鸭瘟病毒UL51基因部分特性及其基因工程蛋白应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1鸭瘟病毒U151基因的序列特征分析及密码子偏爱性分析根据本实验室构建的鸭瘟病毒(DPV) DNA文库,并结合NCBI中的开放阅读框(ORF) Finder和BLAST工具进行分析,一个完整的ORF被鉴定出来。该ORF是DPV UL51基因(GenBank No.DQ072725),大小为759bp,编码一种皮层蛋白,并且含有一个在α-疱疹病毒亚科中保守的区域。进化关系分析揭示DPV UL51基因与马立克属疱疹病毒UL51基因的进化关系最近。之后,对该基因编码蛋白序列进行了一系列生物信息学分析,结果显示,该蛋白含有4个潜在的磷酸化位点、,1个潜在的酰基化位点和4个潜在的线性B细胞表位,表明它可能是一种磷酸化和酰基化的蛋白,并且能够诱导较强的免疫反应;同时,该蛋白不含任何的N-糖基化位点、跨膜区域、信号肽和核定位信号,却含有高尔基体定位信号,表明它可能定位于胞浆的高尔基体中。对DPV UL51基因密码子偏爱性分析的结果揭示,该基因对同义密码子中第三位为A和T的密码子有强烈的偏爱性,并且原核表达系统可能更适合该基因的表达。这些结果为进一步研究DPV UL51基因的特性和功能提供了理论支持。
     2 DPV UL51基因的克隆、原核表达、产物纯化及其多克隆抗体的制备根据本实验室提供的DPV UL51基因序列,采用primer5.0软件设计一对特异性引物,运用PCR方法从DPV基因组DNA中扩增UL51基因,并将其克隆至pMD18-T载体中,经EcoRⅠ和XhoⅠ双酶切、PCR和DNA测序鉴定正确后,将该基因正向插入原核表达载体pET28a(+)的EcoRⅠ和XhoⅠ位点之间,成功构建了重组表达质粒pET28a-UL51。将该表达质粒转化到表达宿主菌BL21(DE3)中,用IPTG诱导,表达出了大小约为34KD的重组UL51蛋白,并且主要以包涵体形式存在;经过对诱导剂IPTG浓度、诱导温度和诱导时间的优化,确定了该重组表达质粒的最佳诱导条件为0.8mmol/L IPTG、37℃条件下诱导4h。将表达产物用镍柱梯度亲和层析纯化后,高纯度的表达蛋白与等量弗氏佐剂混合作为免疫原,四次免疫家兔,获得了抗重组UL51蛋白高免血清。将该血清经辛酸-硫酸铵粗提和High Q阴离子交换柱层析纯化后,得到了特异性强的兔抗重组UL51蛋白抗体IgG,为进一步研究DPV UL51基因的特性和功能奠定了基础。
     3 DPV UL51基因在感染宿主细胞中的转录和表达特征本试验应用实时荧光定量RT-PCR和Western blotting法检测DPV UL51基因在鸭胚成纤维细胞(DEF)中的转录和表达情况。结果表明:该基因在DPV感染后2h时已经开始转录,8h开始表达,48h转录和表达量都达到最高峰,之后逐渐降低;该基因在DEF细胞中的表达产物分子量为34KD;并且该基因表达产物是病毒粒子的一种组成成分。该研究为阐明DPVUL51基因的功能提供了有用的数据。
     4 DPV UL51蛋白在病毒感染细胞中的定位通过间接免疫荧光技术检测DPV UL51蛋白在病毒感染细胞内的定位特性,结果显示,最早可在感染后8h的胞浆中检测到特异性荧光点,24-36 h有大量绿色荧光团块聚集于近核区域,之后随着细胞病变的增强,胞核和胞浆中的绿色荧光均开始减弱。用胶体金免疫电镜法检测DPV UL51蛋白在DPV感染细胞中的亚细胞定位,结果显示,DPV UL51蛋白主要位于胞浆空泡中的病毒粒子和一些膜结构上;此外,在感染早期,DPV UL51蛋白大量累积于高尔基复合体膜上,其后通过某种未知机理被运送到细胞膜附近。该研究也为阐明DPVUL51蛋白的功能奠定了基础。
     5 DPV UL51基因真核表达载体的构建及其在COS-7细胞中的瞬时转录和表达特性根据DPV UL51基因序列设计一对特异性引物,用PCR扩增并克隆至pMD18-T载体上,经双酶切和测序鉴定后,再将该目的片段亚克隆到pcDNA3.1(+)真核表达载体上,得到重组质粒pcDNA3.1-UL51,通过脂质体介导将其转入COS-7细胞;应用实时荧光定量RT-PCR、Western blotting和间接免疫荧光法检测该基因在COS-7细胞中的转录、表达和定位情况。结果表明:该基因在转染后6h时已经开始转录,12 h开始表达,24 h转录和表达量都达到最高峰,之后逐渐降低;并且该基因在COS-7细胞中得表达产物的分子量为33 KD。间接免疫荧光法显示该基因的表达产物早期聚集于近核区域,晚期定位于胞浆和胞核中。该研究也为阐明DPV UL51基因的特性和功能提供了有用的数据。
     6用免疫组化方法检测DPV UL51蛋白在人工感染鸭组织中的定位和动态分布采用DPV强毒CHv株人工感染30日龄鸭,于攻毒后于不同时间采集法氏囊、胸腺、脾、哈德氏腺、肝、胰、食管、腺胃、小肠(包括十二指肠、空肠和回肠)、大肠(包括盲肠和直肠)、脑、肾、肺、心、肌肉组织或器官,用建立的基于重组UL51蛋白抗体的间接免疫荧光和免疫酶组化法,分别检测DPV UL51蛋白在鸭体组织中的定位和动态分布。结果表明,DPV UL51蛋白主要分布在法氏囊、胸腺、脾脏、肝脏、食道、和肠道中,并且主要定位于淋巴细胞、网状细胞、巨噬细胞和上皮细胞的胞浆中。本研究不仅有助于理解在急性DPV感染时,DPV的致病机理,同时也为α-疱疹病毒UL51蛋白同源物的定位和分布的研究奠定了基础。
     7基于重组UL51蛋白的间接EL ISA法和胶体金免疫层析试纸条法检测鸭瘟病毒抗体的研究和应用DPV感染给世界上养鸭国家和地区造成了重大的经济损失。DPV特异性抗体的监测是评价DPV弱毒疫苗效果和制定合理的免疫程序的关键。因此,本研究中,基于纯化的重组UL51蛋白,我们分别建立了一种间接ELISA法(UL51-ELISA)和一种免疫层析试纸条法(UL51-ICS)来检测DPV血清抗体。首先对UL51-ELISA法的反应条件进行优化,结果表明,最适重组UL51蛋白包被量为2.5μg/100μL,最佳的血清稀释倍数为1:200,最佳的酶标二抗稀释倍数为1:2000;用建立的UL51-ELISA法对鸭病毒性肝炎病毒(DHV)、鸭疫里默氏菌(RA)、鸭大肠杆菌(E.coli)的阳性血清进行检测,结果均为阴性,特异性好;对酶标板内或板间重复试验显示变异系数均小于10%,能检出经1:3200倍稀释的DPV阳性血清。UL51-ICS是基于膜层析原理,并以胶体金标记的重组UL51蛋白和胶体金标记的羊抗兔IgG混合物共同作为示踪剂的一种方法。该ICS法将纯化的重组UL51蛋白抗原包被于检测线(T),兔IgG包被于质控线(C)。经优化和筛选,确定了UL51-ICS法中的重组UL51蛋白、兔IgG、胶体金标记的重组UL51蛋白和胶体金标记的羊抗兔IgG的最佳工作浓度分别为2mg/mL、lmg/mL、2mg/mL和2mg/mL。用建立的UL51-ICS法分别对非DPV的鸭源病原体阳性血清进行检测,结果均为阴性,特异性好;并能检出经1:128倍稀释的DPV阳性血清。同时,该法也具有良好的批内及批间重复性和较好的稳定性,制备好的试纸条至少可在4℃或25℃保存1年;为了评价UL51-ELISA和UL51-ICS法的效果,我们同时用UL51-ELISA、UL51-ICS、包被全病毒的ELISA法(DPV-ELISA)和中和试验(NT)四种方法对110份地方鸭血清进行检测,结果显示,与DPV-ELISA和NT相比,本研究建立的UL51-ELISA法与UL51-ICS法都有较高的特异性、敏感性和很高的的符合率,并且成本低,适于在现场或实验室进行DPV感染的血清学监测。
     8基于抗重组UL51蛋白抗体的抗原捕获ELISA法和胶体金免疫层析试纸条法检测DPV的研究和应用本研究中,我们使用纯化的大鼠抗重组UL51蛋白多克隆抗体和兔抗重组UL51蛋白多克隆抗体,分别建立了一种抗原捕获ELISA法(AC-ELISA)和一种胶体金免疫层析试纸条(ICS)法来检测DPV。使用建立的抗原捕获AC-ELISA方法,可以检测到1:640倍稀释的阳性DPV细胞培养液中的DPV;检测含DHV的鸭胚尿囊液、含RA的菌体培养液和含E. coli菌体培养液等结果均为阴性。使用建立的ICS法,可以检测到1:80倍稀释的阳性DPV细胞培养液中的DPV;检测含DHV的鸭胚尿囊液、含RA的菌体培养液和含E. coli菌体培养液,结果均为阴性。为了评价AC-ELISA和ICS方法的效果,我们同时用AC-ELISA、ICS和常规PCR三种方法对10份人工感染DPV强毒后的病鸭泄殖腔棉拭子样品进行检测,结果显示,与PCR方法相比,本研究建立的AC-ELISA法和ICS具有较高的特异性、敏感性和符合率,适于在现场或实验室进行DPV感染的检测。
