mCD99L2基因靶向siRNA诱导小A20细胞转化为H/RS样细胞的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     淋巴瘤是原发于淋巴造血组织的免疫系统恶性肿瘤,随着AIDS、器官移植、肿瘤放化疗免疫抑制的应用等近年来发病率急剧升高。引人关注的是霍奇金淋巴瘤(Hodgkin lymphoma,HL)独特的组织病理学特征,它虽是恶性淋巴瘤,但与非霍奇金淋巴瘤(non Hodgkin’s lymphoma,NHL)却截然不同:(1)HL的恶性细胞成分H/RS细胞一般只占肿瘤组织的极少部分(<1%),其余是大量以淋巴细胞为主的背景细胞;(2)随着病变发展H/RS细胞的数量增加,而背景细胞数目减少;(3)H/RS细胞不但在原发灶内与背景细胞同时存在,而且在扩散转移的病灶内也同时出现;(4)患者的预后与H/RS细胞数量呈负相关,而与背景细胞数量呈正相关,极少量的H/RS细胞却直接影响着HL的恶性程度与预后。令人费解的是如此少量的H/RS细胞是如何生存于大量背景细胞之中?它与背景细胞之间究竟存在怎样复杂的相互关系?它虽然失去表达免疫球蛋白的能力,但却能逃避凋亡而持续增生;H/RS细胞是如何发生、发展而来的?要探究这些悬而未解决的问题,当务之急是建立类似人HL病理特征的实验动物模型,动态观察H/RS细胞与背景细胞之间的相互作用,以揭示H/RS细胞生存、增殖、免疫逃避、免疫调节的机制。然而,迄今尚未有理
Introduction
    Lymphomas are immune system malignant neoplasm of cells native to lymphoid tissue. Along with the widely use of immunosuppressant for AIDS, organ transplant, and chemotherapy for tumors, the occurrences of lymphomas have drastically increased in the recent years. Among all the research efforts in lymphomas, what have evoked great public interests are the unique histopathological characteristics of Hodgkin lymphoma (HL). Although both arise in the lymphoid tissue, Hodgkin's lymphoma is set apart from non Hodgkin's lymphomas by the following four distinctive areas in the lesions:
    1. HL cells are made of a small number, less than < 1%, of H/RS cells, in a background with great majority of lymphocytes or background cells.
    2. As the tumor progresses, the numbers of H/RS cells increase, while the background cells decrease.
    3. H/RS cells not only co-exist with background cells in the primary location, but also appears in the destination where tumor metastases.
    4. Prognosis of the tumor is negative correlated to the quantity of H/RS cells existing in the tumor and positive correlated to the background cells.
    Apparently, this small amount of H/RS cells has directly impact on the degree of malignancy and prognosis. It is not very clear how this small quantity of H/RS cells can "survive" in the mass of background cells. They have lost their immunoglobulin presenting ability, but are capable of escaping apoptosis and continue growing. How
引文
[19] Horie R, Watanabe T, Morishita Y, et al. Ligand-independent signaling by overexpressed CD30 drives NF-kappaB activation in Hodgkin-Reed-Sternberg cells [J] . Oncogene. 2002, 21: 2493-2503.
    [20] Emmerich F, Theurich S, Hummel M, et al. Inactivating I kappaep silon mutations in Hodgkin Reed Sternberg cells [J]. J Pathol. 2003, 201 (3) : 413-420.
    [21] Izban KF, Ergin M, Huang Q, et al. Characterization of NF-kB expression in Hodgkin's disease: inhibition of constitutively expressed NF-kB results in spontaneous caspase-independent apoptosis in Hodgkin and Reed-Sternberg cells [J]. Mod Pathol. 2001,14 (4): 297-310.
    [22] Giuseppina Bonizzi and Michael Karin.The two NF-kB activation pathways and their role in innate and adaptive immunity [ J] . TRENDS in Immunology. 2004, 25(6):280-288
    [23] Lee IS, Kim SH, Song HG, et al .The molecular basis for the generation of Hodgkin and Reed-Sternberg cells in Hodgkin's lymphoma [ J] . Int J Hematol. 2003, 77(4):330-5
    [24] Hori R, Watanabe T, Ito K, et al. Cytoplasmic aggeegation of TRAF2 and TRAF5 proteins in the Hodgkin-Reed-Sternberg cells [J] . Am JPathol.2002, 160: 1647-1654.
