基于非线性和柔性特性分析及补偿的直线电机精密运动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代的机电系统,例如先进机床、微电子和半导体制造装备、光学检测系统和芯片传输系统,通常需要高速高精度的直线运动。而直接驱动的直线电机系统消除了中间机械传动机构带来的一系列问题,例如齿隙、大摩擦力和惯性负载、结构的柔性,故而有潜力达到更高的速度和精度。但是为了实现高速高精度运动的目标,我们必须考虑直线电机系统存在的几个控制难点:明显的模型不确定、参数不确定和外干扰,各种非线性动力学,高频柔性动力学。本论文就是以直线电机的非线性和高频柔性作为两大研究重点。深入分析了定位力、摩擦力和非线性电磁驱动力三大主要的非线性动力学,对每一类非线性提出了更精确且又能用于实时补偿控制的数学模型,并通过时域辨识实验验证这些模型的有效性和准确性。将非线性自适应鲁棒控制技术和各种非线性的有效补偿相结合,提出各种非线性有效补偿的自适应鲁棒控制算法,这些控制算法在理论上保证优越的瞬态和稳态跟踪性能,并通过一系列的对比实验验证了这些非线性补偿对控制性能的进一步提升。另一方面,考虑现今控制器设计所忽略的高频柔性动力学,找出主导高频动力学的物理机制并建立可用于控制器分析和设计的高频动力学模型,通过频域辨识实验验证其模型的有效性。依据这些高频动力学信息,提出控制器参数选择的优化准则,在现有的刚性动力学控制器框架下获得了最优的控制性能。为了更进一步提升系统的闭环频宽,高频动力学也被引入到控制器的结构设计中。首先尝试了简单的零极相消技术,以消减主导柔性模态的影响。随后,提出了一种新型的基于μ-synthesis的自适应鲁棒控制策略。该算法使用自适应在线参数估计和有效的非线性前馈模型补偿,把传统μ-synthesis鲁棒控制难以实现的精确跟踪问题转化为镇定问题。而且利用μ-synthesis反馈控制设计可直接考虑高频动力学的优点设计出更高闭环频宽和更强抗干扰能力的鲁棒反馈控制。
     本论文共分为六章,现分别简述如下:
     第一章,详细介绍了直线电机精密运动控制的研究背景以及研究状况,归纳出直线电机高速高精度运动控制的几大难题。介绍各种控制方法在直线电机精密运动控制中的应用。阐述了直线电机系统存在的定位力、摩擦力和非线性电磁驱动力三大非线性动力学,以及它们的研究现状。分析了系统高频柔性动力学对控制性能的约束,以及现有的建模和辨识结果。最后概述了本论文的研究意义及研究内容。
     第二章,简述了论文研究所使用的实验平台及其硬件性能参数。发展了直线电机的非线性刚性动力学模型。在原有周期性定位力模型的基础上,使用B样条函数提出了非周期定位力的数学模型,兼顾其整体上的周期特性和局部区间的非周期特性。分析原始LuGre动态摩擦力模型的耗散性问题和数字控制时的观测器失稳问题,提出改进型的LuGre动态摩擦力模型。针对直线电机电磁驱动力的非线性特性,提出了易于补偿控制实现的三阶多项式非线性电磁力模型。所有这些模型在准确描述非线性动力学特性的同时,也兼顾到了补偿控制器的实现难度。随后,对直线电机系统进行时域系统辨识,获得刚性动力学的各主要参数,验证各种非线性模型的有效性。
     第三章,以简化的直线电机二阶刚性动力学为例,系统地阐述了自适应鲁棒控制的基本概念和各种变换形式,该控制方法从理论上保证系统在建模误差下的瞬态和稳态性能,以及只存在参数不确定时的渐进跟踪性能。将自适应鲁棒控制技术和各种非线性模型补偿有机结合起来,分别设计了非周期定位力补偿的自适应鲁棒控制算法、改进的LuGre动态摩擦力补偿的自适应鲁棒控制算法、非线性电磁力补偿的自适应鲁棒控制算法、以及各种非线性综合补偿的自适应鲁棒控制算法。通过对比实验,验证模型补偿的有效性和控制算法所能实现的优越控制性能。
     第四章,首次分析了直线电机高频动力学的存在因素和物理特性,找出因平台旋转而产生的主导高频模态,并建立其数学模型。进行频域系统辨识,了解刚性动力学的有效频率范围和高频柔性模态的存在频段,验证所提的高频动力学模型的有效性。根据已知的高频动力学,通过实验和理论分析,讨论了高频动力学、控制器参数和系统闭环频宽之间的关系,提出了控制器参数选择的优化准则,在现有的刚性动力学控制器框架下实现最优的控制性能。
     第五章,为了进一步提升系统的闭环频宽,高频动力学被引入到控制器的结构设计中。首先尝试了简单的零极相消技术,消减主导柔性模态的影响,故而提高了系统的闭环频宽上限。对于已知的非线性刚性动力学和高频柔性模态,打破原有的刚性动力学控制器设计结构,提出新型的基于μ-synthesis的自适应鲁棒控制策略。其自适应前馈环节可以拥有精确的在线参数估计和有效的非线性模型补偿,并把轨迹跟踪问题转化为镇定问题以便于μ-synthesis鲁棒反馈控制器设计;由于使用高频动力学作为名义模型的一部分,设计的μ-synthesis反馈环节可以达到更高的闭环频宽和更强的抗干扰能力。通过对比实验,验证了该方法所具有的优越控制性能。
     第六章,归纳总结了本论文的主要工作,阐述研究结论和创新点,并对直线电机精密运动控制的研究进行了展望。