1 Sequence analysis and codon bias analysis of duck plague virus UL51 gene According to duck plague virus (DPV) DNA library constructed in our laboratory, and combining together with the analysis of open reading frame (ORF) Finder tool and BLAST tool of NCBI, a complete ORF (GenBank accession number DQ072725) of DPV was identified as a tegument protein encoding the DPV UL51 gene with a size of 759 bp, and contains a conserved domain of Alphaherpesvirinae UL51. Then, phylogenetic tree analysis revealed that the DPV UL51 gene was evolutionarily closer to Mardivirus genus of the Alphaherpesvirinae subfamily. After that, the UL51 gene was analyzed by a series of bioinformatics tools. The results showed that the DPV UL51 protein contained fourteen potential phosphorylation sites, one potential palmitoylation site and four potential linear B-cell epitopes, suggesting that it might be a phosphorylated and palmitoylated protein, and be able to induce a very strong immune response. Meanwhile, the DPV UL51 protein does not contain any N-linked glycosylation sites, transmembrane helix, signal peptides, and nuclear location signals (NLS), but it contains Golgi apparatus location signals, suggesting that it might localize to the Golgi apparatus of the cytoplasm. Besides, the results of codons usage bias analysis of the DPV UL51 gene showed that, codon of the gene was strong bias towards the synonymous codons with A and T at the third codon position, and the prokaryotic expression system might be more suitable for the expression of the gene. These results provided theoretical supports for the further study on the characterization and function of DPV UL51.
     2 Cloning, prokaryotic expression, purification and polyclonal antibody preparation of DPV UL51 gene A pair of primers was designed based on the DPV UL51 gene sequence identified by our laboratory. The UL51 gene fragment was amplified from the genome of DPV by PCR, and cloned into pMD18-T vector and sequenced. Then the gene from the pMD18-UL51 vector with two restriction enzymes (EcoR I and XhoⅠ) digestion was subcloned into the prokaryotic expression vector pET-28a (+) to generate the recombinant plasmid pET28-UL51, which was identified by two restriction enzymes (EcoR I and XhoⅠ) digestion, and then transformed into E. coli BL21(DE3) strain and expressed under isopropylβ-D-1-thiogalactopyranoside (IPTG) induction. SDS-PAGE analysis showed that the induced expressed protein is about 34 KD, and mostly exists in inclusion examined by soluble analysis. Through optimization test it was found that the optimal condition was 0.8mmol/L IPTG as inductor, duration of 4 hours at 37℃. The fusion protein was purified by Ni2+-NAT column affinity chromatography, and used to immunize rabbits to generate the UL51 antiserum. Its antibody titer tested by agar gel precipitation was up to 1:32. The UL51 antibody IgG was subsequently obtained by using caprylic acid and ammonium sulfate precipitation and High-Q anion-exchange chromatography. These researches will provide a basis for further functional analysis of the DPV UL51 gene.
     3 The transcription and expression characteristics of DPV UL51 gene in DPV-infected cells In this study, we determined the transcription and expression characteristics of DPV UL51 gene by real-time quantitative RT-PCR and western blotting. The results indicated that DPV UL51 gene transcripts appeared at 2 h post infection (PI), and its expression products were first detected at 8 h PI, and then both of the transcripts and expression products were up to a peak at 48 h PI, thereafter both of them were reduced; A 34 KD protein in DEF cells was detected, and the UL51 protein was a component of DPV virions. This study provides serviceable datum for elucidating characteristics and functions of the DPV UL51 gene.
     4 Subcellular localization of DPV UL51 protein in DPV-infected host cells The results of indirect immunofluorescence technique showed that specific fluorescence appeared in cytoplasm as early as 8 hour PI and a great deal of specific fluorescence concentrated in the juxtanuclear region from 24 to 36 h PI,but there after the specific fluorescence became to weaken followed by the appearance of cytopathic effect. Transmission immunoelectron microscopy analysis revealed that DPV protein (pUL51) was mainly associated with cytoplasmic virions and also with some membranous structure near the pUL51-specific immuno-labeling intracellular virion in the cytoplasmic vesicles; moreover, the pUL51 efficiently accumulated in the Golgi apparatus at first, and then was sent to the plasma membrane from the Golgi by some unknown mechanism. In a word, these experimental results lay a foundation for further study on the function of DPV UL51 protein.
