主船体数字化设计与分段测量数据匹配方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶设计与建造的质量决定了船舶安全性、经济性和功能性等性能,船舶设计与建造的效率是影响船舶开发周期的关键。面对船舶的日趋多样化和复杂化,船东需求不断提高,企业竞争不断加剧,传统的船舶CAD/CAM技术已经不能完全满足先进设计制造与现代造船市场发展的要求,在国际造船市场竞争中,各船舶企业必须提高船舶开发效率,缩短开发周期,保证设计与建造的质量,降低成本以取得竞争优势。随着计算机技术的发展,数字化造船已经成为船舶工业的研究热点,为船舶设计制造领域带来了新的发展模式与技术支持,成为造船企业利用数字化技术支持和促进“设计、建造一体化”现代造船模式发展的数字化平台。数字化造船的实施,已成为造船企业提高核心竞争力的重要手段。应用数字化技术提高船舶设计效率和建造质量,缩短船舶开发周期,是本文研究的出发点。
     数字化造船贯穿整个造船全生命周期,涉及范畴广泛,本文针对我国目前船舶行业的具体情况和发展需要,以实现船舶快速设计制造为目标,以减少工时、提高设备使用效率、增大经济效益为具体要求,重点研究主船体数字化设计与分段测量数据匹配方法。具体研究内容如下:
     对于主船体数字化三维设计,船体曲面设计是基础。为使船型设计不再局限于母型的束缚,能够根据设计参数快速生成光顺的船体曲面,基于对船体曲线特征的分析,给出了船型具体的设计参数,提出了利用能量优化法,以船体曲线曲面的曲率平方和最小为目标函数,求解基于NURBS表达的船体曲面光顺设计方法。该方法可以在插值点、导矢、曲率、面积及形心等相关约束下,调整船体曲线的基本形状特征,保证船体曲面的光顺性,实现船体曲面的NURBS表达。建立的船体曲面可用于分舱和结构设计。
     在船体曲面的基础上进行分舱设计,提出了一种自顶向下的船体参数化分舱方法,利用舱壁位置参数以及内壳的折点位置参数驱动生成分舱理论面,再用分舱理论面切割主船体,利用非流形造型技术及其集合运算生成舱室实体模型,再将分舱约束要求与舱室模型相链接,以约束知识指导分舱方案优化修正,进而获得满足全部约束的分舱方案并计算舱容要素。该方法降低了舱室定义阶段的复杂性,直观地体现出设计思想,能快速实现船舶分舱及舱容计算。
     以建立的船体曲面及舱室模型为结构设计背景,提出了基于知识的船体结构快速设计方法,引入船体结构知识本体的概念,将知识工程原理和参数化技术相结合,建立了船体结构设计知识库,实现船体结构三维快速优化设计。设计中结构构件位置通过位置参数驱动生成,构件尺寸通过规范推理法和实例推理法获得,对主要结构采用量子行为遗传算法进行优化。该方法将设计知识嵌入到船体结构知识本体中,既有助于设计知识的保留和再利用,又能实现对设计结果的自动检查,进而快速获得合理的船体结构。建立的三维结构模型可作为面向全生命周期的船舶数字模型,精度造船阶段也可使用。
     在船体数字模型的基础上,研究基于3D模型的数字化精度造船关键技术,主要研究了船体分段快速测量分析技术和快速模拟搭载技术。分段测量分析是精度造船的重要环节。使用全站仪可以快速、方便、准确地获得船体分段建造数据,在计算机3D可视化环境中将测量点集与3D模型的对应设计点集进行匹配对比,是数字化精度造船所采用的分段测量分析模式。本文利用主元分析(PCA)法对测量点集进行粗匹配,利用搜索最近点法确定对应点对,再利用欧拉理论对测量点集进行平移和旋转,使分段测量点集与设计点集匹配最优。该方法无需明确测量点与设计点的对应关系,能自动快速匹配二者,给出船体分段建造精度分析结果,为后续快速模拟搭载提供了依据。快速模拟搭载方面,提出了自动快速获得搭载分段最佳搭载定位位置的算法。该算法利用权值向量实现对不同方向上精度要求的误差分配,利用多目标优化法,把水平度、垂直度、平面度等相关搭载工程约束引入到优化目标函数中,然后求解非线性多目标优化模型进而得出分段最佳定位结果,给出最合理的搭载方案。该定位结果有助于搭载施工,缩短了搭载时间。
     综上所述,本文以数字化造船中的主船体数字化设计与分段测量数据匹配方法为主要研究内容,给出了基于数字化技术的船型设计、分舱设计、结构设计、测量分析和模拟搭载的实现方法,期望该研究有助于数字化快速造船理论的研究进展,有助于缩短船舶开发周期,有助于提高造船生产质量与效率,有助于实际工程应用的进展。
The quality of ship design and construction determines ship's performance, such as safety, economy, functionality, etc. The efficiency of ship design and construction influences the ship development cycle. As the diversification and complication of ships, ship owner's high demands and fierce enterprise competition, Conventional ship CAD/CAM technologies can't meet the whole requirements of advanced design and construction and modern construction market. Ship enterprises have to take the competition advantage by improving design and construction efficiency, shortening development cycle, ensuring design and construction quality and reducing construction cost. With the development of computer technology, the digital shipbuilding becomes research hot point in ship industry, and it brings new development mode and technical supports to the ship design and manufacture, and it becomes the digital platform for ship enterprises to support and promote the development of the integration of design and construction of modern shipbuilding mode by digital technologies. The implement of digital shipbuilding has become an important approach for ship enterprises to improve core competence. The starting point of the paper is to improve the efficiency of ship design and the quality of ship construction, shorten ship development cycle by digital technologies.