    [25] David A, Tthorley L, Andrew G. Persistence of the Epstein-Barr Virus and the Origins of Associted Lymphomas [J] . N Engl J Med. 2004, 350:1328-1337
    [26] Rodig SJ, Savage KJ, Nguyen V, et al. TRAF1 expression and c-Rel activation are useful adjuncts in distinguishing classical Hodgkin lymphoma from a subset of morphologically or immunophenotypically similar lymphomas [J]. Am J Surg Pathol. 2005,29: 196-203.
    [27] Montesinos-Rongen M., Roers A, Kuppers R, et al. Mutation of the p53 gene is not a typical feature of Hodgkin and Reed-Sternberg cells in Hodgkin's disease [J]. Blood. 1999,94:1755-1760.
    [28] Gravel S, G. Delsol, and T Al Saati. Single-cell analysis of the t(14,18)(q31,q21) chromosomal translocation in Hodgkin's disease demonstrates the absence of this translocationin neoplastic Hodgkin and Reed-Sternberg cells [J]. Blood. 1998,91:2866-2874.
    [29] Hargreaves PG, Al-Shamkhani A, et al. Soluble CD30 binds to CD 153 with high affinity and blocks transmembrane signaling by CD30 [J]. Eur J Immunol. 2002, 32:163-173.
    [30] M Vockerodtl, H Teschl and D Kube. Epstein-Barr virus latent membrane protein-1 activates CD25 expression in lymphoma cells involving the NF-KB pathway [J]. Genes and Immunity. 2001, 2: 433-441.
    [31] 余英豪 霍奇金淋巴瘤研究进展[J].实用肿瘤杂志.2005,20(1):1-4
    [32] Jaffet t RF. Viruses and Hodgkin's lymphoma [J]. Ann Oncol. 2002, 13 (Suppl 1) : 23-29.
    [33] TinguelyM, Ro senquist R, Sundst rom C, et al. Analysis of a clonally related mantle cell and Hodgk in lymphoma indicates Epstein-barr virus infection of a Hodgkin Reed-Steinberg cell precursor in a germinal center [J]. Am J Surg Pathol.2003, 27 (11) : 1483-1488.
    [34] Chan WC . Review article: The Reed-Sternberg cell in classical Hodgkin's disease [J] . Hemal Oncol. 2001, 19:1-17
    [35] Kulwichit W, Edwards RH, Davenport EM, et al.Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice[J]. Proc Natl Acad Sci U S A.1998, 95:11963-11968.
    [36] Ralph M. Meyer, Richard F. Ambinder and Sigrid Stroobants Hodgkin's Lymphoma: Evolving Concepts with Implications for Practice [J] . Amercan Society of Hematology. 2004, pp: 184-202
    [37] Hinz M, Lernke P, Anagnostopoulos I, et al. Nuclear factorkappaB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription activity [J] .J Exp Med. 2002,196:605-617.
    [38] Hatzivassiliou E, Miller we, RaabTraub N, et al. A fusion of the EBV latent membrane protein-l(LMP1) transmembrand domains to the CD40 cytoplasmic domain is similar to LMP1 in constitutive activation of epidermal growth factor receptor expression, nuclear factor-kappa B, and stress-activated protein kinase [J]. J Immunol. 1998,160:1116-1121.[39] Kieser A, Kilger E, Gries O, et al. Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade [J] . EMBO J. 1997,16: 6478-6485.
    [40] Eliopoulos AG, Young LS. Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein-Barr virus-encoded latent membrane proteinl (LMP1) [J] . Oncogene. 1998, 16:1831-1842.
    [41] Nakayama T, Fujisawa R, Izawa D, et al.Human B cells immortalized with Epstein-Barr vius upregulate CCR6 and CCR10 and downregulate CXCR4 and CXCR5 [J] . J Virol.2002, 76: 3072-3077.
    [42] Carter KL, Cahir-McFarland E, kieff E. Epstein-Barr virusinduced changes in B-lymphocyte gene expression [J] . J Virol. 2002, 76:10427-10436.
