):6016~18
    17.邹邗,液晶显示器的背光照明系统[J],现代显示,1995 , 2 :10~16.
    18.叶燕,亚微米光栅的衍射特性及应用研究[D],博士学位论文,2007.5
    19. H. Yang, M. Y. Wu, W. T. Yi. Micro-tapered post array for new light-guide plate molding technology in liquid crystal displays. International Display Manufacturing Conference and Exhibition, IDMC'05,2005,561~564
    20. H. Y, Choi, M. G. Li, J. H. Min. Hologram based light-guide plate for LCD-backlights [J]. SID Conference Record of the International Display Research Conference,2001,521~524
    21. L. F. Li, Z. Chen, Q. Ye. LCD backlight light-guide plate design [J]. The International Society for Optical Engineering,2006,V. 6149: 614939
    22. C. J. Kuo, T. Su. Optimisation of precision injection moulding processing parameters and implementation of quality prediction system for LCD light guide plate [J]. Polymers and Polymer Composites,2007,1(15):17~28
    23. A. Pawlak, K. Zareba. Coupling of a fluorescent light source with the light guiding plate[J]. Elektronika,2004,3(45):22~23
    24. K.W. Chien, H.P. Shieh. Design and fabrication of an integrated polarized light guidefor liquid-crystal-display illumination [J]. Appl.Opt.,9(43),2004, 1830~1834.
    25. S. R. Park,O. J. Kwon, D. Shin. Grating micro-dot patterned light guide plates for LED backlights [J]. Optics express,2007,6(15):2889~2899
    26.骆健忠,陈哲,张永林等,侧光平板式导光板散射网点设计及仿真分析[J],液晶与显示,2006,21(3):206~213
    27.蒋金波,杜雪,李荣彬,等,用于手机背光模组的轮廓渐变V槽形自由曲面结构的新颖设计[J] .液晶与显示,2005,20(3):178~184
    28.李海峰,杨柏梁,马凤雷.高品质液晶显示器用轻薄背光源技术要点[J] .液晶与显示,2003 ,8 (1) :58~62
    1. Tan, N. R. Sivakμmar, K. Venkatakrishnan, Direct grating writing using femtosecond laser interference fringes formed at the focal point, J. Opt. A, 2005, 7: 169-174.
    2. Quan-zhao Zhao, Jian-rong Qiu, Xiong-Wei Jiang et al: Fabrication of internal diffraction gratings in calciμm fluoride crystals by a focused femtosecond laser [J]. Optics Express. 2004, 12(5): 742~746
    3. Yan Li, Wataru Watanabe, Kazuhiro Yamada et al: Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses [J]. Applied Physics Letters. 2002. 80(9) : 1508~1510
    4. Nobuhito Takeshima, Yoshihiro Narita, S. Tanaka et al: Fabrication of high-efficiency diffraction gratings in glass [J]. Optics Letters, 2005, 30(4): 352~354
    5. S. Qu, C. Zhao, Q. Zhao, et al. One-off writing of multimicrogratings on glass by two interfered femtosecond laser pulses, Opt. Lett., 2004, 29(17): 2058-2060.
    6. K. Kawamura, N. Sarukura, M. Hirano, Periodic nanostructure array in crossed holographic gratings on silica glass by two interfered infrared-femtosecond laser pulses, Appl. Phys. Lett., 2001, 79(9): 1228-1230
    7. Cs. Vass. K. Osvay, M. Csete, et al., Fabrication of 550 nm grating in fused silica by laser induced backside wet etching technique [J], Applied Surface Science, 2007,253:8059~8063
    8. Ken-ichi Kawamura, Mobuhiko Sarukura, Masahiro Hirano, Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on Silicon by a single femtosecond laser pulse [J], Applied Physics Letters, 78(8):1038~1040
    9. Y. Nakata, T. Okada, M. Maeda, Lines of periodic hole structures produced by laser ablation using interfering femtosecond lasers split by a transmission grating, Appl. Phys. A, 2003, 77: 399-401.
