车铣刀具磨损状态监测及预测关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
刀具状态监测是先进制造技术的关键技术之一,是保证不间断生产、实现加工自动化的关键,对提高产品加工质量与效率、保护加工设备、提高制造业水平具有重要意义。论文在深入探讨国内外刀具状态监测研究现状的基础上,以车削和铣削加工刀具为监测对象,切削力和切削振动为刀具状态监测信号,对目前该研究领域存在的主要技术难题进行创新性研究。具体研究内容如下:
     (1)讨论了刀具磨损的特点、形式及影响因素,针对切削过程的复杂性,确定了以切削力和切削振动为监测信号的间接在线监测方式,采用均匀试验设计方法进行了试验设计,获得了刀具不同磨损状态下的实验数据,为后续研究提供数据支持。
     (2)研究刀具磨损状态监测特征提取技术。首先采用小波阈值降噪技术消除监测信号中的高频干扰噪声,然后再对监测信号进行时域和频域统计特征分析的基础上,引入小波包分析技术,提取信号的小波包频带能量及小波熵特征,得到从不同角度反映刀具状态的特征集。通过分析这些特征参数与刀具磨损的相关性可知:特征参数与磨损量呈非线性关系,不能通过单一特征判断刀具磨损状态,存在诸多不相关特征。
     (3)研究刀具磨损状态监测特征选择技术。原始特征集中的不相关和冗余特征将使得识别模型的学习样本数及计算量都成倍增加,从而降低整个系统的运行效率和精度,因此对原始特征进行合理的选择尤为重要。针对刀具状态监测特征的维数高、样本少及类别多的特点,提出基于“一对一”多分类支持向量机递归特征消去的刀具状态监测特征选择算法。在递归特征消去算法基础上,将多分类支持向量机作为特征评价分类器,逐个消去不相关和冗余特征。实验表明该算法能有效剔除与刀磨损相关性小或冗余的特征,提高刀具磨损状态监测系统的学习效率和识别精度。
     (4)不完备先验知识下的刀具磨损状态评估技术研究。针对实际加工生产中,各工况下刀具全寿命先验样本获取困难,导致传统监测方法适用性差的问题,在隐马尔科夫模型的基础上提出基于因子隐马尔科夫模型(FHMM)的刀具状态评估技术。利用新刀和钝刀状态下的先验观测序列建立FHMM,根据刀具磨损过程中观察序列与模型的对数相似度获得其性能指标来评估刀具磨损状态,通过设置适当的阈值对磨损状态进行报警。同时,为监测系统引入学习能力,使其可在使用过程中不断完善自身知识库,提高系统可靠性。实验结果表明:该策略能在只具有新刀和钝刀先验知识的情况下,实现刀具磨损状态的初步估计,避免刀具的过度磨损;并且系统具备学习与完善能力,扩展性好。
     (5)研究刀具磨损量识别技术。在获取一定量的较为完备的先验数据后,可建立更加精确的磨损量识别模型,而传统的人工神经网络识别模型往往需要大量训练样本,且存在收敛速度慢、易陷入局部极小值、识别精度差等问题,本文提出基于最小二乘支持向量机(LS-SVM)的刀具磨损量识别方法。针对LS-SVM的正则化参数和核函数宽度对识别精度的影响大的问题,在标准粒子群优化算法基础上,提出自适应惯性权重粒子群优化算法,用于其参数的优化选择,并引入留一交叉验证法对寻优过程中的参数进行评价。实验结果表明:本文的自适应粒子群优化算法参数优化能力比标准粒子群优化算法强;基于粒子群优化LS-SVM模型的刀具磨损量识别精度高于传统神经网络,且所需先验样本更少。
     (6)研究刀具时序状态监测结果的优化与预测技术。针对刀具状态监测结果往往存在围绕真实状态值上下波动的系统误差,从而影响监测系统精度的问题,提出了基于卡尔曼滤波的时序监测结果优化技术,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的监测结果来估计当前时刻的优化值。经卡尔曼滤波优化后的刀具状态监测结果变化具有一定规律性,基于此提出基于自回归移动平均模型的监测结果预测技术,根据刀具历史监测数据预测刀具未来时刻的状态。实验证明:卡尔曼滤波算法能有效减小状态监测结果中的系统误差,优化的性能指标与刀具磨损量相关性更强,优化后的磨损量识别结果精度更高;自回归移动平均模型能较为精确地预测刀具未来时刻的状态。
Tool condition monitoring is one of the key technologies of the advanced manufacturing technology, key to enable uninterrupted production, realize automatic and unmanned machining process. It has great significance for ensuring machining efficiency and quality, protecting equipment, improving manufacturing standards and so on. Taking turning and milling tools as monitoring objects, cutting force and vibration signal as monitoring information, this paper takes some innovative studies on the key problems of tool condition monitoring field on the basis of discussing the review of developments in tool condition monitoring. The main research contents are as follows:
     (1) The wear feature, mechanism and influencing factor of cutting tool are briefly discussed. An indirect online monitor system based on cutting force and vibration signals was build, and a uniform experimental design method is used to arrange the experiments to collect tool condition monitoring data.
     (2) Research on feature extraction technology. First, using wavelet threshold denoising technology to eliminate high-frequency interference noise in monitoring signals, and then based on the statistical characteristics in time domain and frequency domain, wavelet packet analysis technology was studied, the wavelet packet energy and wavelet entropy features of cutting force and vibration signals were extracted. After getting the original feature set which reflect tool wear states from different perspectives, the correlation between tool wear and these eigenvalues was analyzed. Experimental results have shown:there is strong nonlinear relationship between tool wear and eigenvalues, tool wear condition can't be got through a single feature.
     (3) Research on feature selection technology. There are many irrelevance and redundancy eigenvalues in original features set. It will be lead to sharp increase in learning samples and computational complexity of identification model if all the original features are used to monitor tool condition, which will reduce the speed and efficiency of monitoring system. Traditional feature selection algorithm of tool condition monitoring ignores the relationship of classifier, and need a large number of learning samples, is not suitable for feature selection under small samples. This paper proposed a tool condition monitoring feature selection technology based on one-versus-one support vector machine recursive feature elimination (SVM-RFE). The contribution of eigenvalues to classifier is used as the selection criteria to eliminate the irrelevance and redundancy features. Experiments show that the algorithm can effectively remove the irrelevant or redundant features, improve learning efficiency and identification accuracy of tool condition monitoring system.