    [43] Prokova V, Mosialos G; Kardassis D. Inhibition of transforming growth factor beta signaling and Smad-dependent activation of transcription by the latent membrane proteinlof Epstein-Barr virus [J]. J Biol Chem. 2002, 277:9342-9350.
    [44] Sohn HW, Shin YK, Lee IS, et al. CD99 regulates the transport of MHC class I molecules from the Golgi complex to the cell surface [J]. J Immunol. 2001, 66: 787-794.
    [45] Dworzak, MN., Froschl, G, Printz, D., et al. CD99 expression in T-lineage ALL: implications for flow cytometric detection of minimal residual disease [J] . Leukemia. 2004,18: 703-708.
    [46] 李先茂,李燕,赵彤,等.霍奇金淋巴瘤CD99基因表达缺失的意义[J].第四军医大学学报.2004,25(23):2136—2137
    [47] Kim SH, Choi EY, Shin YK,et al.Generation of cells with Hodgkin's and Reed-Sternberg phenotype through downregulation of CD99 (Mic2) [J].Blood. 1998, 92:4287-95.
    [48] Kim SH, Shin YK, Lee IS,et al.Viral latent membrane protein 1 (LMP-1) induced CD99 down-regulation in B cells leads to the generation of cells with Hodgkin's and Reed-Sternberg phenotype [J]. Blood. 2000, 95:294-300
    [49] Lee IS, Shin YK, Chung DH, et al. LMPl-induced downregulation of CD99 molecules in Hodgkin and Reed-Sternberg cells [J] . Leuk Lymphoma 2001, 42(4):587-94.
    [50] Suh YH, kim MK, Shin YK, et al. Mutations of the immunoglobulin heavy chain variable region gene in CD99-deficient B JAB cells line [J] . Mol Cells. 2002,13:237-244.
    [51] Lee I, Kim MK, Choi EY, et al. CD99 expression is positively regulated by Spl and is negatively regulated by Epstein-Barr virus latent membrane protein 1 through nuclear factor-kappaB [J] .Blood. 2001, 97: 3596-3602.
    [52] 李先茂,朱梅刚,沈丽佳,等.小A20RS样细胞模型的初步建立[J].第四军医大学学报.2005,26(4):293-296
    [53] 沈丽佳,何滢,蒋会勇,等.mic2/CD99在经典型霍奇金淋巴瘤H/RS细胞中的表达及与Eber-1/LMP-1相关性的研究[J].中国病理生理杂志.2006,22(4)766-780
    [54] Manara MC, Bernard G, Lollini PL, et al. CD99 acts as an Oncosuppressor in osteosarcoma. Mol Biol Cell [J] . 2006, 17 (4): 1910-1921
    [55] Suh YH, Shin YK, Kook MCH, et al. Cloning, genomic organization, alternative transcripts and expression analysis of CD99L2, a novel paralog of human CD99, and identification of evolutionary conserved motifs [J] . Gene . 2003, 307: 63-76.
    [56] Gabriele B, Stephan K, Stefan B, et al. Mouse CD99 participates in T-cell recruitment in to inflamed skin [J] . Blood. 2004, 104:3205-3213.
    [57] 沈丽佳,方唯意,谢思明,等.小鼠B淋巴瘤A20细胞株mCD99L2基因表检测及真核表达载体的构建[J].南方医科大学学报.2006,26(2):144-149
    [58] Kanzle H, Hansmann ML, Kapp U, et al. Molecular signle cell analysis emonstrateds the derivation of a peripheral blood-derived cell line(L1236) from the Hodgkin/Reed-Stemberg cells of a Hodgkin"s lymphoma patient [J]. Blood. 1996,87(8): 3429-3436
    [1] Kuppers R, Schmitz R, Distler V, et al. Pathogenesis of Hodgkin's lymphoma [J] . Eur J Haematol.2005, 75(Suppl.66): 26-33
    [2] Daniel R, Ralf K, Volker D. Molecular pathogenesis of Hodgkin's lymphoma [J]. J Clin Oncol.2005, 23 (26) : 6379-6386
    [3] Alexandar T, Caroline B, Alexandra K, et al. Rare expression of T-cell markers in classical Hodgkin's lymphoma [J] . Mod Pathol. 2005, 18(12): 1542-1549
    [4] Alexander C, Markus T, Heike L, et al. Impact of Latent Epstein-Barr Virus Infection on Outcome in Children and Adolescents With Hodgkin's Lymphom [J] J. Clin.Oncol. 2005, 23( 18): 4048-4056.