     5 Construction of the DPV UL51 gene eukaryotic expression vector and transient transcription and expression of the gene in COS-7 cells Based on the sequence of DPV UL51 gene to design a pair of primers, the gene was amplified by PCR, and cloned into pMD18-T vector. After restriction enzyme digestion and sequence analysis, it was subcloned into the pcDNA3.1 eukaryotic expression vector to generate the recombinant plasmid pcDNA3.1-UL51, which was transfected into the COS-7 cells by Lipofectin method; then, its transcription, expression and localization were determined by real-time qualiticative RT-PCR, western blotting and indirect immunofluorescence. The results indicated that its transcripts appeared at 6 h post transfection (PT), and its expression products were first detected at 12 h PT, and then both of the transcripts and expression products were up to a peak at 24 h PT, thereafter both of them were reduced; A 33 KD protein in COS-7 cells was detected, and the UL51 protein was localized to the perinuclear regions at 12 h PT, and to the nucleus and cytoplasm at later times. This study provides serviceable datum for elucidating characteristics and functions of the DPV UL51 gene.
     6 The localization and dynamic distribution properties of DPV UL51 protein in experimentally DPV-infected ducks detected by immunohistochemistry staining Fifty-eight 30-day-old DPV-free ducks were intramuscularly inoculated with the pathogenic DPV CHv strain as infection group, and two ducks were selected as pre-infection group.18 different tissues (bursa of Fabricius, thymus, spleen, Harders glands, liver, pancreas, esophagus, glandularis ventriculus, duodenum, jejunum, ileum, caecum, rectum, cerebrum, kidney, lung, myocardium, muscle) were collected from DPV-infected ducks at sequential time points, and prepared for indirect immunofluorescence staining and immunoperoxidase staining. The results showed that in acute DP cases, DPV pUL51 was mainly distributed in the bursa of Fabricius, thymus, spleen, liver, esophagus and intestine, and was mostly localized in the cytoplasm of lymphocytes, reticulum cells, macrophages and epithelial cells. The research will be not only useful for understanding the pathogenesis of this DP, but also for studying the localization and distribution properties of alphaherpesvirus pUL51 homologs.
     7 Development and application of an indirect ELISA and an immunochromatographic strip test based on recombinant UL51 protein for detecting antibody against DPV DPV infection causes substantial economic losses to the worldwide duck-producing areas. The monitoring of DPV-specific antibodies is a key to evaluate the effect of weak-DPV vaccine and develop rational immunization programs. Thus, in this study, based on a purified recombinant UL51 protein, an indirect ELISA (UL51-ELISA) and an immunochromatographic strip (UL51-ICS) test were developed for detecting the DPV serum antibodies. The optimum conditions for UL51-ELISA were determined. The results demonstrated that the optimized evaluation could be obtained when the recombinant UL51 protein concentration is 2.5μg/100μL, the dilution of the examined serum is 1:200, and the enzyme linked antibody dilution is 1:2000. Other duck infected pathogen specific positive antiserum, such as duck hepatitis virus (DHV), duck riemirella anatipestifer (RA) and duck E.coli, were employed as negative controls and showed negative results. The coefficients of intra-assay and inter-assay variation were less than 10% and could detect DPV positive antiserum with a dilution of 1:3200. The UL51-ICS test is based on membrane chromatography, and uses both the recombinant UL51 protein conjugated with colloidal gold and goat anti-rabbit IgG conjugated with colloidal gold as the tracers. In the UL51-ICS, the purified recombinant UL51 protein was used as the capture reagent at the "test line", and the purified rabbit IgG was used as the capture reagent at the "control line". The optimum conditions for UL51-ICS test were determined. The results demonstrated that the optimized evaluation could be obtained when the recombinant UL51 protein concentration is 2mg/mL, the rabbit IgG concentration is lmg/mL, the recombinant UL51 protein conjugated with colloidal gold concentration is 2mg/mL, and the goat anti-rabbit IgG conjugated with colloidal gold concentration is 2mg/mL. Other duck infected pathogen specific positive antiserum were employed as negative controls and showed negative results. The reproducibility of intra-assay and inter-assay were good. The strips were stable for one year at 4℃or 25℃, and could detect DPV positive antiserum with a dilution of 1:128. To evaluate the effect of the UL51-ELISA and the UL51-ICS test,110 duck serum samples collected from several duck flocks were simultaneously tested by the UL51-ELISA, UL51-ICS, the whole DPV antigen as coated antigen ELISA method (DPV-ELISA) and neutralization test (NT). The results of detections revealed that, compared with the DPV-ELISA and NT, both the UL51-ELISA and UL51-ICS test have higher specificity, higher sensitivity, highest coincidence, low cost, and are suitable for the serological surveillance of DPV infection in the field or in the laboratory.
     8 Development and application of an antigen capture ELISA method and an immunochromatographic strip test based on anti-recombinant UL51 protein polyclonal antibody for detecting DPV antigen An antigen capture enzyme-linked immunosorbent assay (AC-ELISA) and an immunochromatographic strip (ICS) test were developed with the purified rat anti-UL51 recombinant protein polyclonal antibody and rabbit anti-UL51 recombinant protein polyclonal antibody for detecting DPV. For AC-ELISA, the 1:640 diluted viruses in the DPV-infected cells can be observed, while other pathogens such as DHV, RA, E.coli can not be detected by the AC-ELISA. For ICS, the 1:80 diluted viruses in the DPV-infected cells can be observed, while other pathogens such as DHV, RA, E.coli can not be detected by the AC-ELISA, too. Ten cloaca cotton pledget samples of ducks which were experimentally infected with virulent DPV CHv, were assayed. The results of detections revealed that, compared with the PCR, both the AC-ELISA and ICS test have higher specificity, higher sensitivity, higher coincidence, and can be used to diagnose DPV in the field or in the laboratory.
引文
[1]Davison A. J., Eberle R., Ehlers B., et al. The order Herpesvirales[J]. Arch Virol,2009,154: 171-177.
    [2]McGeoch D. J., Davison A. J., Aidan Dolan, et al. Molecular Evolution of the Herpesvirales. in: Domingo E., Parrish C.R., Holland J.J., (Ed.), Origin and Evolution of Viruses, Second Edition[M], Academic Press Elsevier Ltd,2008,447-475.
    [3]Roizman B., Knipe D.M., et al. Herpes simplex viruses and their replication. in:Knipe D.M., Howley P.M., Griffin D.E., (ed). Fields virology,5eds [M], Lippincott Williams & Wilkins, Philadelphia, 2006,2399-2460.
    [4]曾毅,主编.,艾滋病毒及其有关病毒[M],南开大学出版社,1994,135-148.
    [5]Mettenleiter T. C. Pathogenesis of neurotropic herpes viruses:role of viral glycoproteins in neuroinvasion and transneuronal spread[J]. Virus Res,2003,92:197-206.
    [6]Klupp B. G., Granzow H., Klopfleisch R., et al. Functional analysis of the pseudorabies virus UL51 protein[J]. J Virol,2005,79:3831-3840.