     Digital shipbuilding throughout the whole life cycle of shipbuilding, involves a wide range. According to the specific situation and development needs of China's shipbuilding industry, this paper aimes to achieve rapid ship design and manufacture. In order to reduce working hours, improve equipment efficiency and increase economic efficiency, main hull digital design and block measurement data registration algorithm are studied. The main study contents are as follows.
     For digital3D main hull design, ship surface design is the base. In the study of hull surface, instead of depending on the conventional prototype, attentions are focus on extracting the design parameters which represent the characteristic of the hull. The energy optimization method is proposed to get the expression of the hull fairness surface with NURBS, using design parameters as the design variables and least sum of curvature square of hull curves and surface as the objective object. The basic shape feature of hull curves can be adjusted under the constraint related to interpolation points, derivative vectors, curvatures, areas and centroid points. In this way, fairness of hull surface is ensured. The hull surface is represented with NURBS, and it can be used in subdivision and structure design.
     Based on the hull surface, the paper implements subdivision design, a new parametric subdivision of the top-down approach is proposed. The proposed method is based on space subdivision. For this, several parameters (bulkhead positions and folding point positions of the inner bottom) are established to generate the subdivision planes which are used to cut the ship hull. The non-manifold modeling containing set operations is applied to generate compartment solid model. Then link the constrains to the geometric model. Use the constrains to optimize subdivision and get the subdivision scheme which satisfy all constrains, and calculate the hold capacities. This method reduces the complexity of the compartment and intuitively reflects the design thought. The compartment and the calculation of hold capacities can be finished rapidly.
     Use the hull surface and compartment model as structure design background. Knowledge-based engineering quick design method for hull structure is put forward, which combines with parametric technology. The concept of knowledge ontology for hull structure is introduced. And establishment of knowledge base for hull structure design is discussed to achieve3D quick optimizing design. During the design, positions of structural members are driven by position parameters. Scantlings of structural members are obtained by Rule-Based Reasoning and Case-Based Reasoning. Main structures are optimized by quantum-behaved genetic algorithm. This method achieves knowledge reuse and accumulation, provides design results inspection. So that reliable ship structure is quickly obtained. The created3D structure model can be used as the life-cycle digital model. It also can be used in the phase of accuracy construction.