    [5] Kim SH, Choi EY, Shin YK, et al. Generation of cells with Hodgkin's and Reed-Sternberg phenotype through downregulation of CD99 (Mic2) [J]. Blood. 1998, 92(11):4287-4295.
    [6] Chan WC Review article: The Reed-Sternberg cell in classical Hodgkin's disease [J] .Hemal Oncol. 2001, 19(1): 1-17
    [7] 沈丽佳,何滢,蒋会勇,等.mic2/CD99在经典型霍奇金淋巴瘤H/RS细胞中 的表达及与Eber-1/LMP-1相关性的研究[J].中国病理生理学.2006,22(4):766-780
    [8] 徐晓丽,殷智榕,黄颖,等.大肠腺瘤中细胞凋亡和BCL-2,bax基因的表达[J].临床与实验病理学杂志.1998,14:328-330.
    [9] Chhanabhai M, Krajewski S, Krajeska M, et al.Immunohitochemical analysis of interleukin-1β converting enzyme/Ced-3 family protease,CPP32/caspase-3, in Hodgkin'sdisease[J].Blood.1997, 90: 2451-2455.
    [10] 杜跃斌,艾辉胜,王桂林,等.链亲和素—胶体金原位杂交检测急性白血病的多药耐药基因表达[J].实验血液杂志.1996,4:299—303.
    [11] Marie JP, Brophy NA, Ehsan MN, et al. Expression of multidrug resistance gene mdr—1 mRNA in a subset of normal bone marrow cells[J]. Br J Haematol.1992, 81: 145-152.
    [12] Gelin C, Aubrit F, Phalipon A, et al. The E2 antigen, a 32 kd glycoprotein involved in T-cell adhesion processes, is the MIC2 geneproduct [J]. EMBO J. 1989; 8:3253-3259.
    [13] Rosenkrabz AR, Majdic O, Stockl J, et al. Induction of neutrophil homotypic adhesion via sialophorin (CD43), a surface sialogycoprotein rextricted to haemopoietic cells [J]. Immunology. 1993, 80:431-438.
    [14] Majdic O, Stocdl J, Pickl WF, et al. Signaling and induction of enhanced cyto adsiveness via the hematopoietic progenitor cell surface molecule CD34 [J]. Blood. 1994, 83: 1226-1234.
    [15] Choi EY, Park WS, Jung KC, et al. CD99 induces upregulation of TCR and MHC class Ⅰ and 11 molecules on the surface of human thymocytes [J] . J Immrnol. 1998, 161: 749-754.
    [16] Waclavicek M, Majdic O, Stulnin T, et al,CD99 engagement on human peripheral blood T cells results in TCR/CD3-dependent cellular activation and allows for Th-restricted cytokine production [J]. J Immunol.1998, 161:4671-4678.
    [17] Pettersen RD, Bernard G, Olafsen MK, et al. CD99 signals caspase independent T cell death [J] .J Immunol. 2001,166(8):4931-4942.
    [18] 郭东辉,范敬东,师宜荃,等.CD99在卵巢性索.间质肿瘤中的表达[J]. 中华病理学杂志.2002,31(3):257-258
    [19] 李先茂,李燕,赵彤,等.霍奇金淋巴瘤CD99基因表达缺失的意义[J].第四军医大学学报.2004,25(23):2136—2137
    [20] Lee IS, Shin YK, Chung DH, et al. LMPl-induced downregulation of CD99 molecules in Hodgkin and Reed-Sternberg cells [J]. Leuk Lymphoma. 2001, 42(4):587-594.