    [7]Nozawa N., Kawaguchi Y., Tanaka M., et al. Herpes simplex virus type 1 UL51 protein is involved in maturation and egress of virus particles[J]. J Virol,2005,79:6947-6956.
    [8]Koshizuka T., Kawaguchi Y., Nozawa N., et al. Herpes simplex virus protein UL11 but not UL51 is associated with lipid rafts[J]. Virus Genes,2007,35:571-575.
    [9]Dunn W., Chou C., Li H., et al. Functional profiling of a human cytomegalovirus genome[J]. Proc Natl Acad Sci U S A,2003,100:14223-14228.
    [10]Gompels U. A., Nicholas J., Lawrence G, et al. The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution[J]. Virology,1995,209:29-51.
    [11]Baer R., Bankier A. T., Biggin M. D., et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome[J]. Nature,1984,310:207-211.
    [12]Zimmermann W., Broll H., Ehlers B., et al. Genome sequence of bovine herpesvirus 4, a bovine Rhadinovirus, and identification of an origin of DNA replication[J]. J Virol,2001,75:1186-1194.
    [13]Albrecht J. C., Nicholas J., Biller D., et al. Primary structure of the herpesvirus saimiri genome[J]. J Virol,1992,66:5047-5058.
    [14]Telford E. A., Watson M. S., Aird H. C., et al. The DNA sequence of equine herpesvirus 2[J]. J Mol Biol,1995,249:520-528.
    [15]Moore P. S., Chang Y. Molecular virology of Kaposi's sarcoma-associated herpesvirus[J]. Philos Trans R Soc Lond B Biol Sci,2001,356:499-516.
    [16]Dolan A., Jamieson F. E., Cunningham C., et al. The genome sequence of herpes simplex virus type 2[J]. J Virol,1998,72:2010-2021.
    [17]Tyler S. D., Peters G. A., Severini A. Complete genome sequence of cercopithecine herpesvirus 2 (SA8) and comparison with other simplexviruses[J]. Virology,2005,331:429-440.
    [18]Perelygina L., Zhu L., Zurkuhlen H., et al. Complete sequence and comparative analysis of the genome of herpes B virus (Cercopithecine herpesvirus 1) from a rhesus monkey[J]. J Virol,2003,77: 6167-6177.
    [19]Lee L. F., Wu P., Sui D., et al. The complete unique long sequence and the overall genomic organization of the GA strain of Marek's disease virus[J]. Proc Natl Acad Sci U S A,2000,97: 6091-6096.
    [20]Izumiya Y, Jang H. K., Kashiwase H., et al. Identification and transcriptional analysis of the homologues of the herpes simplex virus type 1 UL41 to UL51 genes in the genome of nononcogenic Marek's disease virus serotype 2[J]. J Gen Virol,1998,79 (8):1997-2001.
    [21]Davison A. J., Scott J. E. The complete DNA sequence of varicella-zoster virus[J]. J Gen Virol, 1986,67(9):1759-1816.
    [22]Klupp B. G., Hengartner C. J., Mettenleiter T. C., et al. Complete, annotated sequence of the pseudorabies virus genome[J]. J Virol,2004,78:424-440.
    [23]Telford E. A., Watson M. S., McBride K., et al. The DNA sequence of equine herpesvirus-1[J]. Virology,1992,189:304-316.
    [24]Delhon G, Moraes M. P., Lu Z., et al. Genome of bovine herpesvirus 5[J]. J Virol,2003,77: 10339-10347.
    [25]Leung-Tack P., Audonnet J. C., Riviere M. The complete DNA sequence and the genetic organization of the short unique region (US) of the bovine herpesvirus type 1 (ST strain)[J]. Virology, 1994,199:409-421.
    [26]Ziemann K., Mettenleiter T. C., Fuchs W. Gene arrangement within the unique long genome region of infectious laryngotracheitis virus is distinct from that of other alphaherpesviruses[J]. J Virol,1998,72: 847-852.
    [27]Li Y., Huang B., Ma X., et al. Molecular characterization of the genome of duck enteritis virus[J]. Virology,2009,391:151-161.
    [28]McGeoch D. J., Dalrymple M. A., Davison A. J., et al. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1[J]. J Gen Virol,1988,69 (7):1531-1574.
    [29]Barker D. E., Roizman B. Identification of three genes nonessential for growth in cell culture near the right terminus of the unique sequences of long component of herpes simplex virus 1[J]. Virology, 1990,177:684-691.
    [30]程安春,汪铭书,文明,等.鸭病毒性肠炎病毒基因文库的构建及其核衣壳蛋白基因的发现、克隆与鉴定[J],高技术通讯,2006,16(9):948-953.
    [31]Roizman B. The function of herpes simplex virus genes:A primer for genetic engineering of novel vectors[J]. Proc. Natl. Acad. Sci.,1996,93:11307-11312.
    [32]Weir J. P. Regulation of herpes simplex virus gene expression[J]. Gene,2001,271:117-130.
    [33]寸韡.HSVI立即早期基因研究进展[J].国外医学.病毒学分册,2003,129-132.
    [34]寸韡,张莹,刘龙丁,等.单纯疱疹Ⅰ型病毒即刻早期基因上游调控序列分析[J].生物化学与生物物理进展,2006,33(1):77-82.
    [35]Daikoku T., Ikenoya K., Yamada H., et al. Identification and characterization of the herpes simplex virus type 1 UL51 gene product[J]. J Gen Virol,1998,79 (12):3027-3031.
    [36]Hamel F., Boucher H., Simard C. Transcriptional and translational expression kinetics of the bovine herpesvirus 1 UL51 homologue gene[J]. Virus Res,2002,84:125-134.
    [37]Lenk M., Visser N., Mettenleiter T. C. The pseudorabies virus UL51 gene product is a 30-kilodalton virion component[J]. J Virol,1997,71:5635-5638.
    [38]Wada K., Goshima F., Takakuwa H., et al. Identification and characterization of the UL14 gene product of herpes simplex virus type 2[J]. J Gen Virol,1999,80 (Pt 9):2423-2431.
    [39]Nozawa N., Daikoku T., Koshizuka T., et al. Subcellular localization of herpes simplex virus type 1 UL51 protein and role of palmitoylation in Golgi apparatus targeting[J].J Virol,2003,77:3204-3216.
    [40]Mettenleiter T. C. Herpesvirus assembly and egress[J]. J Virol,2002,76:1537-1547.
    [41]Baumeister J., Klupp B. G., Mettenleiter T. C. Pseudorabies virus and equine herpesvirus 1 share a nonessential gene which is absent in other herpesviruses and located adjacent to a highly conserved gene cluster[J]. J Virol,1995,69:5560-5567.
    [42]Chee M. S., Bankier A. T., Beck S., et al. Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169[J]. Curr Top Microbiol Immunol,1990,154:125-169.
    [43]Fuchs W., Ziemann K., Teifke J. P., et al. The non-essential UL50 gene of avian infectious laryngotracheitis virus encodes a functional dUTPase which is not a virulence factor[J]. J Gen Virol, 2000,81:627-638.
    [44]MacLean C. A., Clark B., McGeoch D. J. Gene UL11 of herpes simplex virus type 1 encodes a virion protein which is myristylated[J]. J Gen Virol,1989,70 (12):3147-3157.