     (4) Research on tool wear status assessment technology under incomplete prior knowledge. Aiming at lacking priori samples and difficult knowledge acquisition in the actual production process, which will make the applicability of monitoring system poor, a tool wear status assessment method based on factorial hidden markov model (FHMM) was proposed. First establish FHMM monitoring model using the priori knowledge of blunt and new tool. The performance indicators that can reflect tool wear state can be got from the similarity between monitoring sequence and trained FHMM. Meanwhile, self-improvement ability was introduced to the monitoring system so that the knowledge base of FHMM can continually improve in monitoring processes. The experimental results showed that:this method can achieve a preliminary estimate of tool wear using the priori knowledge of blunt and new tool, and this system has the ability of self-learning and self-improvement.
     (5) Research on tool wears recognition technology. There is a lack of the priori samples used to train recognition model, while the tool wear identification model based on traditional artificial neural network often requires a large number of training samples, and have some disadvantages such as running into local minimum value easily, slow convergence rate and so on. Against these issues, this paper proposed a tool wear recognition method based on least squares support vector machines (LS-S VM). Meanwhile, a self-adaptive weight particle swarm optimization (PSO) algorithm was proposed to search optimum value of the kernel function parameter and error penalty factor which affect the precision of the LS-SVM significantly. Experiments show that:PSO algorithm can efficiently search the optimal parameter of LS-SVM model under small sample; tool wear identification accuracy based on PSO-LS-SVM model is better than neural networks.
     (6) Research on optimization and prediction technology of tool condition monitoring results. By analyzing and testing results show that the system accuracy becomes poor because the interference signals existed in the intelligent condition monitoring results. Against this issue, this paper proposed an optimization technique for time sequence monitoring results based on kalman filter. According to the state space model of signal and noise, the present value of tool conditions can be estimated using the previous estimated value and the present observed value. There is certain regularity in the kalman filter optimized tool condition monitoring results. Based on history monitoring data, the future tool status can be predicted by certain prediction model, In this paper, a monitoring results prediction model based on autoregressive moving average (ARMA) method was proposed. Experimental results show:kalman filtering optimization algorithm can effectively eliminate interference noise in monitoring results, the relationship between status indicators and tool wear is stronger, the identification accuracy is higher, the ARMA method can effectively predict tool status.
引文
[1]戴红军.我国机械制造业的发展研究[D].河北工业大学博士学位论文,2010.
    [2]李绍东.中国装备制造业先进水平实证研究[D].辽宁大学博士学位论文,2011.
    [3]吕明.机械制造技术基础[M].武汉市:武汉理工大学出版社,2010.
    [4]徐建平,夏国平.我国装备制造业的国际比较及对策研究[J].中国机械工程,2008,260(20):2510-2518.
    [5]张世琪,孙宇.现代制造导论[M].北京市:兵器工业出版社,2000.
    [6]李长河,丁玉成.先进制造工艺技术[M].北京市:科学出版社,2011.
    [7]K. Venkatesh, M. Zhou. R.J. Caudill. Design of Artificial Neural Networks for Tool Wear Monitoring[J]. Journal of Intelligent Manufacturing,1997,8:215-226.
    [8]Nanua Singh. Systems Approach to Computer-Integrated Design and Manufacturing [M]. New York, Ny, Usa:John Wiley & Sons, Inc.,1995.
    [9]D.E. Dimla Jr, P.M. Lister, N.J. Leighton. Neural Network Solutions to the Tool Condition Monitoring Problem in Metal Cutting-a Critical Review of Methods [J]. International Journal of Machine Tools and Manufacture,1997,37(9):1219-1241.
    [10]B.M. Kramer, B.F. Von turkovich. A Comprehensive Tool Wear Model [J]. Cirp Annals-Manufacturing Technology,1986,35(1):67-70.
    [11]陆剑中,孙家宁.金属切削原理与刀具[M].北京市:机械工业出版社,2011.
    [12]S. Kurada, C. Bradley. A Review of Machine Vision Sensors for Tool Condition Monitoring[J]. Computers in Industry,1997,34(1):55-72.
    [13]罗振璧.现代制造系统[M].北京市:机械工业出版社,2004.
    [14]Adam G. Rehorn, Jin Jiang, Peter E. Orban. State-of-the-art Methods and Results in Tool Condition Monitoring:a Review[J]. The International Journal of Advanced Manufacturing Technology,2005,26(7):693-710.
    [15]H.K. Tonshoff, J.P. Wulfsberg, H.J.J. Kals, et al. Developments and Trends in Monitoring and Control of Machining Processes[J]. Cirp Annals-Manufacturing Technology,1988,37(2):611-622.
    [16]J. Tlusty, G.C. Andrews. A Critical Review of Sensors for Unmanned Machining[J]. Cirp Annals-Manufacturing Technology,1983,32(2):563-572.
    [17]耿绍辉.木工刀具磨损特性与木材切削加工优化[M].哈尔滨市:东北林业大学出版社,2007.
    [18]袁黎.机械加工实用技术手册[M].南京市:江苏科学技术出版社,2008.
    [19]王先逵.现代制造技术手册[M].北京市:国防工业出版社,2001.
    [20]A. Ghasempoor, J. Jeswiet, T.N. Moore. Real Time Implementation of On-line Tool Condition Monitoring in Turning[J]. International Journal of Machine Tools and Manufacture,1999,39(12):1883-1902.
    [21]M.Cemal Cakir, Yahya Isik. Detecting Tool Breakage in Turning Aisi 1050 Steel Using Coated and Uncoated Cutting Tools[J]. Journal of Materials Processing Tech., 2004,159(2):191-198.
    [22]D. E. Dimla, P. M. Lister. On-line Metal Cutting Tool Condition Monitoring. I: Force and Vibration Analyses [J]. International Journal of Machine Tools & Manufacture,2000,40(5):739-768.
    [23]C Chungchoo, D Saini. The Total Energy and the Total Entropy of Force Signals -New Parameters for Monitoring Oblique Turning Operations [J]. International Journal of Machine Tools and Manufacture,2000,40(13):1879-1897.
    [24]Toshiyuki Obikawa, Jun Shinozuka. Monitoring of Flank Wear of Coated Tools in High Speed Machining with a Neural Network Art2[J]. International Journal of Machine Tools and Manufacture,2004,44(12):1311-1318.
    [25]Ibrahim Nur Tansel, Christine Mekdeci, Oscar Rodriguez, et al. Monitoring Drill Conditions with Wavelet Based Encoding and Neural Networks[J]. International Journal of Machine Tools and Manufacture,1993,33(4):559-575.
    [26]H. Saglam, A. Unuvar. Tool Condition Monitoring in Milling Based on Cutting Forces By a Neural Network [J]. International Journal of Production Research,2003, 41(7):1519-1532.
    [27]Marek Balazinski, Ernest Czogala, Krzysztof Jemielniak. et al. Tool Condition Monitoring Using Artificial Intelligence Methods[J]. Engineering Applications of Artificial Intelligence,2002,15(1):73-80.