    [21] Kim SH, Shin YK, Lee IS, et al .Viral latent membrane protein I(LMP-1) induced CD99 down-regulation in B cells leads to the generation of cells with Hodgkin's and Reed-Stemberg phenotype [J] .Blood. 2000, 95(1):294-300
    [22] Suh YH, kim MK, Shin YK, et al. Mutations of the immunoglobulin heavy chain variable region gene in CD99-deficient BJAB cells line [J] . Mol Cells. 2002, 13(2):237-244.
    [23] Sohn HW, Shin YK, Lee IS, et al. CD99 regulates the transport of MHC class Ⅰ molecules from the Golgi complex to the cell surface [J]. J Immunol. 2001, 166(2): 787-794.
    [1] 沈丽佳,赵彤.Hodgkin和Reed-Stemberg细胞的发生及生物学特征研究进展[J].中国医学研究与临床.2006,4(1):53-56
    [2] Pettersen RD, Bemard G, Olafsen MK, et al. CD99 Signals Caspase-Independent T Cell Death[J].The Journal of Immunology.2001,166(8): 4931-4942
    [3] Kim SH, Shin YK, Lee IS, et al. Viral latent membrane protein 1 (LMP-1)-induced CD99 down-regulation in B cells leads to the generation of cells with Hodgkin's and Reed-Stemberg phenotype [J]. Blood. 2000, 95(1): 294-300
    [4] Lee IS, Shin YK, Chung DH, et al. LMPl-induced downregulation of CD99 molecules in Hodgkin and Reed-Sternberg cells [J]. Leuk Lymphoma. 2001,42(4): 587-594
    [5] Suh YH, Shin YK, Kook MC,et al. Cloning, genomic organization, alternative transcripts and expression analysis of CD99L2, a novel paralog of human CD99, and identification of evolutionary conserved motifs[J]. Gene. 2003,307(1):63-76
    [6] Gabriele Bixel, Stephan Kloep, Stefan Butz,et al. Mouse CD99 participates in T-cell recruitment into inflamed skin[J]. Blood. 2004,104(10):3205-3213
    [7] Kim SH, Choi EY, Shin YK, et al. Generation of cells with Hodgkin's and Reed-Sternberg phenotype through downregulation of CD99 (Mic2) [J]. Blood. 1998, 92(11):4287-95.
    [8] McManus MT, Sharp PA. Gene silencing in mammals by function in somatic mammalian cells using small interfering RNAs [J]. Methods. 2002, 26(2): 199-213.
    [9] Elbashir SM, Harborth J, Weber K, et al. Analysis of gene small interfering RNAs [J]. Nat Rev Genet. 2002, 3 (10): 737-747.
    [10] 李先茂,李燕,赵彤,等.霍奇金淋巴瘤CD99基因表达缺失的意义[J].第四军医大学学报.2004,25(23):2136—2137
    [11] 沈丽佳,何滢,蒋会勇,等.mic2/CD99在经典型霍奇金淋巴瘤H/RS细胞中的表达及与Eber-1/LMP-1相关性的研究[J].中国病理生理杂志.2006,22(4):766-780
    [12] 李先茂,朱梅刚,沈丽佳,等.小A20RS样细胞模型的初步建立[J].第四军医大学学报.2005,26(4):293-296
    [13] 沈丽佳,方唯意,谢恩明,等.小B淋巴瘤A20细胞株mCD99L2基因表达检测及真核表达载体的构建[J].南方医科大学学报.2006,26(2):144-149
    [14] ElbashirSM, HarborthJ, LendeckelW, et al. Duplexesof21 -nucleotide RNAs interference in cultured mammalian cells [J]. Nature. 2001, 441 (6836):494-498.
    [15] Fire A. RNA -triggered gene silencing [J]. Trends Genet, 1999, 15(9): 358-363.
    [16] Catalano C, Azzalin G, Macino G, et al. Gene silencing in worms and fungi [J]. Nature. 2000, 404(6775): 245.
    [17] Sharp PA, Zamore PD. Molecular biology. RNA interfrence [J]. Science. 2000, 287(5462): 2431-2433.
    [18] Sharp PA. RNA interfrence-2001[J]. Genes Dev. 2001, 15 (5): 485-490.