    [45]Schmidt M. F., Bracha M., Schlesinger M. J. Evidence for covalent attachment of fatty acids to Sindbis virus glycoproteins[J]. Proc Natl Acad Sci U S A,1979,76:1687-1691.
    [46]Schmidt M. F., Schlesinger M. J. Fatty acid binding to vesicular stomatitis virus glycoprotein:a new type of post-translational modification of the viral glycoprotein[J]. Cell,1979,17:813-819.
    [47]Nair R., Rost B. LOC3D:annotate sub-cellular localization for protein structures[J]. Nucleic Acids Res,2003,31:3337-3340.
    [48]Elliott G., O'Hare P. Cytoplasm-to-nucleus translocation of a herpesvirus tegument protein during cell division[J]. J Virol,2000,74:2131-2141.
    [49]Hafezi W., Bernard E., Cook R., et al. Herpes simplex virus tegument protein VP22 contains an internal VP16 interaction domain and a C-terminal domain that are both required for VP22 assembly into the virus particle[J]. J Virol,2005,79:13082-13093.
    [50]Mettenleiter T. C. Budding events in herpesvirus morphogenesis[J]. Virus Res,2004,106:167-180.
    [51]Kelly B. J., Fraefel C., Cunningham A. L., et al. Functional roles of the tegument proteins of herpes simplex virus type 1[J]. Virus Res,2009,145:173-186.
    [52]Lee J. H., Vittone V, Diefenbach E., et al. Identification of structural protein-protein interactions of herpes simplex virus type 1[J]. Virology,2008,378:347-354.
    [53]Mettenleiter T. C. Intriguing interplay between viral proteins during herpesvirus assembly or:the herpesvirus assembly puzzle[J]. Vet Microbiol,2006,113:163-169.
    [54]Leuzinger H., Ziegler U., Schraner E. M., et al. Herpes simplex virus 1 envelopment follows two diverse pathways[J]. J Virol,2005,79:13047-13059.
    [55]Zhou Z. H., Chen D. H., Jakana J., et al. Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions[J]. J Virol,1999,73:3210-3218.
    [56]Mukhopadhyay A., Lee G. E., Wilson D. W. The amino terminus of the herpes simplex virus 1 protein Vhs mediates membrane association and tegument incorporation[J]. J Virol,2006,80: 10117-10127.
    [57]Klopfleisch R., Klupp B. G., Fuchs W., et al. Influence of pseudorabies virus proteins on neuroinvasion and neurovirulence in mice[J]. J Virol,2006,80:5571-5576.
    [58]Leege T., Fuchs W., Granzow H., et al. Effects of simultaneous deletion of pUL11 and glycoprotein M on virion maturation of herpes simplex virus 1[J]. J Virol,2008,83:896-907.
    [59]Farnsworth A., Wisner T. W., Johnson D. C. Cytoplasmic residues of herpes simplex virus glycoprotein gE required for secondary envelopment and binding of tegument proteins VP22 and UL11 to gE and gD[J]. J Virol,2007,81:319-331.
    [60]Kopp M., Granzow H., Fuchs W., et al. The pseudorabies virus UL11 protein is a virion component involved in secondary envelopment in the cytoplasm[J]. J Virol,2003,77:5339-5351.
    [61]Kopp M., Granzow H., Fuchs W., et al. Simultaneous deletion of pseudorabies virus tegument protein UL11 and glycoprotein M severely impairs secondary envelopment[J]. J Virol,2004,78: 3024-3034.
    [62]Silva M. C., Yu Q. C., Enquist L., et al. Human cytomegalovirus UL99-encoded pp28 is required for the cytoplasmic envelopment of tegument-associated capsids[J]. J Virol,2003,77:10594-10605.
    [63]Klupp B. G., Granzow H., Mundt E., et al. Pseudorabies virus UL37 gene product is involved in secondary envelopment[J]. J Virol,2001,75:8927-8936.
    [64]Resh M. D. Fatty acylation of proteins:new insights into membrane targeting of myristoylated and palmitoylated proteins[J]. Biochim Biophys Acta,1999,1451:1-16.
    [65]Loomis J. S., Courtney R. J., Wills J. W. Packaging determinants in the UL11 tegument protein of herpes simplex virus type 1[J]. J Virol,2006,80:10534-10541.
    [66]Loomis J. S., Bowzard J. B., Courtney R. J., et al. Intracellular trafficking of the UL11 tegument protein of herpes simplex virus type 1[J]. J Virol,2001,75:12209-12219.
    [67]Vittone V., Diefenbach E., Triffett D., et al. Determination of interactions between tegument proteins of herpes simplex virus type 1[J]. J Virol,2005,79:9566-9571.
    [68]O'Regan Kevin J., Bucks Michelle A., Murphy Michael A., et al. A conserved region of the herpes simplex virus type 1 tegument protein VP22 facilitates interaction with the cytoplasmic tail of glycoprotein E (gE)[J]. Virology,2007,358:192-200.
    [69]Gross S. T., Harley C. A., Wilson D. W. The cytoplasmic tail of Herpes simplex virus glycoprotein H binds to the tegument protein VP16 in vitro and in vivo[J]. Virology,2003,317:1-12.
    [70]Chi J. H., Harley C. A., Mukhopadhyay A., et al. The cytoplasmic tail of herpes simplex virus envelope glycoprotein D binds to the tegument protein VP22 and to capsids[J]. J Gen Virol,2005,86: 253-261.
    [71]Fuchs W., Klupp B. G., Granzow H., et al. Physical interaction between envelope glycoproteins E and M of pseudorabies virus and the major tegument protein UL49[J]. J Virol,2002,76:8208-8217.
    [72]Sandhu T. S., Metwally, S. A., Duck Virus Enteritis (Duck Plague). in:S. Y.M., (Ed.), Diseases of poultry[M], Blackwell Publishing, Singapore,2008,384-393.
    [73]Gardner R., Wilkerson J., Johnson J. C. Molecular characterization of the DNA of Anatid herpesvirus 1[J]. Intervirology,1993,36:99-112.
    [74]沈婵娟,程安春,汪铭书,等.鸭瘟病毒UL51基因在COS-7细胞中的瞬时表达[J].中国兽医科学,2009,39(10):859-865.
    [75]Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V:improved software for multiple sequence alignment[J]. Comput Appl Biosci,1992,8:189-191.
    [76]Tamura K., Dudley J., Nei M., et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J]. Mol Biol Evol,2007,24:1596-1599.
    [77]Emanuelsson O., Brunak S., von Heijne G., et al. Locating proteins in the cell using TargetP, SignalP and related tools[J]. Nat Protoc,2007,2:953-971.
    [78]Ren J., Wen L., Gao X., et al. CSS-Palm 2.0:an updated software for palmitoylation sites prediction[J]. Protein Eng Des Sel,2008,21:639-644.
    [79]Yuan Z., Teasdale R. D. Prediction of Golgi Type Ⅱ membrane proteins based on their transmembrane domains[J]. Bioinformatics,2002,18:1109-1115.