    [28]Huseyin Metin Ertunc, Cuneyt Oysu. Drill Wear Monitoring Using Cutting Force Signals[J]. Mechatronics,2003(5):533-548.
    [29]Kunpeng Zhu, Yoke San Wong, Geok Soon Hong. Multi-category Micro-milling Tool Wear Monitoring with Continuous Hidden Markov Models[J]. Mechanical Systems and Signal Processing,2009(2):547-560.
    [30]Song-Tae Seong, Ko-Tae Jo, Young-Moon Lee. Cutting force signal pattern recognition using hybrid neural network in end milling[J]. Transactions of Nonferrous Metals Society of China,2009(0):209-214.
    [31]Franci Cu, Uro Zuperl. Real-time Cutting Tool Condition Monitoring in Milling[J]. Journal of Mechanical Engineering,2011,57(2):142-150.
    [32]Mei Wang, Jie Wang. Chmm for Tool Condition Monitoring and Remaining Useful Life Prediction[J]. International Journal of Advanced Manufacturing Technology, 2012,59(5):463-471.
    [33]K. P. Zhu, G. S. Hong, Y. S. Wong. A Comparative Study of Feature Selection for Hidden Markov Model-based Micro-milling Tool Wear Monitoring [J]. Machining Science and Technology,2008,12(3):348-369.
    [34]Zhu Kunpeng, Hong Geok Soon, Wong Yoke San. Multiscale Singularity Analysis of Cutting Forces for Micromilling Tool-wear Monitoring [J]. Industrial Electronics, Ieee Transactions on,2011,5(6):2512-2521.
    [35]杨永.基于切削力的小波神经网络刀具磨损状态监测[J].机床与液压,2009(7):250-251+269.
    [36]王玫,吕俊杰,王杰.基于连续高斯密度混合HMM的刀具磨损状态监测[J].四川大学学报(工程科学版),2010(3):240-245.
    [37]刘清荣,阎长罡.基于铣削力与神经网络刀具磨损状态识别研究[J].制造技术与机床,2008(2):72-76.
    [38]林颖,刘亚俊,陈忠.基于分形理论和神经网络的刀具磨损监测[J].中国机械工程,2004(16):20-22+40.
    [39]K. Jemielniak, P.J. Arrazola. Application of Ae and Cutting Force Signals in Tool Condition Monitoring in Micro-milling[J]. Cirp Journal of Manufacturing Science and Technology,2008(2):97-102.
    [40]K.T. Chung, A. Geddam. A Multi-sensor Approach to the Monitoring of End Milling Operations [J]. Journal of Materials Processing Tech.,2003,139(1):15-20.
    [41]J. Sun, G.S. Hong, Y.S. Wong, et al. Effective Training Data Selection in Tool Condition Monitoring System[J]. International Journal of Machine Tools and Manufacture,2005,46(2):218-224.
    [42]高宏力,傅攀,许明恒.基于B样条模糊神经网络的刀具磨损监测[J].机械科学与技术,2005(6):751-753.
    [43]Huseyin M. Ertunc, Kenneth A. Loparo, Hasan Ocak. Tool Wear Condition Monitoring in Drilling Operations Using Hidden Markov Models (hmms)[J]. International Journal of Machine Tools and Manufacture,2001,41(9):1363-1384.
    [44]H.M Ertunc, K.A Loparo. A Decision Fusion Algorithm for Tool Wear Condition Monitoring in Drilling[J]. International Journal of Machine Tools and Manufacture, 2001(9):1347-1362.
    [45]W Amer, R Grosvenor, P Prickett. Machine Tool Condition Monitoring Using Sweeping Filter Techniques [J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering2007,221(1):103-117.
    [46]R.G. Silva, K.J. Baker, S.J. Wilcox, et al. The Adaptability of a Tool Wear Monitoring System Under Changing Cutting Conditions[J]. Mechanical Systems and Signal Processing,2000,14(2):287-298.
    [47]R.K. Dutta, S. Paul, A.B. Chattopadhyay. Fuzzy Controlled Backpropagation Neural Network for Tool Condition Monitoring in Face Milling[J]. International Journal of Production Research,2000,38(13):2989-3010.
    [48]H. Chelladurai, V.K. Jain, N.S. Vyas. Ann Based Cutting Tool Condition Monitoring System for High-speed Turning Operations [J]. International Journal of Machining and Machinability of Materials,2010,8(1):87-113.
    [49]王国锋,李启铭,秦旭达,等.支持向量机在刀具磨损多状态监测中的应用[J].天津大学学报,2011(1):35-39.
    [50]陈侃,傅攀,李威霖,等.钛合金车削加工过程中刀具磨损状态监测的小波包子带能量变换特征提取新方法[J].组合机床与自动化加工技术,2011(1):35-38.
    [51]郑金兴,张铭钧,孟庆鑫.多传感器数据融合技术在刀具状态监测中的应用[J].传感器与微系统,2007(4):90-93.
    [52]刘路,王太勇,蒋永翔,等.基于超球面支持向量机的刀具磨损状态识别[J].农业机械学报,2011(1):218-222.
    [53]Mohammad Malekian, Simon S. Park, Martin B.G. Jun. Tool Wear Monitoring of Micro-milling Operations [J]. Journal of Materials Processing Tech.,2009(10):4903-4914.
    [54]Cuneyt Aliustaoglu, H. Metin Ertunc, Hasan Ocak. Tool Wear Condition Monitoring Using a Sensor Fusion Model Based on Fuzzy Inference System[J]. Mechanical Systems and Signal Processing,2008,23(2):539-546.
    [55]Myeong Chang Kang, Jeong Suk Kim, Jeon Ha Kim. A Monitoring Technique Using a Multi-sensor in High Speed Machining[J].Journal of Materials Processing Technology.,2001,113(1):331-336.
    [56]N. Ghosh, Y.B. Ravi, A. Patra, et al. Estimation of Tool Wear During Cnc Milling Using Neural Network-based Sensor Fusion[J]. Mechanical Systems and Signal Processing,2005,21(1):466-479.
    [57]Huaizhong Li, Xiaoqi Chen, Hao Zeng, et al. Embedded Tool Condition Monitoring for Intelligent Machining[J]. International Journal of Computer Applications in Technology,2007,28(1):74-81.
    [58]Krzysztof Jemielniak, Tomasz Urbanski, Joanna Kossakowska, et al. Tool Condition Monitoring Based on Numerous Signal Features[J]. The International Journal of Advanced Manufacturing Technology,2012,59(1):73-81.