     Based on ship digital model, the paper studies on key technologies of digital accuracy shipbuilding, is focusing on quick measuring analysis technology for hull blocks and quick simulation erection technology. Quick measuring analysis for hull blocks is an important step in the accuracy shipbuilding. Hull block construction data can be rapidly and precisely measured by total station. Compared the measuring points with design points of3D model in3D visualization environment, it is a hull block measuring analysis mode adopted by digital accuracy shipbuilding. In the paper, rough matching adopts PCA algorithm and the pair-wise points are matched by searching minimum distance. Initialized by the former result based on rough matching, refined matching that adopts Euler theory leads to perfect matching by translating and rotating the measured points. The proposed algorithm can automatically match measurement data with CAD model without prior information on transformation, and evaluates construction precision of hull blocks accurately, and provides an instructive basis for subsequent simulation erection. In the study of quick simulation erection, an automatically rapid positioning method is proposed for erection block achieving reasonable position. The error distribution at different directions is determined by using weight vector. The best positioning result and reasonable scheme are achieved by adopting nonlinear multi-objective optimization by introducing the erection engineering constraints (e.g. levelness, verticality and flatness) into the objective function of the computing model. The scheme accords with the actual engineering and it's easy to realize thus shorts the erection time.
     In conclusion, main hull digital design and block measurement data registration algorithm of digital shipbuilding are studied in this paper and corresponding methods are offered including rapid ship form design, compartment subdivision, structure design, measuring analysis and simulation erection, aiming at helping digital rapid shipbuilding theory development, shortening ship development cycle, improving quality and efficiency for shipbuilding and being helpful to practical engineering application.
引文
[1]曹玉姣.我国数字化造船发展现状[J].船舶工程,2008,(03):6-9.
    [2]郑玄亮.船海工程设计中的博弈分析法研究与应用[D].大连:大连理工大学,2010.
    [3]程庆和,潘建辉,张荣.以数字化造船促进中国船舶工业跨越式发展[J].上海造船,2005,(01):10-12.
    [4]EVANS J H. Basic Design Concepts[J]. Naval Engineers Journal,1959,71(4):671-678.
    [5]BUXTON I L. Engineering Economics Applied to Ship Design [J].Tran. RINA,1972, (114):409-428.
    [6]MANDEL P, CHRYSSOSTOMIDIS C. A design methodology for ships and other complex systems[J]. Philos. Trans. R. Soc,1972, (273):85-98.
    [7]SNAITH G R, PARKER M N.Ship design with computer aids[J].NE Coast Institute of Engineers and Shipbuilders,1972,88(5):151-172.
    [8]ANDREWS D J. Creative ship design[J].Trans. RINA,1981, (123):447-471.
    [9]ZHENG X L, Lin Y, JI Z S. Collaborative Multidisciplinary Decision Making Based on Game Theory in Ship Preliminary Design[J]. Journal of Marine Science & Technology,2009,14(3):334-344.
    [10]战翌婷.船舶数字化设计软件平台关键技术研究[D].大连理工大学,2008.
    [11]魏坤.机械产品快速设计与制造系统研究[D].中国科学技术大学,2007.
    [12]林焰,陈明,王运龙,等.船舶设计原理[M].大连:大连理工大学出版社,2011.
    [13]ZHANG P, LENG W H. Parametric approach to design of hull form[J]. Journal of Hydrodynamics,2008,20(6):804-810.
    [14]林焰,李铁骊,纪卓尚,等.一种船体UV度变换的设计方法[J].造船技术,1997,(8):16-17.
    [15]于雁云.船舶与海洋平台三维参数化总体设计方法研究[D].大连:大连理工大学,2009.
    [16]PEREZ F, SUAREZ J A, FERNANDEZ L. Automatic surface modeling of a ship hull[J].Computer Aided Design,2006, (38):584-594.
    [17]KONESKY B. Newer theory and algorithms for computer aided design of developable surfaces[J].Marine Technology,2005, (42):71-85.
    [18]PEREZ F, SUAREZ J A, FERNANDEZ L.Parametric Generation, Modeling, and Fairing of Simple Hull Lines with the Use of Nonuniform Rational B-Spline Surfaces[J]. Journal Of Ship Research,2008,52(1):1-15.
    [19]RABIEN U. Ship geometry modeling[J]. Ship Technology Research,1996,43:115-123.
    [20]张萍.船型参数化设计[D].江南大学,2009.
    [21]BARDIS L, VAFIADOU M. Ship-hull geometry representation with B-spline surface patches[J]. Computer Aided Design,1992,24(4):217-222.
    [22]周超骏,刘鼎元.船体数学线型设计——曲面法探讨[J].上海交通大学学报,1981, (4):21-31.
    [23]周超骏,刘鼎元,曹沅.船体数学线型设计一B样条曲面法[J].上海交通大学学报,1985,(3):1-10.