    10. Ken-ichi Kawamura, Nobuhiko Sarukura, Masahiro Hirano, et al., Fabrication of Non-Erasable Gratings in SiO2 Glasses by Two-Beam Holographic Method UsingInfrared Femtosecond Laser Pulses[J], Proc. of SPIE, 2001, 4347: 195~207
    11. K. Kawamura, T. Ogawa, N. Sarukura, et al. Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses, Appl. Phys. B, 2000, 71: 119-121
    12.陈洪新,贾天卿,黄敏等.飞秒激光的波长对SiC材料烧蚀的影响[J] .光学学报, 2006,26(3): 467~470
    13. J. Si, J. Qiu, J. Zhai, Y. Shen, K. Hirao, Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser, Appl. Phys. Lett., 2002, 80(3): 359-361
    14. Yasuhiko Shimotsμma, Peter G. Kazansky, Jiarong Qiu,et al., Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses[J], Physical review Leters,2003, 91(24):247405-1~3
    15. F. J. Rodríguez, C. Sánchez, B. Villacampa, et al. Surface relief gratings induced by a nanosecond pulse in a liquid-crystalline azo-polymethacrylate[J], Applied Physics, Letters, 2005, 87: 201914-1~3
    16. K. Venkatakrishnan, N. R. Sivakμmar, B. Tan. Fabrication of planar gratings by direct ablation using an ultrashort pulse in a common optical path configuration[J]. Appl. Phys. A, 2003, 76:143-146
    17. R. Le Harzic, D. Breitling, M. Weikert, et al., Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses[J], Appl, Phys. A, 2005,80:1589~1593
    18.陈刚,吴健宏,陈新荣等,镀铬基片全息光栅光刻胶掩模槽形参量光谱检测方法[J],中国激光, 2006,33(6):800~804
    19. Toshiaki Konda, Shigeki Matsuo, Saulius Juodkazis, et al., Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals [J], Appl. Phys Lett. 79(6):725~727
    20. Jan-Hendrik, Klein-Wiele, Peter SIMON, Sub-micron mized meriodic 3-D surface structures fabricated by femtosecond UV laser pulses[J], Proc. of SPIE 2003, 5063:445~448
    21. Yung-Chun Lee, Chun-Ming Chen, Chun-Ying Wu, A new excimer laser micromachining method for axially symmetric 3D microstructures with continuous surface profiles[J], Sensors and Actuators A, 2005,117:349–355
    22. Y. Nakata, T. Okada, M. Maeda, Holographic fabrication of micron structures using interfered femtosecond laser beams split by diffractive optics[J], Proceedings of SPIE 2003, 4977:168~179
    23. T. Kondo, S. Matsuo, S. Juodkazis, et al., Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses [J], Appl. Phys. Lett., 2003, 82(17):2578~2580
    24. Mashiro Hirano, Ken-ichi Kawamura, HideoHosono, Encoding of holographic grating and peridiodic nano-structure by femtosecond laser pulse[J], Applied Surface Science, 2002, 197-198:688~698
    25. J.-H. Klein-Wiele and P. Simon, Fabrication of periodic nanostructures by phase-controlled multiple-beam interference [J]. Appl. Phys. Lett., 2003, 83(23): 4707~4709
    26. A. Bensaoula, C. Boney, R. RPillai1 Arrays of 3D micro-colμmns generated by laser ablation of Ta and steel: modelling of a black body emitter[J], Appl. Phys. A, 2004, 79:973~975
    27. Hong-Bo Sun, Ying Xu, Saulius Juodkazis, Arbitrary-lattice photonic crystals created by multiphoton microfabrication[J], Optics Letters 2001, 26(6), 325~327
    28. J. Simcic, P. Pelicon, Z. Rupnik, 3D micromachining of SU-8 polymer with proton microbeam[J], Nuclear Instrμments and Methods in Physics Research B, 2005, 241:479~485
    29.杨家敏,丁耀南,曹磊峰等.透射光栅衍射效率研究[J].强激光与粒子束. 2000,12(6): 723~726

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700