    [59]Omid Geramifard, Jian-Xin Xu, Jun-Hong Zhou, et al. A Physically Segmented Hidden Markov Model Approach for Continuous Tool Condition Monitoring:Diagnostics and Prognostics[J]. Ieee Transactions on Industrial Informatics,2012,8(4):964-973.
    [60]Agustin Gajate, Rodolfo Haber, Raul Del Toro, et al. Tool Wear Monitoring Using Neuro-fuzzy Techniques:a Comparative Study in a Turning Process[J]. Journal of Intelligent Manufacturing,2012,23(3):869-882.
    [61]V S Sharma, S K Sharma, A K Sharma. An Approach for Condition Monitoring of a Turning Tool[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2007,221 (4):635-648.
    [62]Sohyung Cho, Sultan Binsaeid, Shihab Asfour. Design of Multisensor Fusion-based Tool Condition Monitoring System in End Milling[J]. The International Journal of Advanced Manufacturing Technology,2009,46(5):681-694.
    [63]R.G. Silva, S.J. Wilcox, R.L. Reuben. Development of a System for Monitoring Tool Wear Using Artificial Intelligence Techniques[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2006,220(8):1333-1346.
    [64]T Moriwaki. Detection for Cutting Tool Fracture By Acoustic Emission Measurement[J]. Ann Cirp,1980,29(1):35-40.
    [65]Xiaoli Li. A Brief Review: Acoustic Emission Method for Tool Wear Monitoring During Turning[J]. International Journal of Machine Tools and Manufacture,2002, 42(2):157-165.
    [66]关山.基于声发射信号多特征分析与融合的刀具磨损分类与预测技术[D].吉林大学博士学位论文,2011.
    [67]Slavko Dolinsek, Janez Kopac. Acoustic Emission Signals for Tool Wear Identification[J]. Wear,1999,225(0):295-303.
    [68]H.V. Ravindra, Y.G. Srinivasa, R. Krishnamurthy. Acoustic Emission for Tool Condition Monitoring in Metal Cutting[J]. Wear,1997,212(1):78-84.
    [69]J Sun, M Rahman, Y.S Wong, et al. Multiclassification of Tool Wear with Support Vector Machine By Manufacturing Loss Consideration[J]. International Journal of Machine Tools and Manufacture,2004,44(11):1179-1187.
    [70]Krzysztof Jemielniak. Some Aspects of Ae Application in Tool Condition Monitoring[J]. Ultrasonics,1999,38(1):604-608.
    [71]Chia-Liang Yen, Ming-Chyuan Lu, Jau-Liang Chen. Applying the Self-organization Feature Map (som) Algorithm to Ae-based Tool Wear Monitoring in Micro-cutting[J]. Mechanical Systems and Signal Processing,2013,34(1):353-366.
    [72]Xiaozhi Chen, Beizhi Li. Acoustic Emission Method for Tool Condition Monitoring Based on Wavelet Analysis[J]. International Journal of Advanced Manufacturing Technology,2007,33(9):968-976.
    [73]J. Sun, G.S. Hong,M.Rahman, et al. Identification of Feature Set for Effective Tool Condition Monitoring By Acoustic Emission Sensing[J]. International Journal of Production Research,2004,42(5):901-918.
    [74]张锴锋,聂鹏,王东磊,等.小波分析在数控刀具磨损状态监测中的应用[J].测控技术,2009(12):13-16.
    [75]陈泽宇.基于谐波特征和GA-SVM的刀具状态监测[J].制造技术与机床,2012(6):146-149.
    [76]朱云芳,戴朝华,陈维荣.基于递归小波与ART2网络的刀具状态智能监测[J].机床与液压,2007(5):220-223.
    [77]贾伟广,胡丹,车畅.基于小波分析和支持向量机的刀具故障诊断[J].组合机床与自动化加工技术,2010(12):65-67+70.
    [78]Li Xiaoli, Yuan Zhejun. Tool Wear Monitoring with Wavelet Packet Transform-fuzzy Clustering Method[J]. Wear,1998,219(2):145-154.
    [79]Iulian Marinescu, Dragos A. Axinte. A Critical Analysis of Effectiveness of Acoustic Emission Signals to Detect Tool and Workpiece Malfunctions in Milling Operations [J]. International Journal of Machine Tools and Manufacture,2008, 48(10):1148-1160.
    [80]P. Srinivasa Pai, P. K. Ramakrishna Rao. Acoustic Emission Analysis for Tool Wear Monitoring in Face Milling[J]. International Journal of Production Research,2002, 40(5):1081-1093.
    [81]Rodolfo E. Haber, Jose E. Jimenez, C.Ronei Peres, et al. An Investigation of Tool-wear Monitoring in a High-speed Machining Process[J]. Sensors & Actuators: A. Physical,2004,116(3):539-545.
    [82]Hongrui Cao, Xuefeng Chen, Yanyang Zi, et al. End Milling Tool Breakage Detection Using Lifting Scheme and Mahalanobis Distance[J]. International Journal of Machine Tools and Manufacture,2007,48(2):141-151.
    [83]Guofeng Wang, Xiaoliang Feng. Tool Wear State Recognition Based on Linear Chain Conditional Random Field Model [J]. Engineering Applications of Artificial Intelligence,2012.
    [84]Alexandre L. Quadro, J.R.T. Branco. Analysis of the Acoustic Emission During Drilling Test[J]. Surface & Coatings Technology,1997,94(0):691-695.
    [85]A. Velayudham, R. Krishnamurthy, T. Soundarapandian. Acoustic Emission Based Drill Condition Monitoring During Drilling of Glass/phenolic Polymeric Composite Using Wavelet Packet Transform[J]. Materials Science & Engineering a,2005, 412(1):141-145.
    [86]Y. Quan, M. Zhou, Z. Luo. On-line Robust Identification of Tool-wear Via Multi-sensor Neural-network Fusion[J]. Engineering Applications of Artificial Intelligence,1998,11(6):717-722.
    [87]Wang Haili, Shao Hua, Chen Ming, et al. On-line Tool Breakage Monitoring in Turning[J]. Journal of Materials Processing Technology.,2003,139(1):237-242.
    [88]Robert Heinemann, Sri Hinduja. A New Strategy for Tool Condition Monitoring of Small Diameter Twist Drills in Deep-hole Drilling[J]. International Journal of Machine Tools and Manufacture,2011,52(1):69-76.
    [89]J Yu. Machine Tool Condition Monitoring Based on an Adaptive Gaussian Mixture Model [J]. Transactions-American Society of Mechanical Engineers Journal of Manufacturing Science and Engineering,2012,134(3).