    [24]FOG N G. A B-spline surface system for ship hull design[J]. Computer application in the automation of shipyard operation and ship design,1985:359-366.
    [25]荣焕宗,陈岗,张伟荣.非均匀B样条网格光顺方法[J].船舶工程,1992,(4):25-30.
    [26]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000.
    [27]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:北京航空航天大学出版社,1994.
    [28]PIEGL L, TILLER W. The NURBS book:Second Edition[M]. Berlin:Heidelberg:Springer- Verlag,1997.
    [29]PIEGL L, TILLER W. Computing the derivative of NURBS with respect to a knot[J]. Computer-Aided Geometric Design,1998,15:925-934.
    [30]PIEGL L, TILLER W. Parameterization for surface fitting in reverse engineering[J]. Computer-Aided Design,2001,33:593-603.
    [31]LEE D K, LEE S S, PARK B J.3-D geometric modeler for rapid ship safety assessment[J]. Ocean Engineering,2004,31:1219-1230.
    [32]HAZEN G S.FastShip & NURBS modeling:a historical note[J].Computer Aided Design,2002,34(7):541-543.
    [33]K I, Y M. Ship hull definition by surface techniques for production use [J]. Computer Applications in Shipping and Shipbuilding,1979,6:95-104.
    [34]MASON A. MaxSurf an early NURBS ship hull design system:a historical note [J].Computer Aided Design,2002,34(7):545-546.
    [35]JONG H N, MICHAEL G P. A parametric approach for initial hull form modeling using nurbs representation[J]. Journal of Ship Production,2000,16(2):76-89.
    [36]刘阳,林焰.基于横向函数法的船体型线设计方法[J].大连理工大学学报,2008,(1):95-97.
    [37]LU C H, LIN Y, JI Z S.Ship hull representation with a single NURBS surface[C]//Proceedings of the 15th Internaional Offshore and Polar Engineering Conference(ISOPE),2005:780-784.
    [38]陆丛红.基于NURBS表达的船舶初步设计关键技术研究[D].大连:大连理工大学,2006.
    [39]BIRMINGHAM R W, SMITH T A G. Automatic hull form generations practical tool for design and research [J]. Practical Design of Ships and Mobile Units,1998:281-287.
    [40]HARRIES S. Parametric Design and Hydrodynamic Optimization of Ship Hull Forms[D]. Berlin:Institut fur Schiffs-und Meerestechnik, Technische Universitat Berlin,1998.
    [41]HARRIES S. Systematic optimization-a key for improving ship hydrodynamics [J]. Hansa,2005,142(12):26-45.
    [42]ABC C, HARRIES S. FRIENDSHIP Framework- integrating ship-design modelling, simulation, and optimization[J].The Naval Architect, RINA,2007, (1)
    [43]HARRIES S, HINRICHSEN H. The InSAC-A new design feature for the improvement of transport efficiency[J].Hansa,2006,143(9)
    [44]张萍,冷文浩,朱德祥,等.船型参数化建模[J].船舶力学,2009,(1):47-54.
    [45]LEE K Y, HAN S N, ROH M I. Optimal compartment layout design for a naval ship using an improved genetic algorithm[J]. Marine Technology,2002,39(3):159-169.
    [46]PARK S S, Lee K Y. Development of a ship calculation program based on the geometric model[J]. Trans Soc Naval Architec Korea,1999,36(2):121-134.
    [47]KANG W S, LEE K Y. A study on the interactive ship compartmentation modelling technique using graphical user interface[J]. Trans Soc Naval Architec Korea,1994,31(4):23-31.
    [48]LEE S U, ROH M I, CHA J H, et al. Ship compartment modeling based on a non-manifold polyhedron modeling kernel[J]. ADVANCES IN ENGINEERING SOFTWARE,2009, 40(5):378-388.
    [49]BRUCE C, NEHRLING. Recognizing and using patterns in preliminary ship compartmentation [J]. Computer Application in the Automation of Shipyard Operation and Ship Design,1976,
    [50]HILLS B W S, PHIL M C. An efficient compartmentation method for use in preliminary ship design [J]. Computer Application in the Automation of Shipyard Operation and Ship Design,1989,
    [51]胡铁牛.货船概率破舱稳性计算及对分舱的影响[J].上海交通大学学报,1997,31(11)
    [52]LIN Y, JI Z S, CHEN M. Ship compartmentation division based on database [J]. Selected Paper of CSNAME,1999,13:9-19.