    [80]El-Manzalawy Y., Dobbs D., Honavar V. Predicting linear B-cell epitopes using string kernels[J]. J Mol Recognit,2008,21:243-255.
    [81]Cuff J. A., Barton G. J. Evaluation and improvement of multiple sequence methods for protein secondary structure prediction[J]. Proteins,1999,34:508-519.
    [82]Kelley L. A., Sternberg M. J. Protein structure prediction on the Web:a case study using the Phyre server[J]. Nat Protoc,2009,4:363-371.
    [83]Lambert C., Leonard N., De Bolle X., et al. ESyPred3D:Prediction of proteins 3D structures[J]. Bioinformatics,2002,18:1250-1256.
    [84]Mullan L. J., Bleasby A. J. Short EMBOSS User Guide. European Molecular Biology Open Software Suite[J]. Brief Bioinform,2002,3:92-94.
    [85]Zhao L.C., Cheng A.C., Wang M.S., et al. Characterization of codon usage bias in the dUTPase gene of duck enteritis virus[J]. Progress in Natural Science,2008,18:1069-1076.
    [86]Cai M. S., Cheng A. C., Wang M. S., et al. Characterization of synonymous codon usage bias in the duck plague virus UL35 gene[J]. Intervirology,2009,52:266-278.
    [87]孙铮,马亮,Robert M.,等.基因组水平上的密码子使用分析[J].中国科学,2009,39:948-953.
    [88]Wright F. The'effective number of codons' used in a gene[J]. Gene,1990,87:23-29.
    [89]Fauquet CM Mayo MA, Maniloff J, et al. Virus Taxonomy:Classification and Nomenclature of Viruses:Eighth Report of the International Committee on the Taxonomy of Viruses[M], Academic Press, San Diego,2005.
    [90]Liu S., Chen S., Li H., et al. Molecular characterization of the herpes simplex virus 1 (HSV-1) homologues, UL25 to UL30, in duck enteritis virus (DEV)[J]. Gene,2007,401:88-96.
    [91]Li H., Liu S., Kong X. Characterization of the genes encoding UL24, TK and gH proteins from duck enteritis virus (DEV):a proof for the classification of DEV[J]. Virus Genes,2006,33:221-227.
    [92]Chang H., Cheng A., Wang M., et al. Complete nucleotide sequence of the duck plague virus gE gene[J]. Arch Virol,2009,154:163-165.
    [93]Hu Y., Zhou H., Yu Z., et al. Characterization of the genes encoding complete US10, SORF3, and US2 proteins from duck enteritis virus[J]. Virus Genes,2009,38:295-301.
    [94]Chou K. C., Shen H. B. Cell-PLoc:a package of Web servers for predicting subcellular localization of proteins in various organisms[J]. Nat Protoc,2008,3:153-162.
    [95]Berry E. A., Dalby A. R., Yang Z. R. Reduced bio basis function neural network for identification of protein phosphorylation sites:comparison with pattern recognition algorithms[J]. Comput Biol Chem, 2004,28:75-85.
    [96]Blom N., Gammeltoft S., Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites[J]. J Mol Biol,1999,294:1351-1362.
    [97]Naldinho-Souto R., Browne H., Minson T. Herpes simplex virus tegument protein VP16 is a component of primary enveloped virions[J]. J Virol,2006,80:2582-2584.
    [98]Ottosen S., Herrera F. J., Doroghazi J. R., et al. Phosphorylation of the VP16 transcriptional activator protein during herpes simplex virus infection and mutational analysis of putative phosphorylation sites[J]. Virology,2006,345:468-481.
    [99]Ren X., Harms J. S., Splitter G. A. Tyrosine phosphorylation of bovine herpesvirus 1 tegument protein VP22 correlates with the incorporation of VP22 into virions[J]. J Virol,2001,75:9010-9017.
    [100]Smotrys J. E., Linder M. E. Palmitoylation of intracellular signaling proteins:regulation and function[J]. Annu Rev Biochem,2004,73:559-587.
    [101]Dietrich L. E., Ungermann C. On the mechanism of protein palmitoylation[J]. EMBO Rep,2004, 5:1053-1057.
    [102]Kleuss C., Krause E. Galpha(s) is palmitoylated at the N-terminal glycine[J]. EMBO J,2003,22: 826-832.
    [103]Huang K., Yanai A., Kang R., et al. Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins[J]. Neuron,2004,44: 977-986.
    [104]Kang R., Swayze R., Lise M. F., et al. Presynaptic trafficking of synaptotagmin Ⅰ is regulated by protein palmitoylation[J]. J Biol Chem,2004,279:50524-50536.
    [105]Schneider A., Lander H., Schulz G., et al. Palmitoylation is a sorting determinant for transport to the myelin membrane[J]. J Cell Sci,2005,118:2415-2423.
    [106]Greaves J., Salaun C., Fukata Y., et al. Palmitoylation and membrane interactions of the neuroprotective chaperone cysteine-string protein[J]. J Biol Chem,2008,283:25014-25026.
    [107]Zhou B., Liu L., Reddivari M., et al. The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility-and invasiveness-inhibitory activity[J]. Cancer Res,2004,64:7455-7463.
    [108]Cao Y., Huang Y. Palmitoylation regulates GDP/GTP exchange of G protein by affecting the GTP-binding activity of Goalpha[J]. Int J Biochem Cell Biol,2005,37:637-644.
    [109]Schmidt M. F. Fatty acylation of proteins[J]. Biochim Biophys Acta,1989,988:411-426.
    [110]Yang C., Compans R. W. Palmitoylation of the murine leukemia virus envelope glycoprotein transmembrane subunits[J]. Virology,1996,221:87-97.
    [111]Yang C., Spies C. P., Compans R. W. The human and simian immunodeficiency virus envelope glycoprotein transmembrane subunits are palmitoylated[J]. Proc Natl Acad Sci U S A,1995,92: 9871-9875.
    [112]Funke C., Becker S., Dartsch H., et al. Acylation of the Marburg virus glycoprotein[J]. Virology, 1995,208:289-297.
    [113]Hausmann J., Ortmann D., Witt E., et al. Adenovirus death protein, a transmembrane protein encoded in the E3 region, is palmitoylated at the cytoplasmic tail[J]. Virology,1998,244:343-351.
    [114]Grosenbach D.W., Hansen S.G., Hruby D.E. Identification and analysis of vaccinia virus palmitylproteins [J]. Virology,2000,275:193-206.
    [115]Corse E., Machamer C. E. The cytoplasmic tail of infectious bronchitis virus E protein directs Golgi targeting[J]. J Virol,2002,76:1273-1284.
    [116]Drisdel R. C., Alexander J. K., Sayeed A., et al. Assays of protein palmitoylation[J]. Methods, 2006,40:127-134.
    [117]Sorek N., Bloch D., Yalovsky S. Protein lipid modifications in signaling and subcellular targeting[J]. Curr Opin Plant Biol,2009,12:714-720.
    [118]Saha S., Raghava G. P. Prediction methods for B-cell epitopes[J]. Methods Mol Biol,2007,409: 387-394.