    [90]Chuangwen, Xu, Hualing, et al. Fractal Analysis of Vibration Signals for Monitoring the Condition of Milling Tool Wear[J]. Proceedings of the Institution of Mechanical Engineers,2009,223(0):909-918.
    [91]徐创文,陈花玲,刘彦国,等.铣削刀具不同磨损期振动信号的分维特征[J].农 业机械学报,2007(6):164-168.
    [92]Issam Abu-mahfouz. Drilling Wear Detection and Classification Using Vibration Signals and Artificial Neural Network[J].International Journal of Machine Tools and Manufacture,2003,43(7):707-720.
    [93]F.J. Alonso, D.R. Salgado. Analysis of the Structure of Vibration Signals for Tool Wear Detection[J]. Mechanical Systems and Signal Processing,2008,22(3):735-748.
    [94]D.R. Salgado, F.J. Alonso. Tool Wear Detection in Turning Operations Using Singular Spectrum Analysis[J]. Journal of Materials Processing Tech.,2005,171(3):451-458.
    [95]Weiguo Gong, Weihong Li, T. Shirakashi, et al. An Active Method of Monitoring Tool Wear States By Impact Diagnostic Excitation[J]. International Journal of Machine Tools and Manufacture,2004,44(7):847-854.
    [96]Tomas Kalvoda, Yean-Ren Hwang. A Cutter Tool Monitoring in Machining Process Using Hilbert-huang Transform[J]. International Journal of Machine Tools and Manufacture,2010,50(5):495-501.
    [97]Bovic Kilundu, Pierre Dehombreux, Xavier Chiementin. Tool Wear Monitoring By Machine Learning Techniques and Singular Spectrum Analysis[J]. Mechanical Systems and Signal Processing,2010,25(1):400-415.
    [98]M. Elangovan, S. Babu Devasenapati, N.R. Sakthivel, et al. Evaluation of Expert System for Condition Monitoring of a Single Point Cutting Tool Using Principle Component Analysis and Decision Tree Algorithm[J]. Expert Systems with Applications,2010,38(4):4450-4459.
    [99]M. Elangovan, V. Sugumaran, K.I. Ramachandran, et al. Effect of Svm Kernel Functions on Classification of Vibration Signals of a Single Point Cutting Tool[J]. Expert Systems with Applications,2011,38(12):15202-15207.
    [100]Karali Patra, Surjya K. Pal, Kingshook Bhattacharyya. Fuzzy Radial Basis Function (frbf) Network Based Tool Condition Monitoring System Using Vibration Signals[J]. Machining Science and Technology,2010,14(2):280-300.
    [101]H. Chelladurai, V. K. Jain, N. S. Vyas. Development of a Cutting Tool Condition Monitoring System for High Speed Turning Operation By Vibration and Strain Analysis [J]. The International Journal of Advanced Manufacturing Technology, 2007,37(5):471-485.
    [102]I. Yesilyurt, H. Ozturk. Tool Condition Monitoring in Milling Using Vibration Analysis[J]. International Journal of Production Research,2007,45(4):1013-1028.
    [103]Chuangwen Xu, Hualing Chen, Zhe Liu, et al. Condition Monitoring of Milling Tool Wear Based on Fractal Dimension of Vibration Signals[J]. Journal of Mechanical Engineering,2009,55(1):15-25.
    [104」徐创文,陈花玲,程仲文,等.基于时序分析与模糊聚类的铣削刀具磨损状态识 别[J].机械强度,2007(4):525-531.
    [105]Shang-Liang Chen, Y.W. Jen. Data Fusion Neural Network for Tool Condition Monitoring in Cnc Milling Machining[J]. International Journal of Machine Tools and Manufacture,1999,40(3):381-400.
    [106]Pan Fu, Weilin Li, Liang Guo. Fuzzy Clustering and Visualization Analysis of Tool Wear Status Recognition [J]. Procedia Engineering,2011,23(0):479-486.
    [107]张超,李言,郑建明.正交小波变换在钻削刀具状态监测中的应用[J].制造技术与机床,2004(7):20-23.
    [108]H. Shao, H.L. Wang, X.M. Zhao. A Cutting Power Model for Tool Wear Monitoring in Milling[J]. International Journal of Machine Tools and Manufacture,2004, 44(14):1503-1509.
    [109]D.R. Salgado, F.J. Alonso. An Approach Based on Current and Sound Signals for In-process Tool Wear Monitoring [J]. International Journal of Machine Tools and Manufacture,2007,47(14):2140-2152.
    [110]Faleh A. Al-sulaiman, M. Abdul Baseer, Anwar K. Sheikh. Use of Electrical Power for Online Monitoring of Tool Condition[J]. Journal of Materials Processing Tech., 2005,166(3):364-371.
    [111]Francois Girardin, Didier Remond, Jean-Francois Rigal. Tool Wear Detection in Milling-an Original Approach with a Non-dedicated Sensor[J]. Mechanical Systems and Signal Processing,2010 (6):1907-1920.
    [112]D. Axinte, N. Gindy. Assessment of the Effectiveness of a Spindle Power Signal for Tool Condition Monitoring in Machining Processes[J]. International Journal of Production Research,2004,42(13):2679-2691.
    [113]Hua Shao, Xinhua Shi, Lin Li. Power Signal Separation in Milling Process Based on Wavelet Transform and Independent Component Analysis[J]. International Journal of Machine Tools and Manufacture,2011,51(9):701-710.
    [114]Luis Alfonso Franco-gasca, Gilberto Herrera-ruiz, Rocio Peniche-vera, et al. Sensorless Tool Failure Monitoring System for Drilling Machines[J]. International Journal of Machine Tools and Manufacture,2005,46(3):381-386.
    [115]Xiaoli Li, Shiu Kit Tso, Jun Wang. Real-time Tool Condition Monitoring Using Wavelet Transforms and Fuzzy Techniques[J]. Ieee Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2000,30(3):352-357.
    [116]冯冀宁,刘彬,刁哲军.基于小波神经网络的刀具状态监测系统的设计[J].组合机床与自动化加工技术,2003(10):26-27+29.
    [117]A.M. Bassiuny, Xiaoli Li. Flute Breakage Detection During End Milling Using Hilbert-huang Transform and Smoothed Nonlinear Energy Operator[J]. International Journal of Machine Tools and Manufacture,2006(6):1011-1020.
    [118]Ryutaro Tanaka, Yasuo Yamane, Masato Okada, et al. End Milling of Free-machining Steel for High Speed Machining Tool Wear and Cutting Temperature in Cutting Bn Added Steels[J]. Journal of the Japan Society for Precision Engineering,2007,73(7):803-807.
    [119]Ali Basti, Toshiyuki Obikawa, Jun Shinozuka. Tools with Built-in Thin Film Thermocouple Sensors for Monitoring Cutting Temperature [J]. International Journal of Machine Tools and Manufacture,2007 (5):793-798.