Modern mechatronic systems, such as advanced machine tools, microelectronic and semicon-ductor manufacturing equipment, optical inspection systems and dispensing processes systems often require high-speed and high-accuracy linear movement. Direct-drive linear motors eliminate gear related mechanical transmission problems such as backlash, large friction and inertial loads, and structural flexibility, and thus, have the potential of achieving higher speed and higher accuracy. But to realize its high-speed/high-accuracy potential, some control issues have to be solved:sig-nificant model uncertainties, parameter uncertainties and external disturbances; various nonlinear dynamics; high-frequency flexible modes. Thus, this dissertation focuses on major nonlinearities and flexibilities of linear motor driven systems. Physical modeling of cogging force, dynamic fric-tion and nonlinear electromagnetic field effect are developed and validated by the system identifica-tions in time domain. These novel nonlinear dynamical models capture the physical characteristics more accurately and also consider their complexity for compensation control design. The high performance adaptive robust control (ARC) technique is integrated with the effective nonlinearity compensations. Theoretically, these proposed control algorithms guarantee excellent transient and steady-state performance. And comparative experimental results also show the further improved tracking performance of the effective nonlinearity compensations. The physical cause of major high-frequency dynamics is identified. The corresponding mathematical model is then built, and verified by the system identification in frequency domain. With the knowledge of high-frequency dynamics, the optimal tuning guidelines of control gains are developed to maximize the tracking performance of the previously proposed control algorithms. To further increase the achievable close-loop bandwidth, the high-frequency dynamics neglected in the existing research are then ex-plicitly taken into consideration in the design of controllers. Specifically, the simple pole/zero can-celation technique is first incorporated into the control design to attenuate the major flexible mode effect. A novel μ-synthesis based adaptive robust control strategy is then developed. The proposed control algorithm uses adaptive model compensation having accurate on-line parameter estimation to effectively deal with various nonlinearity effect and to transform the difficult trajectory tracking control problem into a robust stabilization problem. The well-developed μ-synthesis based linear robust control technique is then employed to deal with the robust control issue associated with the high-frequency dynamics explicitly to achieve higher close-loop bandwidth and better disturbance rejection in the feedback control loop.