    [53]BERLIN W. Interactive design of ship compartmentation [J]. Computer Application in the Automation of Shipyard Operation and Ship Design,1985,
    [54]LU C H, LIN Y, JI Z S.Virtual Tanks Division and Capacity Calculation Based on NURBS Shipform[J]. Journal of Ship Mechanics,2007,11(3):435-443.
    [55]杨帆,马坤,纪卓尚.油船参数化舱室定义方法研究[J].造船技术,2007,(5):20-23.
    [56]Yu Y Y, Chen M, Lin Y, et al. A new method for platform design based on parametric technology[J]. OCEAN ENGINEERING,2010,37(5-6):473-482.
    [57]陈强,马坤.基于ObjectARX的船舶快速分舱程序设计[J].中国舰船研究,2010,(3):67-73.
    [58]ROH M I, LEE K Y, CHOI W Y, et al. Improvement of ship design practice using a 3D CAD model of a hull structure[J]. ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING,2008,24(1):105-124.
    [59]ROH M, LEE K. Generation of the 3D CAD model of the hull structure at the initial ship design stage and its application[J]. Computers in Industry,2007, 58 (6):539-557.
    [60]仵大伟,林焰,纪卓尚.参数化的船体结构特征造型设计[J].计算机工程,2001,(6):57-58.
    [61]向东,李斌,谭家华.利用CAT IA进行船舶管系BOM数据抽取和处理[J].造船技术,2003,(1):39-41.
    [62]ROBERT L, DAVID G. Modifieation of geometric models through variational geometry [J]. Computer Aided Design,1982,14(4):209-213.
    [63]GE J X, CHOU S C, GAO X S.Geometric constraint satisfaction using optimization methods[J]. Computer Aided Design,2000,32(14):867-879.
    [64]KONDO K, PIGMOD. Parametric and interactive geometric modeler for mechanical design[J]. Computer Aided Design,1990,22(10):623-644.
    [65]KONDO K. Algebraic method for manipulation of dimensional relationships in geometric models[J]. Computer Aided Design,1992,24(3):141-147.
    [66]BUCHANAN J S, PENNINGTON A D. Constraint Definition System:Computer algebra based approach to solving geomerric constraint problems[J]. Computer Aided Design,1993,25(2):711-750.
    [67]高青军,詹沛,陈卓宁,等.基于构造过程的参数化方法的研究[J].水利电力机械,2000,(4):17-21.
    [68]郭卫,张传伟.参数化乳化液泵CAD系统的研究[J].机床与液压,2002,(2):64-66.
    [69]陈金峰.知识工程应用于船舶结构设计的研究[D].上海:上海交通大学,2011.
    [70]TSOUKALAS V D.Development of a knowledge-based engineering system for diagnosis and alleviation of defects in aluminium welding[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2008, 222(2):255-266.
    [71]AKAGI S, FUJITA K. Building an expert system for the preliminary design of ship[J].Trans JSME,1987,1(3):191-205.
    [72]OHTSUBO H, KITAMURA M. Structural design of mid-ship section by expert system[J]. Trans Soc Naval Architec Japan,1988,164(12)
    [73]AKAGI S, FUJITA K. Knowledge based geometric modeling system for preliminary design using objecting-oriented approach[M]. New York:ASME,1989.
    [74]张兴福,张圣坤.双底双壳油轮中横剖面结构优化设计专家系统[J].中国造船,1997,137(2):39-44.
    [75]蔡乾亚,裘泳铭,陆伟东.基于知识的集装箱船中剖面结构设计CAD系统[J].上海交通大学学报,1997,31(11):61-64.
    [76]CHAO K M. Knowledge sharing and reuse for engineering design supporting case-based design[J].Marine technology and sname news,1998,14(3):399-408.
    [77]LEE K H, LEE J K, PARK N S.Intelligent approach to a CAD system for the layout design of a ship engine room[J].Computers & Industrial Engineering,1998, 34(3):599-608.
    [78]LEE D, LEE K. An approach to case-based system for conceptual ship design assistant[J].Expert Systems with Applications,1999,16(2):97-104.