    [120]C H Srinivasa Rao, D Nageswara Rao, R N Someswara Rao. Online Prediction of Diffusion Wear on the Flank Through Tool Tip Temperature in Turning Using Artificial Neural Networks[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2006(12):2069-2076.
    [121]R. M'saoubi, H. Chandrasekaran. Investigation of the Effects of Tool Micro-geometry and Coating on Tool Temperature During Orthogonal Turning of Quenched and Tempered Steel[J]. International Journal of Machine Tools and Manufacture,2003(2):213-224.
    [122]FJ Alonso, DR Salgado. Application of Singular Spectrum Analysis to Tool Wear Detection Using Sound Signals[J]. Proc Imeche J Eng Manuf,2005(9):703-710.
    [123]Ashraf A. Kassim, M.A. Mannan, Ma Jing. Machine Tool Condition Monitoring Using Workpiece Surface Texture Analysis[J]. Machine Vision and Applications, 2000(5):257-263.
    [124]B.S. Prasad, M.M.M. Sarcar. Experimental Investigation to Predict the Condition of Cutting Tool By Surface Texture Analysis of Images of Machined Surfaces Based on Amplitude Parameters [J]. International Journal of Machining and Machinability of Materials,2008(2):217-236.
    [125]Yonghong Zhang, Yingchao Zhang, Huiqiang Tang, et al. Images Acquisition of a High-speed Boring Cutter for Tool Condition Monitoring Purposes[J]. International Journal of Advanced Manufacturing Technology,2010,48(5):455-460.
    [126]A.A. Kassim, Zhu Mian, M.A. Mannan. Tool Condition Classification Using Hidden Markov Model Based on Fractal Analysis of Machined Surface Textures[J]. Machine Vision and Applications.2006(5):327-336.
    [127]A.A. Kassim, M.A. Mannan, Zhu Mian. Texture Analysis Methods for Tool Condition Monitoring[J]. Image and Vision Computing,2006(7):1080-1090.
    [128]Yi Liao, David A Stephenson, Jun Ni. A Multifeature Approach to Tool Wear Estimation Using 3d Workpiece Surface Texture Parameters [J]. Journal of Manufacturing Science and Engineering.,2010(6):610081-610087.
    [129]C. Bradley, Y.S. Wong. Surface Texture Indicators of Tool Wear-a Machine Vision Approach[J]. International Journal of Advanced Manufacturing Technology, 2001(6):435-443.
    [130]A. Volkan Atli, O. Urhan, S. Erturk, et al. A Computer Vision-based Fast Approach to Drilling Tool Condition Monitoring[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2006,220(9):1409-1415.
    [131]白莉,李言,郑建明,等.基于改进Hough变换的刀具磨损状态监测[J].西安理工大学学报,2010(1):101-105.
    [132]孙林丽,李言,郑建明.基于Hurst指数与纹理分析的刀具磨损状态监测技术研究[J].西安理工大学学报,2008(3):306-310.
    [133]Nidal H. Abu-zahra, Taysir H. Nayfeh. Calibrated Method for Ultrasonic On-line Monitoring of Gradual Wear During Turning Operations [J]. International Journal of Machine Tools and Manufacture,1997(10):1475-1484.
    [134]Nidal H Abu-zahra, Gang Yu. Analytical Model for Tool Wear Monitoring in Turning Operations Using Ultrasound Waves [J]. International Journal of Machine Tools and Manufacture,2000(11):1619-1635.
    [135]陈堂敏,赵学智.提高小波变换在钻削刀具状态监测中效率与准确性的研究[J].工具技术,2005(4):70-73.
    [136]傅瑜,冯象初,徐国华.钻头不同磨损期振动信号的分维特征[J].西安电子科技大学学报,2001(2):242-244.
    [137]王忠民,王信义,陈爱弟,等.基于分形维数的刀具状态在线监测新方法[J].北京理工大学学报,2000(4):441-444.
    [138]Dong-Yeul Song, Nobuo Otani, Takayuki Aoki, et al. A New Approach to Cutting State Monitoring in End-mill Machining[J]. International Journal of Machine Tools and Manufacture,2004,45(7):909-921.
    [139]Yinhui Ao, George Qiao. Prognostics for Drilling Process with Wavelet Packet Decomposition[J]. International Journal of Advanced Manufacturing Technology, 2010,50(1):47-52.
    [140]S.E. Oraby, A.F. Al-modhuf, D.R. Hayhurst. A Diagnostic Approach for Turning Tool Based on the Dynamic Force Signals[J], Journal of Manufacturing Science and Engineering, Transactions of the Asme,2005,127(3):463-475.
    [141]T.I. El-wardany, D. Gao, M.A. Elbestawi. Tool Condition Monitoring in Drilling Using Vibration Signature Analysis[J]. International Journal of Machine Tools and Manufacture,1996,36(6):687-711.
    [142]Y. Quan, M. Zhou, Z. Luo. On-line Robust Identification of Tool-wear Via Multi-sensor Neural-network Fusion[J]. Engineering Applications of Artificial Intelligence,1998,11(6):717-722.
    [143]C. Scheffer, P.S. Heyns. An Industrial Tool Wear Monitoring System for Interrupted Turning[J]. Mechanical Systems and Signal Processing,2004,18(5):1219-1242.
    [144]C. Scheffer, P.S. Heyns. Wear Monitoring in Turning Operations Using Vibration and Strain Measurements[J]. Mechanical Systems and Signal Processing,2001, 15(6):1185-1202.
    [145]Jianfei Dong, K.V.R. Subrahmanyam, YokeSan Wong, et al. Bayesian-inference-based Neural Networks for Tool Wear Estimation[J]. The International Journal of Advanced Manufacturing Technology,2006,30(9):797-807.
    [146]马鸣远.人工智能与专家系统导论[M].北京市:清华大学出版社,2006.
    [147]A. Villa, G. Quaglia, R. Chiara, et al. An Expert Control System for Tool Life Management in Flexible Manufacturing Cells[J]. Cirp Annals-Manufacturing Technology,1985,34(1):87-90.
    [148]R.G. Silva, R.L. Reuben, K.J. Baker, et al. Tool Wear Monitoring of Turning Operations By Neural Network and Expert System Classification of a Feature Set Generated From Multiple Sensors[J]. Mechanical Systems and Signal Processing, 1998,12(2):319-332.
    [149]R.G. Silva, K.J. Baker, S.J. Wilcox, et al. Adaptability of a Tool Wear Monitoring System Under Changing Cutting Conditions [J]. Mechanical Systems and Signal Processing,2000,14(2):287-298.