     The dissertation consists of the following six chapters:
     In Chapter1, the research background and history of precision motion control of linear motor driven systems are detailed. Specifically, the control issues associated with the high-speed/high-accuracy movement of linear motor drive systems are first pointed out, followed by a comprehen-sive literature survey of linear motor driven systems, including existing control methods dealing with nonlinearities such as cogging force, friction and nonlinear electromagnetic field effect and high-frequency flexible modes. A brief summary of the dissertation's contributions and significance is subsequently given.
     In Chapter2, the hardware equipment and their specifications used in the experiments are introduced. Rigid-body dynamics of linear motor drive systems are presented with a focus on better modeling of major nonlinearities inherited to the linear motor drive systems. Specifically, an aperiodic cogging force model is built by using B-spline functions, which captures both periodic and aperiodic characteristics of cogging force. The modified LuGre dynamic friction model is proposed to solve the passive problem and the observer instability problem of the existing ones. A third order polynomial model is developed to precisely describe the nonlinear electromagnetic field effect as well. All the proposed models not only provide a more accurate description of the nonlinearity under study, but also can be easily used in the subsequent controller design for more effective on-line model compensation. The system identifications in time domain are then carried out, validating the effectiveness of all proposed models.
     In Chapter3, based on the rigid-body dynamics of linear motor drive systems, the concepts and various implementations of adaptive robust control (ARC) strategy are introduced. Theoretically, the presented ARC can achieve a guaranteed transient and steady-state performance in the pres-ence of both parametric uncertainties and model uncertainties, as well as zero steady-state tracking error when subjected to parametric uncertainties only. The adaptive robust control technique is subsequently integrated with more effective compensations of various nonlinearities, including the adaptive robust control with aperiodic cogging force compensation, the adaptive robust control with dynamic friction compensation using modified LuGre model, the adaptive robust control with elec-tromagnetic nonlinearity compensation, and the adaptive robust control with integrated compen-sation of all major nonlinearities of linear motor drive systems. Comparative experimental results show the effectiveness of the proposed nonlinearity compensations and the excellent performance of the proposed control algorithms.
     In Chapter4, physical causes of the high-frequency dynamics of linear motor drive systems are analyzed. The stage rotation is found to be the cause of the major flexible mode of linear motor driven systems. The corresponding mathematical model is then built to capture this ef-fect and system identifications in frequency domain are carried out to verify the effectiveness of the proposed model on the high-frequency dynamics of linear motors. With the knowledge of these high-frequency dynamics, the relationship among high-frequency dynamics, control gains and close-loop bandwidth is established, and the optimal tuning guidelines on control gains are de-veloped to maximize the tracking performance of the rigid-body dynamics based control algorithms of linear motors in implementation.
     In Chapter5, to further increase the achievable close-loop bandwidth, the high-frequency dy-namics are explicitly taken into consideration in the design of controllers. Specifically, the simple pole/zero cancelation of known high-frequency dynamics is first incorporated to attenuate the ma-jor flexible mode effect so that the upper bound on the achievable close-loop bandwidth of the rigid-body dynamics based control algorithms can be raised. With the knowledge of nonlinear rigid-body dynamics and the structure of high-frequency flexible modes, a novel μ-synthesis based adaptive robust control algorithm is then proposed. Its adaptive feedforward loop has accurate on-line parameter estimation and effective nonlinearity compensation, which makes it possible to convert the difficult tracking control problem into a robust stabilization problem. By treating ma-jor high-frequency dynamics as a part of the nominal model, the μ-synthesis feedback loop of the proposed novel ARC strategy can achieve higher close-loop bandwidth and better disturbance re-jection. Comparative experiments are conducted and the results show the better performance of the proposed control algorithms over existing ones.
     In Chapter6, the research work of this dissertation is summarized. Major innovations are highlighted, and some future research directions are discussed.
引文
[1]路甬祥.21世纪中国制造业面临的挑战与机遇.机械工程师,2005,1:9-13.
    [2]熊有伦,罗欣,何汉武,等.先进制造技术—制造业走向21世纪.世界科技研究与发展,1996,6(3):31-40.
    [3]熊有伦,王瑜辉,杨文玉,等.数字制造与数字装备.航空制造技术,2008,9:26-32.