    [79]陆伟东,蔡乾亚,裘泳铭.集装箱船中剖面结构基于知识的计算机辅助设计系统[J].上海交通大学学报,2000,(1):36-40.
    [80]KOWALSKI Z, ARENDT R, MELER-KAPCIA M, et al. An expert system for aided design of ship systems automat ion [J]. Expert Systems with Applications,2001,20(3):261-266.
    [81]SHUJI M S N J. Application of knowledge based modelling to detail structure design for shipbuilding[C]//11th International Conference on Computer Applications in Shipbuilding (ICCAS), Busan, Korea,2002:
    [82]PARK J H, STORCH R L. Overview of ship-design expert systems[J]. Expert Systems,2002,19(3):136-141.
    [83]刘大铭.以知识管理为基础建构中小型船厂研发设计知识社群系统研究[D].台湾:国立成功大学,2002.
    [84]MIKE S, HALL D W. Generating fleet support knowledge from data and information[C]//Australian Conference for Knowledge Management & Intelligent Decision Support,Melbourne, Australia,2003:
    [85]DELATTE B, BUTLER A. An object-oriented model for conceptual ship design supporting case-based design[J]. Marine Technology and Sname News,2003,40(3):158-167.
    [86]HELVACOLG S, INSEL M. An expert system approch to container ship layout design[J]. International shipbuilding process,2003,50(1-2):19-34.
    [87]WU Y H, HEIU-JOU S. Knowledge management with XML integrated within the full specification in ship design processes[J]. Computer Aided Design,2004, 39 (4):53-56.
    [88]谭玮.协同工程在造船产业整合环境的发展策略与实践[D].台湾:国立成功大学,2006.
    [89]LUO W, TANG W Y, ZHANG S K. Robust design of the transverse section of the 340000 DWT FPSO' s midship[J]. Journal of Ship Mechanics,2005,9(2):35-71.
    [90]LEE D K. Knowledge- based system for safety control of damaged ship [J]. Knowledge-Based Systems,2006,19(3):187-191.
    [91]VAPNIK V. The nature of statistical learning theory[M].NewYork:Spinger-Verlag, 1995.
    [92]SUYKENS J A K, VANDEWALLE J, DE M B. Optimal control by least squares support vector machines[J]. Neural Networks,2001,14(1):23-35.
    [93]ZIMMERMANN M, BRONSART R, STENZEL K. Knowledge based engineering methods for ship structural design[C]//International conference on computer application in shipbuilding(ICCAS), Busan, Korea,2005:
    [94]BRONSART R, ZIMMERMANN M.Knowledge modeling in ship design using semantic web techniques[J]. Computer Application and Information Technology in Maritime,2005,
    [95]ZIMMERMANN M, BRONSART R. A system for management and application of standards in ship structural design[J]. Journal of Ship Production,2007,23(3):135-141.
    [96]耿元伟,陈明,林焰.基于知识库的自升式平台结构设计方法研究[J].船舶工程,2007,(4):53-56.
    [97]杨和振,王德禹,夏利娟.知识工程在船舶设计建造中的研究进展[J].2008,30(21):7-11.
    [98]CHEN J F, YANG H Z, JIANG R H. Application of knowledge-based engineering methods for hull structure member design[C]//International Conference on Computer Application in Shipbuilding (ICCAS), Shanghai,2009:87-93.
    [99]Wu Y H, Shaw H J. Document based knowledge base engineering method for ship basic design[J]. OCEAN ENGINEERING,2011,38(13):1508-1521.
    [100]崔进举,王德禹,夏利娟,等.基于知识工程的船舶舯剖面结构设计及优化[J].上海交通大学学报,2012,(3):368-373.
    [101]GUAN G, SHEN M, LIN Y, et al. A method for the automatic registration of hull blocks point clouds[J]. Advanced Materials Research,2012,472-475:3089-3093.
    [102]SHEN M, GUAN G, WANG H Z. Automatic Registration of Hull Blocks Point Clouds Based on SVD[C]//Proceedings of the 2011 2nd International Conference on Information Technology and Scientific Management, Tianjin,2011:2143-2145.
    [103]Biskup K, Arias P, Lorenzo H, et al. Application of terrestrial laser scanning for shipbuilding[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,2007,3(3):56-61.