    [150]Asif Iqbal, Ning He, Naeem Ullah Dar, et al. Comparison of Fuzzy Expert System Based Strategies of Offline and Online Estimation of Flank Wear in Hard Milling Process[J]. Expert Systems with Applications,2007,33(1):61-66.
    [151]M. Cemal Cakir, Kadir Cavdar. Development of a Knowledge-based Expert System for Solving Metal Cutting Problems[J]. Materials and Design,2006,27(10):1027-1034.
    [152]钟珞,饶文碧,邹承明.人工神经网络及其融合应用技术[M].北京市:科学出版社,2007.
    [153]D.A. Dornfeld, S. rangwala. Integration of Sensors Via Neural Networks for Detection of Tool Wear States[J]. Proc. Symp. Integrated and Intelligent Manufacturing Analysis and Synthesis, Asme Winter Annual Meeting,1987:109-120.
    [154]BERNHARD Sick. On-line and Indirect Tool Wear Monitoring in Turning with Artificial Neural Networks:a Review of More Than a Decade of Research[J]. Mechanical Systems and Signal Processing,2002,16(4):487-546.
    [155]Qiang Liu, Yusuf Altintas. On-line Monitoring of Flank Wear in Turning with Multilayered Feed-forward Neural Network [J]. International Journal of Machine Tools and Manufacture,1999,39(12):1945-1959.
    [156]J.H Lee, D.E Kim, S.J Lee. Statistical Analysis of Cutting Force Ratios for Flank-wear Monitoring [J]. Journal of Materials Processing Tech.,1998,74(1):104-114.
    [157]蒋丽英,王蕾,席剑辉,等.基于RBF网络的刀具磨损状态预测技术研究[J].YiQi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument,2009:203-206.
    [158]黄河,白基成,卢泽生,等Electrode Wear Prediction in Milling Electrical Discharge Machining Based on Radial Basis Function Neural Network[J]. Journal of Shanghai Jiaotong University(Science),2009,14(6):736-741.
    [159]R.J. Kuo, P.H. Cohen. Multi-sensor Integration for On-line Tool Wear Estimation Through Radial Basis Function Networks and Fuzzy Neural Network[J]. Neural Networks,1999,12(2):355-370.
    [160]李梅娟,王罡,陈雪波.RBF神经网络在刀具状态监控中的应用研究[J].计算机应用研究,2006(5):65-66.
    [161]丁小峰,周月超.基于RBF神经网络的刀具磨损量的估测[J].机床与液压,2005(10):59-60.
    [162]徐创文,陈花玲,郭攀成,等.基于径向基函数网络的刀具磨损识别[J].测试技术学报,2007(3):219-224.
    [163]Stefan Pittner, SagarV. Kamarthi, Qinglan Gao. Wavelet Networks for Sensor Signal Classification in Flank Wear Assessmen[J]. Journal of Intelligent Manufacturing, 1998,9(4):315-322.
    [164]Yingxue Yao, Xiaoli Li, Zhejun Yuan. Tool Wear Detection with Fuzzy Classification and Wavelet Fuzzy Neural Network[J]. International Journal of Machine Tools and Manufacture,1999,39(10):1525-1538.
    [165]陈静,王武,毛林.基于差分进化小波神经网络的刀具磨损状态识别[J].机械设计与制造,2012,.257(7):176-178.
    [166]朱云芳,戴朝华,陈维荣.基于递归小波神经网络的刀具状态在线监测[J].机床与液压,2007,224(2):172-175.
    [167]舒服华.基于小波神经网络的刀具状态监测[J].组合机床与自动化加工技术,2006(1):69-70+78.
    [168]黄华,李爱平.基于小波神经网络的切削刀具磨损识别[J].农业机械学报,2008(8):173-177.
    [169]冯冀宁,刘彬,刁哲军,等.基于小波神经网络的切削刀具状态监测[J].中国机械工程,2004(4):41-44.
    [170]R.J. Kuo, P.H. Cohen. Intelligent Tool Wear Estimation System Through Artificial Neural Networks and Fuzzy Modeling[J]. Artificial Intelligence in Engineering, 1998,12(3):229-242.
    [171]C. Chungchoo, D. Saini. On-line Tool Wear Estimation in Cnc Turning Operations Using Fuzzy Neural Network Model[J]. International Journal of Machine Tools and Manufacture,2002,42(1):29-40.
    [172]Jakub Gajewski, Lukasz Jedlinski, Jozef Jonak. Classification of Wear Level of Mining Tools with the Use of Fuzzy Neural Network[J]. Tunnelling and Underground Space Technology,2013,35:30-36.
    [173]J. Hino, C. Su, T. Yoshimura. A Study on Chatter Prediction in High-speed End Milling Process By Fuzzy Neural Network[J]. Jsme International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing,2001,44(3):825-831.
    [174]曹伟青,傅攀,谢绣娴.B样条模糊神经网络在刀具磨损监测中的应用[J].工具技术,2005(12):66-68.
    [175]李小俚,姚英学,袁哲俊.基于小波模糊神经网络刀具监控系统研究[J].机械工程学报,1998(1):60-64.
    [176]陈勇.用模糊神经网络进行铣刀磨损状态识别[J].机械,2011,38(1):22-25+73.
    [177]NOH Min-seok, HONG Dae Sun. Implementation of remote monitoring system for prediction of tool wear and failure using ART2[J]. Journal of Central South University of Technology,2011,18(1):177-183.
    [178]Y.M. Niu, Y.S. Wong, G.S. Hong, et al. Multi-category Classification of Tool Conditions Using Wavelet Packets and Art2 Network[J]. Journal of Manufacturing Science and Engineering, Transactions of the Asme,1998,120(4):807-816.
    [179]王海丽,翁德玮,胡兆燕,等.基于模糊神经网络的刀具磨损识别[J].上海交通大学学报,2002(8):1086-1090.
    [180]王海丽,马春翔,邵华,等.车削过程中刀具磨损和破损状态的自动识别[J].上海交通大学学报,2006(12):2057-2062.
    [181]Teuvo Kohonen. The Self-organizing Map[J]. Neurocomputing,1998,21(1):1-6.
    [182]W. H. Wang, G. S. Hong, Y. S. Wong, et al. Sensor Fusion for Online Tool Condition Monitoring in Milling [J]. International Journal of Production Research, 2006,45(21):5095-5116.
    [183]Zhigang Shen, Ning He, Liang Li. Application of Fuzzy Logic and Self-organizing Network to Tool-wear Classification[J]. Transactions of Nanjing University of Aeronautics and Astronautics,2009,26(1):9-15.