    [4]钟掘.极端制造:当代制造科学与技术的前沿.机械工人:冷加工,2005,11:23-24.
    [5]汪劲松,段广洪,李方义,等.基于产品生命周期的绿色制造技术研究现状与展望.计算机集成制造系统,1999,5(4):1-8.
    [6]宋天虎.转折:从“重大精尖”到“微小精微”—论创造业的发展前沿.科学新闻,2004,6:58-59.
    [7]柳百成.我国制造业科技发展战略.科技中国,2006,14:24-24.
    [8]Neugebauer R, Denkena B, Wegener K. Mechatronic systems for machine tools. Annals of the CIRP,2007,56(2):657-686.
    [9]范大鹏,范世珣,鲁亚飞,et al.数控机床高性能传动部件控制技术的研究进展.中国机械工程,2011,22(11):1378-1385.
    [10]中国工程院.中国制造业可持续发展战略研究.北京:机械工业出版社,2008.
    [11]中国机械工程学会.中国机械工程技术路线图.北京:中国科学技术出版社,2011.
    [12]Altintas Y, Verl A, Brecher C, et al. Machine tool feed drives. Annals of the CIRP,2011, 60(2):779-796.
    [13]龙瑕令.直线感应电动机的理论和电磁设计方法.北京:科学出版社,2006.
    [14]I. Boldea, A. Nasar S. Linear electric acturators and generators. Cambridge:Cambridge University Press,1997.
    [15]日本沙迪克公司.配置直线电机的高速高精度电火花成形加工机.模具制造,2001,(12):52-54.
    [16]叶云岳.直线电机在现代机床业中的应用与发展.电机技术,2010,(3):1-5.
    [17]Denkena B, Brehmeier S, Mohring H. Active linear guidances for micro actuators:alterna-tive concepts and first prototypes. Microsystem Technology,2008, (14):1961-1973.
    [18]Denkena B, Hackeloeer F, Neuber C.-C.5-DOF harmonic frequency control using con-tactless magnetic guides. CIRP Journal of Manufacturing Science and Technology,2009, (2):21-28.
    [19]Kim W, Trumper D. L. High-precision magnetic levitation stage for photolithography. Pre-cision Engineering,1998,22(2):66-77.
    [20]彭祎帆,袁波,曹向群.光刻机技术现状及发展趋势.光学仪器,2010,32(4):80-85.
    [21]王先逵,陈定积,吴丹.机床进给系统用直线电动机综述.制造技术与机床,2001,(8):18-21.
    [22]朱煜,尹文生,段广洪.光刻机超精密工件台研究.电子工业专用设备,2004,33(2):25-27.
    [23]叶云岳.直线电机原理与应用.杭州:机械工业出版社,2000.
    [24]叶云岳.国内外直线电机技术的发展与应用综述.电器工业,2003,1:12-16.
    [25]王英.面向芯片封装的直线伺服系统的高速高精运动控制:[博士学位论文].上海:上海交通大学,2006.
    [26]吴建华.高加速度直线伺服系统的快速高精度定位控制:[博士学位论文].上海:上海交通大学,2007.
    [27]张代林.永磁同步直线电机伺服系统的控制策略和实验研究:[博士学位论文].武汉:华中科技大学,2007.
    [28]郭庆鼎,蓝益鹏.双直线电机驱动的龙门移动式加工中心H∞鲁棒自适应控制.中国机械工程,2003,14(22):1966-1969.
    [29]吴红星,钱海荣,刘莹,et al.永磁直线同步电机控制技术综述.微电机,2011,44(7):76-80.
    [30]李义强,周惠兴,王先逵,et al.直线电机伺服定位系统时间最优鲁棒控制.电机与控制学报,2011,15(3):13-18.
    [31]孙鹏.无铁芯永磁同步直线电机及其控制技术研究:[博士学位论文].北京:中国农业大学,2012.
    [32]高会军.基于参数依赖Lyapunov函数的不确定动态系统的分析与综合:[博士学位论文].哈尔滨:哈尔滨工业大学,2005.