    [104]Rabbani T. Automatic reconstruction of industrial installations using point clouds and images[D]. Delft(The Netherlands):Nederlandse Commissie voor Geodesie,2006.
    [105]KO K H, MAEKAWA T, PATRIKALAKIS N M. An algorithm for optimal free-form object matching[J]. Computer Aided Design,2003,35(10):913-923.
    [106]张殿桢.船体超大型总段快速测量技术研究[D].大连:大连理工大学,2009.
    [107]HORN B K P. Closed-form solution of absolute orientation using unit quaternions[J].J. Opt. Soc. Am. Ser. A,1987,4:629-642.
    [108]BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intel-ligence,1992,14(2):239-256.
    [109]CHEN Y, MEDIONI G.Object Modeling by Registration of Multiple Range Images[J]. Image and Vision Computing,1992,10:145-155.
    [110]BERGEVIN R, SOUCY M, GAGNON H, et al. Towards a General Multi-View Registration Technique[J]. IEEE Transactions On Pattern Analysis And Machine Intelligence, 1996,18(6):540-547.
    [111]BLAIS G, LEVINE M D. Registering Multiview range data to create 3D computer objects[J].Pattern analysis and machine intelligence,1995,17(8):820-824.
    [112]ANDREW E J, SING B K. Registration and Integration of Textured 3D Data[J]. Image And Vision Computing,1999,17:135-147.
    [113]OKATANI I S, DEGUCHI K.A method for fine registration of multiple viewing rang images considering the measurement error properties[J]. Computer Vision And Image Understanding,2002,87(1-3):66-77.
    [114]罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,(8):1104-1106.
    [115]MITRA N J, GELFAND N, POTTMANN H, et al. Registration of Point Cloud Data from a Geometric Optimization Perspective[C]//Eurographics Symposium on Geometry Proeessing, New York,2004:22-31.
    [116]DAVID S A. Fast and accurate shape based registration[D]. Pittsburgh:Dissertation of Carnegie Mellon University,1996.
    [117]LUCCHESE L, DORETTO G, CORTELAZZO G M. Frequency Domain Estimation of 3D Rigid Motion Based on Range and Intensity Data[J]. Proceedings of Recent Advances in 3D Digital Imaging and Modeling,1997,5:107-112.
    [118]BAREQUET G, SHARIR M. Partial surface matching by using directed foot prints[J].Computational Geometry-Theory And Applications,1999,12(1-2):45-62.
    [119]余立锋,俎栋林,王卫东,等.多模态医学图象的SVD-ICP配准方法[J].CT理论与应用研究,2000,(1):1-7.
    [120]ANDER A C. Analysis of Three Dimensional Measurement Data and Cad Models[D].Pittsburgh:Dissertation of Georgia Institute of Technology,2001.
    [121]POTTMANN H, WALLNER J, HUANG Q, et al. Integral Invariants for Robust Geometry Processing[M].Wien:Geometry Preprint 146, TU Wien,2005.
    [122]KO K H, MAEKAWA T, PATRIKALAKIS N M. Shape intrinsic properties for free-form object matching[J]. Journal of Computing and Information Science in Engineering,2003, 3(4):325-333.
    [123]李嘉,胡军,胡怀中,等.基于SVD-ICP方向加速的机器人触觉与视觉图像配准算法[J].微电子学与计算机,2003,(9):1-3.
    [124]MA B, ELLIS R E. Surface-Based Registration with a Particle Filter [J]. Springer Berlin,2004:566-573.
    [125]张安琪.基于PDA的船体精度辅助检测系统设计与实现[D].大连:大连理工大学,2009.
    [126]刘玉君,毕坚裔,张殿桢,等.船体超大总段快速测量分析技术研究[J].造船技术,2010,(5):13-15.
    [127]刘涛,王宗义,金鸿章,等.船体分段三维数字化测量数据配准[J].哈尔滨工程大学学报,2010,(3):345-349.
    [128]申玫,管官.一种船体分段测量点云自动匹配的算法[J].造船技术,2011,(4):17-18.
    [129]丁伟康.船舶快速搭载有效地缩短了造船周期[C]//2011中国造船工程学会造船工艺学术委员会造船企业精益生产学术研讨会,中国福建福州,2011:229-241.