    [19] Dimitri S,Leigh F, Aparma S,et al. Specificty of Short interfering RNA determined thrugh gene expression signatures[J].Proc Natl Acad Sci USA.2003,100(11): 6347-6352
    [1] Kim KJ, Kanellopoulos-Langevin C, Merwin RM, et al. Establishment and characterization of BALB/c lymphoma lines with B cell properties[J]. J Immunol. 1979,122 (2):549-54.
    [2] Suh YH, Shin YK, Kook MCH, et al. Cloning, genomic organization, alternative transcripts and expression analysis of CD99L2, a novel paralog of human CD99, and identification of evolutionary conserved motifs [J]. Gene. 2003, 307: 63-76.
    [3] Gabriele B, Stephan K, Stefan B, et al. Mouse CD99 participates in T-cell recruitment in to inflamed skin [J]. Blood. 2004, 104:3205-3213.
    [4] Van den Haute C, Eggermont K, Nuttin B, et al. Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in mouse brain[J]. Hum Gene Ther.2003, 14(18): 1799-1807.
    [5] Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference [J]. Nat Genet. 2003, 33(3) : 401-406.
    [6] Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference [J] .Cancer Cell. 2002, 2(3) : 243-247.
    [7] 李振宇,徐开林,潘秀英.慢病毒载体构建及结构优化[J].国外医学:分子生物学分册.2002,24(5):310-313.
    [8] Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector [J]. Science. 1996, 272(5259): 263-267.
    [9] Naldini Luigi. Lentiviruses as gene transfer agents for delivery to non-dividing cells [J]. Curr Opin Biotechnol. 1998, 9(5): 457-463.
    [10] Shin JJ, Katayama T, Michaud WA, et al. Short hairpin RNA system to inhibit uman 16 in squamous cell carcinoma [J]. Arch Otolaryngol Head Neck Surg. 2004, 130(1): 68-73.
    [1] Kuppers R and Hansmann ML. The Hodgkin and Reed/Stemberg cell [J]. IJBCB. 2005, 37(3): 511-517
    [2] Lee IS, Kim SH, Song HG, et al.The molecular basis for the generation of Hodgldn and Reed-Sternberg cells in Hodgkin's lymphoma[J]. Int J Hematol. 2003, 77(4):330-5.
    [3] 沈丽佳,何滢,蒋会勇,等.mic2/CD99在经典型霍奇金淋巴瘤H/RS细胞中的表达及与Eber-1/LMP-1相关性的研究[J].中国病理生理杂志.2006,22(4):766-780
    [4] 沈丽佳,方唯意,谢思明,等.小B淋巴瘤A20细胞株mCD99L2基因表达检测及真核表达载体的构建[J].南方医科大学学报.200,26(2):144-149
    [5] 邱存平,吴红.恶性肿瘤动物模型的建立[J].医学与哲学,19991 20(8):16-18
    [6] S.C. Burgess and Davison T. F. Identification of the Neoplastically Transformed Cells in Marek's Disease Herpesvirus-Induced Lymphomas: Recognition by the Monoclonal AntibodyAV37[J]. J Virology. 2002, 76 (14): 7276-7292.
    [7] S. C. Burgess, J. R. Young, B. J. G. Baaten, et al. Marek's disease is a natural model for lymphomas overexpressing Hodgkin's disease antigen (CD30) [J].PNAS. 2004, 101(38):13879-13884
    [8] Bernardi R, Grisendi S,Pandolfi PP. Modelling haematopoietic malignancies in the mouse and therapeutical implications[J]. Oncogene.2002, 21(21):3445-58.
    [9] Owens MH, Bonavida B.Immune functions characteristic of SJL/J mice and their association with age and spontaneous reticulum cell sarcoma[J]. Cancer Res. 1976, 36(3):1077-83.
    [10] Bryant J, Pham L, Yoshimura L, et al. Development of Intermediate-Grade Mantle Cell) and Low-Grade (Small Lymphocytic and Marginal Zone) Human Non-Hodgkin's Lymphomas Xenotransplanted in Severe Combined Immunodeficiency Mouse Models [J]. Lab Invest .2000, 80:557-573.
    [11] von Kalle C, Wolf J, Becker A, et al. Growth of Hodgkin cell lines in severely combined immunodeficient mice [J]. Int J Cancer. 1992, 52 (6):887-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700