    [33]Alter D. M, Tsao T. C. Control of linear motors for machine tool feed drives:design and im-plementation of H∞ optimal feedback control. ASME J. of Dynamic systems, Measurement, and Control,1996,118:649-656.
    [34]Yao B, Xu L. Adaptive robust control of linear motors for precision manufacturing. Interna-tional Journal of Mechatronics,2002,12(4):595-616.
    [35]Pritschow G. A comparison of linear and conventional electromechanical divesy. CIRP Annals-Manufacturing Technology,1998,47(2):541-548.
    [36]Komada S, Ishida M, Ohnishi K, et al. Disturbance observer-based motion control of direct drive motors. IEEE Transactions on Energy Conversion,1991,6(3):553-559.
    [37]Braembussche P. V, Swevers J, Brussel H. V, et al. Accurate tracking control of linear syn-chronous motor machine tool axes. Mechatronics,1996,6(5).507-521.
    [38]Otten G, Vries T, Amerongen J, et al. Linear motor motion control using a learning feedfor-ward controller. IEEE/ASME Transactions on Mechatronics,1997,2(3):179-187.
    [39]Braembussche P, Swevers J, Brussel H. Design and experimental validation of robust con-trollers for machine tool drives with linear motor. Mechatronics,2001,11(5):545-562.
    [40]Liu Z, Luo F, Rashid M. Robust and precision motion control system of linear motor direct drive for high speed X-Y table positioning mechanism. IEEE Transactions on Industrial Electronics,2005,52(5):1357-1363.
    [41]赵希梅,郭庆鼎.永磁直线同步电动机的变增益零相位H∞鲁棒跟踪控制.中国电机工程学报,2005,25(20):132-136.
    [42]赵希梅,郭庆鼎,陈冬兰.通过直线伺服鲁棒跟踪控制方法提高轮廓加工精度.机械工程学报,2006,42(6):166-169.
    [43]Liu T.-H, Lee Y.-C, Chang Y.-H. Adaptive controller design for a linear motor control system. IEEE Trans. Aerospace and Electronic Systems,2004,40(2):601-615.
    [44]陈渊睿,吴捷,C. Cheung N.永磁直线电机的模型参考自适应控制.华南理工大学学报,2003,31(6):31-35.
    [45]Tan K, Huang S, Dou H, et al. Adaptive robust motion control for precise trajectory tracking applications. ISA Transactions,2001,40(1):57-71.
    [46]Li Y, Wikander J. Model reference discrete-time sliding mode control of linear motor preci-sion servo systems. International Journal of Mechatronics,2004,14(7):835-851.
    [47]Huang Y, Sung C. Function-based controller for linear motor control systems. IEEE Trans-actions on Industrial Electronics,2010,57(3):1096-1105.
    [48]Lin F, Chou P, Chen C, et al. DSP-based crosscoupled synchronous control for dual linear motors via intelligent complementary sliding mode control. IEEE Transactions on Industrial Electronics,2012,59(2):1061-1073.
    [49]Lee T, Tan K, Lim S, et al. Iterative learning control of permanent magnet linear motor with relay automatic tuning. Mechatronics,2000,10(1-2):169-190.
    [50]Ding H, Wu J. Point-to-point motion control for a highacceleration positioning table via cascaded learning schemes. IEEE Transactions on Industrial Electronics,2007,54(5):2735-2744.
    [51]Cao R, Low K. A repetitive model predictive control approach for precision tracking of a linear motion system. IEEE Transactions on Industrial Electronics,2009,56(6):1955-1962.
    [52]Wai R.-J, Lin F.-J, Duan R.-Y, et al. Robust fuzzy neural network control for linear ceramic motor drive via backstepping design technique. IEEE Transactions on Fuzzy Systems,2002, 10(1):102-112.
    [53]Yao B. High performance adaptive robust control of nonlinear systems:a general framework and new schemes. Proceedings of Proc. of IEEE Conference on Decision and Control, San Diego,1997.2489-2494.