    [119]Duret L., Mouchiroud D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis[J]. Proc Natl Acad Sci U S A,1999,96:4482-4487.
    [120]Sakai H., Washio T., Saito R., et al. Correlation between sequence conservation of the 51 untranslated region and codon usage bias in Mus musculus genes[J]. Gene,2001,276:101-105.
    [121]Fedorov A., Saxonov S., Gilbert W. Regularities of context-dependent codon bias in eukaryotic genes[J]. Nucleic Acids Res,2002,30:1192-1197.
    [122]Ohno S. Universal rule for coding sequence construction:TA/CG deficiency-TG/CT excess[J]. Proc Natl Acad Sci U S A,1988,85:9630-9634.
    [123]石秀凡,黄京飞,柳树群等.人类基因同义密码子偏好的特征以及与基因GC含量的关系[J].生物化学与生物物理进展,2002,29:411-414.
    [124]Rodriguez-Trelles F., Tarrio R., Ayala F. J. Switch in codon bias and increased rates of amino acid substitution in the Drosophila saltans species group[J]. Genetics,1999,153:339-350.
    [125]Marin A., Gonzalez F., Gutierrez G., et al. Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cervisiae and Escherichia coli[J]. Nucleic Acids Res,1998,26:4540.
    [126]Moriyama E. N., Powell J. R. Codon usage bias and tRNA abundance in Drosophila[J]. J Mol Evol,1997,45:514-523.
    [127]顾万君,马建民,周童,等.不同结构的蛋白编码基因的密码子偏性研究[J].生物物理学报,2002.18:81-86.
    [128]王世峰,阮力.病毒密码子使用频率研究进展[J].生物技术通讯,2003,14:42-47.
    [129]Nakamura Y., Gojobori T., Ikemura T. Codon usage tabulated from international DNA sequence databases:status for the year 2000[J]. Nucleic Acids Res,2000,28:292-295.
    [130]Adzhubei A. A., Adzhubeib I. A., Krasheninnikov I. A., et al. Non-random usage of 'degenerate'codons is related to protein three-dimensional structure[J]. FEBS Letters,1996,399:78-82.
    [131]Adzhubei I. A., Adzhubei A. A. ISSD Version 2.0:taxonomic range extended[J]. Nucleic Acids Res,1999,27:268-271.
    [132]Tao X., Dafu D. The relationship between synonymous codon usage and protein structure[J]. FEBS Letters,1998,434:93-96.
    [133]Komar A. A., Lesnik T., Reiss C. Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation[J]. FEBS Letters,1999,462:387-391.
    [134]Kennedy S. P., Ng W. V., Salzberg S. L., et al. Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence[J]. Genome Res,2001,11:1641-1650.
    [135]Chiapello H., Lisacek F., Caboche M., et al. Codon usage and gene function are related in sequences of Arabidopsis thaliana[J]. Gene,1998,209:GC1-GC38.
    [136]J 萨姆布鲁克,D.W.拉塞尔(著),黄培堂等(译),分子克隆实验指南,第3版[M],科学出版社,北京,2002.
    [137]殷震,刘景华,主编,动物病毒学(第二版)[M],科学出版社,北京,1997.
    [138]Perosa F., Carbone R., Ferrone S., et al. Purification of human immunoglobulins by sequential precipitation with caprylic acid and ammonium sulphate[J]. J Immunol Methods,1990,128:9-16.
    [139]Bhanushali J. K., Gilbert J. M., McDougald L. R. Simple method to purify chicken immunoglobulin G[J]. Poult Sci,1994,73:1158-1161.
    [140]吴春涛,王建华,侯艳梅,等.牛疱疹病毒Ⅰ型gB基因的原核表达及产物的抗原性分析[J].中国兽医科学,2006,36(07):523-528.
    [141]招丽婵,程安春,汪铭书,等.鸭瘟病毒dUTPase基因克隆、原核表达及在病毒感染宿主亚细胞中的定位分析[J].畜牧兽医学报,2008,39(8):1087-1093.
    [142]Weerasinghe C. U., Learmonth G. S., Gilkerson J. R., et al. Equine herpesvirus 1 glycoprotein D expressed in E. coli provides partial protection against equine herpesvirus infection in mice and elicits virus-neutralizing antibodies in the horse[J]. Vet Immunol Immunopathol,2006,111:59-66.
    [143]Knipe D.M., Howley P.M., (ed). Fundamental virology,4eds [M], Lippincott Williams & Wilkins, Philadelphia,2001,1123-1184.
    [144]Sambrook J., Russell D.W., Molecular Cloning:A Laboratory Manual [M], Cold Spring Harbor Laboratory Press, New York,2001.
    [145]Li H.X., Liu S. W., Han. Z.X., et al. Comparative analysis of the genes UL1 through UL7 of the duck enteritis virus and other herpesviruses of the subfamily Alphaherpesvirinae[J]. Genetics and Molecular Biology 2009,32:121-128
    [146]徐超,李欣然,信洪一,等.鸭瘟病毒gC基因的克隆及其分子特性分析[J].中国兽医科学,2008,38(12):1038-1044.
    [147]Han X J, Wang J W, Ma B. Cloning and Sequence of Glycoprotein H Gene of Duck Plague Virus.[J]. Agricultural Sciences in China.,2006,5:397-402.
    [148]Zhao L. C., Cheng A. C., Wang M. S., et al. Identification and characterization of duck enteritis virus dUTPase gene[J]. Avian Dis,2008,52:324-331.
    [149]葛菡,徐超,程安春,等.鸭瘟病毒TK基因的克隆及其分子特性分析[J].中国兽医科学,2008,38(04):297-302.
    [150]An R., Li H., Han Z., et al. The u131 to u135 gene sequences of duck enteritis virus correspond to their homologs in herpes simplex virus 1[J]. Acta Virol,2008,52:23-30.
    [151]Zhao Y., Wang J. W., Ma B., et al. Molecular analysis of duck enteritis virus US3, US4, and US5 gene[J]. Virus Genes,2009,38:289-294.
    [152]Li B. W., Rush A. C., Tan J., et al. Quantitative analysis of gender-regulated transcripts in the filarial nematode Brugia malayi by real-time RT-PCR[J]. Mol Biochem Parasitol,2004,137:329-337.
    [153]Livak K. J., Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods,2001,25:402-408.
    [154]Guo Y.F., Cheng A.C., Wang M.S., et al. Purification of anatid herpesvirus 1 particles by tangential-flow ultrafiltration and sucrose gradient ultracentrifugation[J]. J Virol Methods, 2009,161:1-6.
    [155]Yan B., Cheng A. C., Wang M. S., et al. Application of an indirect immunofluorescent staining method for detection of Salmonella enteritidis in paraffin slices and antigen location in infected duck tissues[J]. World J Gastroenterol,2008,14:776-781.
    [156]程安春,韩晓英,汪铭书,等.用间接免疫荧光染色法检测鸭病毒性肠炎病毒在人工感染鸭体内的侵染过程和分布规律[J].畜牧兽医学报,2007,38(9):942-946.