    [130]曹志兵.数字化精度管理研究[D].哈尔滨:哈尔滨工程大学,2011.
    [131]黄若波,张杰.基于全站仪和船舶3D设计系统的三维精度测量技术研究[J].造船技术,2011,(4):14-16.
    [132]TERZOPOULOS D. Elastically Deformable Models[J]. Computer Graphics,1987,21(4):205-214.
    [133]CELNIKER G, GOSSARD D. Deformable Curve and Surface Finite-Elements for Free-Form Shape Design[J]. Computer Graphics,1991,25(4):257-266.
    [134]WELCH W, WITCKIN A. Variational Surface Modelling[J]. Computer Graphics,1992, 26(2):157-166.
    [135]MORETON H P, SEQUIN C H. Functional Optimization for Fair Surface Design[J]. Computer Graphics,1992,26(2):167-176.
    [136]QIN H, TERZOPOULOS D. Triangular NURBS and Their Dynamic Generalizations[J]. CAGD,1997,14(4):325-347.
    [137]KIM H, YANG C. A new surface modification approach for CFD-based hull form optimization[C]//9th International Conference on Hydrodynamics,2010:520-525.
    [138]于雁云,林焰,纪卓尚.船体曲面参数化设计新方法[J].中国造船,2013,(01):21-29.
    [139]张荣鑫.基于小波理论的船体NURBS曲线曲面光顺性研究[D].大连理工大学,2008.
    [140]KONINGH D D, KOELMAN H, HOPMAN H. A novel ship subdivision method and its application in constraint management of ship layout design[C]//COMPIT2011, 2011:292-304.
    [141]CHEN J, LIN Y, HUOJ Z. Optimization of ship's subdivision arrangement for offshore sequential ballast water exchange using a non-dominated sorting genetic algorithm[J].Ocean Engineering,2010,37(11-12):978-988.
    [142]MASUDA H. Topological operators and Boolean operations for complex —based nonmanifold geometric models[J]. COMPUTER-AIDED DESIGN,1993,25(2):119-129.
    [143]JIN C N, LIU B, SHI Y. A study of geometric issue in CAD system for car-body parts design[J]. Journal of Jilin University,2006,36(S1):116-119.
    [144]CHAPMAN C B, PINFOLD M. The application of a knowledge based engineering approach to the rapid design and analysis of an automotive structure[J]. Advances in Engineering Software,2001,32(12):903-912.
    [145]中国船级社.钢质海船入级与建造规范[M].北京:人民交通出版社,2009.
    [146]Gabor R, Aniko E.Genetic algorithm in computer aided design[J]. Computer Aided Design,2003,35:709-726.
    [147]Aladahalli C, Cagan J, Shimada K. Objective function effect based pattern search theoretical framework inspired by 3D component layout[J]. Journal of Mechanical Design,2007,129(3):243-254.
    [148]Narayanan A, Moore M. Quantum-inspired genetic algorithms[C]//Proceedings of IEEE International Conference on Evolutionary Computation,Nagoya, Japan,1996:61-66.
    [149]李士勇,李盼池.量子计算与量子优化算法[M].哈尔滨:哈尔滨工业大学出版社,2009.
    [150]武姗.船体分段三维数字化测量技术研究[D].哈尔滨:哈尔滨工程大学,2011.
    [151]管官,申玫,林焰,等.船体分段测量点数据与CAD模型自动匹配方法研究[J].哈尔滨工程大学学报,2012,(5):580-584.
    [152]LUfSA F B, JOAO MRS T. Matching of objects nodal points improvement using optimization[J]. Inverse Problems in Science and Engineering,2006,14(5):529-541.
    [153]CASTELLANI U, CRISTANI M, FANTONI S. Sparse points matching by combining3D mesh saliency with statistical descriptors[J]. Computer Graphics Forum,2008, 27 (2):643-652.
    [154]俞慈君,李江雄,余锋杰,等.带工程约束的点匹配算法[J].机械工程学报,2010,(5):183-190.
    [155]ARUN K S, HUANG T S, BLOSTEIN S D.Least-squares fitting of two 3-D point sets [J].IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 1987,9(5):698-700.
    [156]UMEYAMA S. Least-squares estimation of transformation parameters between two point patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intel-ligence,1991,13(4):376-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700