    [54]Yao B, Tomizuka M. Smooth robust adaptive sliding mode control of robot manipulators with guaranteed transient performance. Trans, of ASME, Journal of Dynamic Systems, Measurement and Control,1996,118(4):764-775. Part of the paper also appeared in the Proc. of 1994 American Control Conference, pp.1176-1180.
    [55]Yao B, Tomizuka M. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica,1997,33(5):893-900. (Part of the paper appeared in Proc. of 1995 American Control Conference, pp2500-2505, Seattle).
    [56]Yao B, Tomizuka M. Adaptive robust control of MIMO nonlinear systems in semi-strict feedback forms. Automatica,2001,37(9):1305-1321.
    [57]Yao B. Advanced motion control:from classical pid to nonlinear adaptive robust control. Proceedings of the 11th International Workshop on Advanced Motion Control, Nagaoka, Japan,2010.815-829.
    [58]Yao B, Bu F, Reedy J, et al. Adaptive robust control of single-rod hydraulic actuators:theory and experiments. IEEE/ASME Trans, on Mechatronics,2000,5(1):79-91.
    [59]Zhong J, Yao B. Adaptive robust precision motion control of a piezoelectric positioning stage. IEEE Transactions on Control System Technology,2008,16(5):1039-1046.
    [60]Zhu X, Tao G, Yao B, et al. Adaptive robust posture control of a pneumatic muscles driven parallel manipulator with redundancy. IEEE/ASME Transactions on Mechatronics,2008, 13(4):441-450.
    [61]Zhu X, Tao G, Yao B, et al. Adaptive robust posture control of a pneumatic muscle driven parallel manipulator. Automatica,2008,44(9):2248-2257.
    [62]Mohanty A, Yao B. Indirect adaptive robust control of hydraulic manipulators with accurate parameter estimates. IEEE Transaction on Control System Technology,2011,19(3):567-575.
    [63]Mohanty A, Yao B. Integrated direct/indirect adaptive robust control of hydraulic manipula-tors with valve deadband. IEEE/ASME Transactions on Mechatronics,2011,16(4):707-715.
    [64]Utkin V. Sliding modes in control optimization. Springer Verlag,1992.
    [65]Qu Z. Robust control of nonlinear uncertain systems. New York:John Wiley and Sons, Inc., 1998.
    [66]Krstic M, Kanellakopoulos I, Kokotovic P. V. Nonlinear and adaptive control design. New York:Wiley,1995.
    [67]Ioannou P, Sun J. Robust adaptive control. New Jersey:Prentice-Hall,1996.
    [68]Xu L, Yao B. Adaptive robust precision motion control of linear motors with negligible electrical dynamics:theory and experiments. IEEE/ASME Transactions on Mechatronics, 2001,6(4):444-452.
    [69]Hong Y, Yao B. A globally stable high performance adaptive robust control algorithm with input saturation for precision motion control of linear motor drive system. IEEE/ASME Transactions on Mechatronics,2007,12(2):198-207.
    [70]Hong Y, Yao B. A globally stable saturated desired compensation adaptive robust control for linear motor systems with comparative experiments. Automatica,2007,43(10):1840-1848.
    [71]Xu L, Yao B. Output feedback adaptive robust precision motion control of linear motors. Automatica,2001,37(7):1029-1039, the finalist for the Best Student Paper award of ASME Dynamic System and Control Division in IMECE00.
    [72]Yao B. Desired compensation adaptive robust control. ASME Journal of Dynamic Systems, Measurement, and Control,2009. (Accepted and in press).
    [73]Hu C, Yao B, Wang Q. Coordinated adaptive robust contouring controller design for an industrial biaxial precision gantry. IEEE/ASME Transactions on Mechatronics,2010, 15(5):728-735. Part of the paper was presented in 2009 IEEE/ASME International Confer-ence on Advanced Intelligent Mechatronics.