    [184]C. Scheffer, P.S. Heyns. Wear Monitoring in Turning Operations Using Vibration and Strain Measurements [J]. Mechanical Systems and Signal Processing,2001, 15(6):1185-1202.
    [185]吕俊杰,王杰,王玫,等.基于SOM和HMM结合的刀具磨损状态监测研究[J].中国机械工程,2010(13):1531-1535.
    [186]申志刚.高速切削刀具磨损状态的智能监测技术研究[D].南京航空航天大学博士学位论文,2009.
    [187]L.P. Heck, J. H. Mcclellan. Mechanical System Monitoring Using Hidden Markov Models[C]. International Conference on, Acoustics, Speech, and Signal Processing, 1991:1697-1700.
    [188]Lane M.D. Owsley, Les E. Atlas, Gary D. Bernard. Self-organizing Feature Maps and Hidden Markov Models for Machine-tool Monitoring [J]. Ieee Transactions on Signal Processing,1997,45(11):2787-2798.
    [189]郑建明.基于HMM的多特征融合钻头磨损监测技术的研究[D].西安理工大学博士学位论文,2004.
    [190]Tony Boutros, Ming Liang. Detection and Diagnosis of Bearing and Cutting Tool Faults Using Hidden Markov Models[J]. Mechanical Systems and Signal Processing, 2011,25(6):2102-2124.
    [191]Ozur Cetin, Mari Ostendorf, Gary D. Bernard. Multirate Coupled Hidden Markov Models and Their Application to Machining Tool-wear Classification[J]. Ieee Transactions on Signal Processing,2007,55(6):2885-2896.
    [192]S. Varma, J.S. Baras. Tool Wear Estimation From Acoustic Emissions:a Model Incorporating Wear-rate [J]. Proceedings-International Conference on Pattern Recognition,2002,16(1):492-495.
    [193]Litao Wang, Mostafa G. Mehrabi, Elijah Kannatey-asibu jr. Hidden Markov Model-based Tool Wear Monitoring in Turning[J]. Journal of Manufacturing Science and Engineering, Transactions of the Asme,2002,124(3):651-658.
    [194]U. Natarajan, P. Arun, V.M. Periasamy. On-line Tool Wear Monitoring in Turning By Hidden Markov Model (hmm)[J]. Journal of the Institution of Engineers (india). Part Pr:Production Engineering Division,2007,87(MAR.):31-35.
    [195]Yang Min, Li Bin. Drilling Tool Failure Diagnosis Based on Ga-svm[C]. Proceedings-4th International Conference on Computational and Information Sciences, ICCIS 2012,2012:1303-1306.
    [196]Li Bin, Yang Min. Analysis Model of Drilling Tool Failure Based on Pso-svm and Its Application[C]. Proceedings-4th International Conference on Computational and Information Sciences, ICCIS 2012,2012:1307-1310.
    [197]Li Jia, Zheng Jian-ming, Bian Xiao-jing, et al. Research on Ga-svm Tool Wear Monitoring Method Using Hht Characteristics of Drilling Noise Signals[C].2011 International Conference on Consumer Electronics, Communications and Networks, CECNET 2011-Proceedings,2011:635-638.
    [198]徐创文,王永,罗文翠.基于模糊聚类的铣削刀具磨损状态识别研究[J].应用力学学报,2009(2):218-223+401.
    [199]Zhijun Wang, Wolfhard Lawrenz, Raj B.K.N. Rao, et al. Feature-filtered Fuzzy Clustering for Condition Monitoring of Tool Wear[J]. Journal of Intelligent Manufacturing,1996,7(1):13-22.
    [200]S. Li, M.A. Elbestawi. Fuzzy Clustering for Automated Tool Condition Monitoring in Machining[J]. Mechanical Systems and Signal Processing,1996,10(5):533-550.
    [201]陈爱弟,王信义,王忠民,等.基于模糊聚类的刀具磨损量在线监测方法[J].北京理工大学学报,2000(3):276-280.
    [202]D. Kara ali, M.E.A. Ghernaout, S. Galiz, et al. Flank Wear Modeling of a Tungsten Carbide Tip Using the Gmdh Method in Turning Operation[J]. Mechanika,2012, 18(5):582-590.
    [203]Godfrey C. Onwubolu, Petr Buryan, Frank Lemke. Modeling Tool Wear in End-milling Using Enhanced Gmdh Learning Networks[J]. International Journal of Advanced Manufacturing Technology,2008,39(11):1080-1092.
    [204]高宏力.切削加工过程中刀具磨损的智能监测技术研究[D].西南交通大学博士 学位论文,2005.
    [205]黄遂.切削加工过程中刀具磨损智能监测与切削力预测技术研究[D].西南交通大学硕士学位论文,2010.
    [206]张大吉.基于双谱与分形技术及神经网络的刀具智能诊断技术研究[D].西南交通大学硕士学位论文,2008.
    [207]朱丽琴.基于分形理论的刀具磨损状态识别研究[D].西南交通大学硕士学位论文,2009.
    [208]高龙.基于小波分析和集成神经网络的刀具磨损监测技术研究[D].西南交通大学硕士学位论文,2007.
    [209]李敏.基于粒子群优化神经网络的刀具磨损状态监测技术研究[D].西南交通大学硕士学位论文,2012.
    [210]陈侃.基于多模型决策融合的刀具磨损状态监测系统关键技术研究[D].西南交通大学博士学位论文,2012.
    [211]李邓化,彭书华,许晓飞.智能检测技术及仪表[M].北京市:科学出版社,2012.
    [212]张兆隆.机械制造技术[M].北京市:北京理工大学出版社,2011.
    [213]Yusuf Altintas,罗学科.数控技术与制造自动化[M].北京市:化学工业出版社,2002.
    [214]Y Altintas, P Lee. Mechanics and Dynamics of Ball End Milling[J]. Journal of Manufacturing Science and Engineering,1998,120(4):684-692.
    [215]S Blanco, A Figliola, R Quian Quiroga, et al. Time-frequency Analysis of Electroencephalogram Series. Iii. Wavelet Packets and Information Cost Function[J].Physical Review E,1998,57(1):932.
    [216]Corinna Cortes, Vladimir Vapnik. Support-vector Networks[J]. Machine Learning, 1995,20(3):273-297.
    [217]曹健.图像目标的表示与识别[M].北京市:机械工业出版社,2012.
    [218]Richard O Duda, Peter E Hart, David G Stork. Pattern Classification[M]. New York: Pattern Classification,2012.
    [219]王晓龙,关毅.计算机自然语言处理[M].北京市:清华大学出版社,2004.
    [220]谢锦辉.隐Markov模型HMM及其在语音处理中的应用[M].武汉市:华中理工大学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700