    [74]Yao B. Integrated direct/indirect adaptive robust control of SISO nonlinear systems trans-formable to semi-strict feedback forms. Proceedings of American Control Conference,2003. 3020-3025. The O. Hugo Schuck Best Paper (Theory) Award from the American Automatic Control Council in 2004.
    [75]Hu C, Yao B, Wang Q. Integrated direct/indirect adaptive robust contouring control of a biaxial gantry with accurate parameter estimations. Automatica, April 2010,46(4):701-707.
    [76]Hu C, Yao B, Wang Q. Global Task Coordinate Frame-Based Contouring Control of Linear-Motor-Driven Biaxial Systems with Accurate Parameter Estimations. IEEE Trans, on Indus-trial Electronics,2011,58(11):5195-5205.
    [77]崔弱,陆永平,孙平.径向正弦波永磁电机的定位力矩.微电机,1993,26(2):8-12.
    [78]黄玉平,吴红星,洪作光,等.基于动磁式永磁同步直线电机定位力的研究.微电机,2010,43(6):28-31.
    [79]Zhao S, Tan K. Adaptive feedforward compensation of force ripples in linear motors. Control Engineering Practice,2005,13:1081-1092.
    [80]Chen S.-L, Tan K, Huang S, et al. Modeling and compensation of ripples and friction in permanent-magnet linear motor using a hysteretic relay. IEEE/ASME Trans. Mechatronics, 2010,15(4):586-594.
    [81]Bascetta L, Rocco P, Magnani G. Force ripple compensation in linear motors based on closed-loop position-dependent identification. IEEE/ASME Trans. Mechatronics,2010, 15(3):349-359.
    [82]Hu C, Yao B, Wang Q. Coordinated adaptive robust contouring control of an industrial biaxial precision gantry with cogging force compensations. IEEE Transactions on Industrial Electronics, May 2010,57(5):1746-1754. Part of the paper was presented in 2009 ASME Conference on Dynamic Systems and Control.
    [83]Yao B, Hu C, Lu L, et al. Adaptive robust precision motion control of a high-speed in-dustrial gantry with cogging force compensations. IEEE Transactions on Control Systems Technology,2011,19(1149-1158):5.
    [84]Karnopp D. Computer simulation of stick-slip friction in mechanical dynamic systems. ASME Journal of Dynamic Systems, Measurement and Control,1985,107(1):100-103.
    [85]Armstrong-Helouvry B, Dupont P, Wit C. C. A survey of models, analysis tools and com-pensation methods for the control of machines with friction. Automatica,1994,30(7):1083-1138.
    [86]Armstrong-Helouvry B, Dupont P. Friction modeling for controls, and compensation tech-niques for servos with friction. Proceedings of Proc. of American Control Conference,1993. 1905-1915.
    [87]Dahl P. Solid friction damping of spacecraft oscillations. Proceedings of AIAA Guidance and Control Conference, Boston, MA,1975.75-1104.
    [88]Haessig D, Friedland B. On the modelling and simulation of friction. ASME Journal of Dynamic Systems, Measurement and Control,1991,113(3):354-362.
    [89]Wit C. C, Olsson H, Astrom K. J, et al. A new model for control of systems with friction. IEEE Transactions on Automatic Control,2000,40(3):419-425.
    [90]Dupont P, Armstrong B, Hay ward V. Elasto-plastic friction model:Contact compliance and stiction. Proceedings of American control conference, Chicago, Illinois,2000.1072-1077.
    [91]Swevers J, Al-Bender F, Ganseman C, et al. An integrated friction model structure with improved presliding behaviour for accurate friction compensation. IEEE Transactions on Automatic Control,2000,45(4):675-686.
    [92]Freidovich L, Robertsson A, Shiriaev A, et al. Friction compensation based on LuGre model. Proceedings of 45th IEEE conference on decision and control, San Diego, CA,2006.3837-3842.
    [93]Olsson H. Control systems with friction:[PhD Thesis]. Lund, Sweden:Lund Institute of Technology,1996.
    [94]Lampaert V. Modelling and control of dry sliding friction in mechanical systems:[PhD Thesis]. Heverlee, Belgium:Catholic University of Leuven,2003.
    [95]Bona B, Indri M, Smaldone N. Rapid prototyping of a modelbased control with friction compensation for a direct-drive robot. IEEE/ASME Transactions on Mechatronics,2006, 11(5):576-584.
    [96]Jamaludin Z, Brussel H, Swevers J. Friction compensation of an xy feed table using friction-model-based feedforward and an inverse-model-based disturbance observer. IEEE Transac-tions on Industrial Electronics,2009,56(10):3848-3853.
    [97]Xu L, Yao B. Adaptive robust control of mechanical systems with nonlinear dynamic friction compensation. International Journal of Control,2008,81(2):167-176.
    [98]Lee T, Tan K, Huang S. Adaptive friction compensation with a dynamical friction model. IEEE/ASME Trans. Mechatronics,2011,16(1):133-140.
    [99]Slootweg J, Hoeijmakers M, Compter J. Modeling of a linear PM machine including mag-netic saturation and end effects:Maximum force-to-current ratio. IEEE Transactions on Industry Applications,2003,39(6):1681-1688.
    [100]Kano Y, Kosaka T, Matsui N. Simple nonlinear magnetic analysis for permanent-magnet motors. IEEE Transactions on Industry Applications,2005,41(5):1205-1214.
    [101]Anorad Linear Motors. Hauppauge, NY:Anorad Corporation.
    [102]Zhang J, Hu C, Yao B, et al. System identification, modeling and precision motion control of a linear motor drive stage. Proceedings of The IEEE International Conference on Automation and Logistics, Hongkong and Macau,2010.226-231.
    [103]Ohta H, Hayashi E. Vibration of linear guideway type recirculating linear ball bearings. Journal of Sound and Vibration,2000,235(5):847-861.
    [104]Yi Y, Kim Y, Choi J, et al. Dynamic analysis of a linear motion guide having rolling elements for precision positioning devices. Journal of Mechanical Science and Technology,2008, 22(1):50-60.
    [105]郎宝华,杨建华,李榕.基于dSPACE的电机控制系统实验平台研究.数控技术,2010,(17):130-132.
    [106]Lu L, Chen Z, Yao B, et al. Desired Compensation Adaptive Robust Control of A Linear Motor Driven Precision Industrial Gantry With Improved Cogging Force Compensation. IEEE/ASME Transactions on Mechatronics,2008,13(6):617-624.
    [107]Lu L, Yao B, Wang Q, et al. Adaptive robust control of linear motors with dynamic friction compensation using modified luGre model. Automatica, December 2009,45(12):2890-2896.
    [108]Yao B, Dontha R. Integrated direct/indirect adaptive robust precision control of linear motor drive systems with accurate parameter estimations. Proceedings of the 2nd IFAC Conference on Mechatronics Systems,2002.633-638.
    [109]Yao B, Palmer A. Indirect adaptive robust control of SISO nonlinear systems in semi-strict feedback forms. Proceedings of IFAC World Congress, T-Tu-A03-2,2002.1-6.
    [110]Landau I. D, Lozano R, M'saad M. Adaptive control. New York:Springer,1998.
    [111]Astrom K. J, B.Wittenmark. Adaptive control (second edition). Addison-wesley Publishing Company,1995.
    [112]Chen Z, Yao B, Wang Q. Accurate motion control of linear motors with adaptive ro-bust compensation of nonlinear electromagnetic field effect. IEEE/ASME Transactions on Mechatronics. (Accepted in 2012 and in press. Digital Object Identifier:10.1109/T-MECH.2012.2197217).
    [113]Chen Z, Yao B, Wang Q. Adaptive robust precision motion control of linear motors with integrated compensation of nonlinearities and bearing flexible modes. IEEE Transactions on Industrial Informatics. (Accepted in 2012 and in press).
    [114]Chen Z, Yao B, Wang Q. Adaptive robust precision motion control of linear motors with high frequency flexible modes. Proceedings of 12th IEEE International Workshop on Advanced Motion Control, Sarajevo, March,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700