    [157]Nozawa N., Daikoku T., Yamauchi Y., et al. Identification and characterization of the UL7 gene product of herpes simplex virus type 2[J]. Virus Genes,2002,24:257-266.
    [158]Hobot J. A., Newman G R. Strategies for improving the cytochemical and immunocytochemical sensitivity of ultrastructurally well-preserved, resin embedded biological tissue for light and electron microscopy[J]. Scanning Microsc Suppl,1991,5:S27-40; discussion S40-1.
    [159]Skepper J. N. Immunocytochemical strategies for electron microscopy:choice or compromise[J]. J Microsc,2000,199:1-36.
    [160]Shen H. B., Chou K. C. Virus-PLoc:a fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells[J]. Biopolymers,2007,85:233-240.
    [161]郭宇飞,程安春,汪铭书,等.鸭病毒性肠炎病毒CH强毒株在鸭胚成纤维细胞中形态发生学的研究[J].畜牧兽医学报,2006,37(3),274-280.
    [162]郭宇飞,程安春,汪铭书,等.鸭病毒性肠炎病毒CH强毒株感染鸭胚成纤维细胞的超微结构观察[J].中国兽医学报,2005,25(6):632-635.
    [163]Harms J. S., Ren X., Oliveira S. C., et al. Distinctions between bovine herpesvirus 1 and herpes simplex virus type 1 VP22 tegument protein subcellular associations[J]. J Virol,2000,74:3301-3312.
    [164]蒲阳,程安春,汪铭书.免疫组化技术在检测病原微生物的应用研究进展[J],第四届第九次全国学术研讨会暨饲料和动物源食品安全战略论坛,2008,5:20-21.
    [165]万美梅,孙彦伟,林乃锋.免疫组织化学技术在兽医诊断中的应用[J].动物医学进展,2008,29:94-97.
    [166]Islam M. R., Nessa J., Halder K. M. Detection of duck plague virus antigen in tissues by immunoperoxidase staining[J]. Avian Pathol,1993,22:389-393.
    [167]Islam M. R., Khan M. A. An immunocytochemical study on the sequential tissue distribution of duck plague virus[J]. Avian Pathol,1995,24:189-194.
    [168]Shawky S. Target cells for duck enteritis virus in lymphoid organs[J]. Avian Pathol,2000,29: 609-616.
    [169]徐超,程安春,汪铭书,等.间接酶免疫组化检测DPV在感染鸭体内细胞定位的研究和应用[J].中国兽医学报,2007,27(5):640-644.
    [170]Xuefeng Q., Xiaoyan Y., Anchun C., et al. The pathogenesis of duck virus enteritis in experimentally infected ducks:a quantitative time-course study using TaqMan polymerase chain reaction[J]. Avian Pathol,2008,37:307-310.
    [171]程安春韩晓英,朱德康,等.间接免疫荧光染色检测石蜡切片中的鸭病毒性肠炎病毒和抗原定位[J].中国兽医学报,2008,28:871-875.
    [172]Shen C.J, Guo Y.F., Cheng A.C., et al. Characterization of subcellular localization of duck enteritis virus UL51 protein[J]. Virol J,2009,6:92.
    [173]Shen C. J., Cheng A. C., Wang M. S., et al. Identification and characterization of the duck enteritis virus UL51 gene[J]. Arch Virol,2009,154:1061-1069.
    [174]蔡文琴,王波沄,主编.实用免疫细胞化学与核酸分子杂交技术[M],四川科学技术出版社,1994.
    [175]Luzzago C., Frigerio M., Tolari F., et al. Indirect immunohistochemistry on skin biopsy for the detection of persistently infected cattle with bovine viral diarrhoea virus in Italian dairy herds[J]. New Microbiol,2006,29:127-131.
    [176]Ellis S., Killender M., Anderson R. L. Heat-induced alterations in the localization of HSP72 and HSP73 as measured by indirect immunohistochemistry and immunogold electron microscopy[J]. J Histochem Cytochem,2000,48:321-332.
    [177]Monteiro-Riviere N. A., Inman A. O. Indirect immunohistochemistry and immunoelectron microscopy distribution of eight epidermal-dermal junction epitopes in the pig and in isolated perfused skin treated with bis (2-chloroethyl) sulfide[J]. Toxicol Pathol,1995,23:313-325.
    [178]张舍郁,程安春,汪铭书,等.间接免疫荧光检测石蜡切片中鸭肿头出血症病毒及抗原定位方法的初步建立[J].中国农业科学,2008,41(3):868-874 41:868-874.
    [179]贾仁勇,程安春,汪铭书,等.鸭肠炎病毒CHv强毒株超微结构研究[J].病毒学报,2007,23:202-205.
    [180]袁桂萍,程安春,汪铭书,等.鸭病毒性肠炎病毒强毒株的形态发生学与超微病理学研究[J].病毒学报,2004,20:326-331.
    [181]Proctor S. J. Pathogenesis Of Duck Plague In The Bursa Of Fabricius Thymus And Spleen[J]. Am' J Vet Res,1976,37:427-431.
    [182]Francisco J. S., Pedro J. S, Alejandro N., et al. Histopathological and ultrastructural changes associated with herpesvirus infection in waterfowl [J]. Avian Pathology,2002,31:133-140.
    [183]Konch Chambal, Upadhyaya T.N., Goswami S., Studies on the incidence and pathology of naturally occurring duck plague in Assam[J]. Indian Journal of Veterinary Pathology,2009,33(2).
    [184]Guiping Y., Anchun C., Mingshu W., et al. Preliminary study on duck enteritis virus-induced lymphocyte apoptosis in vivo[J]. Avian Dis,2007,51:546-549.
    [185]Qi X., Yang X., Cheng A., et al. Quantitative analysis of virulent duck enteritis virus loads in experimentally infected ducklings[J]. Avian Dis,2008,52:338-44.
    [186]Lin W.Q., Lam K. M., Clark W. E. Active and Passive Immunization of Ducks against Duck Viral Enteritis[J]. Avian Dis,1984,28:968-977.
    [187]Islam M.A., Samad M.A., Rahman M.B., et al. Assessment of Immunologic Responses in Khaki Cambell Ducks Vaccinated Against Duck Plague[J]. International Journal of Poultry Science,2005,4: 36-38.
    [188]Dardiri A. H., Hess W. R. The incidence of neutralizing antibodies to duck plague virus in serums from domestic ducks and wild waterfowl in the United States of America[J]. Proc Annu Meet U S Anim Health Assoc,1967,71:225-237.
    [189]Wolf K., Burke C. N., Quimby M. C. Duck viral enteritis:microtiter plate isolation and neutralization test using the duck embryo fibroblast cell line[J]. Avian Dis,1974,18:427-434.
    [190]齐雪峰程安春,汪铭书,杨晓燕,贾仁勇,陈孝跃.鸭瘟病毒抗体间接ELISA检测试剂盒的研制[J].中国兽医科学,2007,37:690-694.
    [191]Yang X.Y, Qi X.F, Cheng A.C, et al. Intestinal mucosal immune response in ducklings following oral immunisation with an attenuated Duck enteritis virus vaccine[J]. Vet J,2009, doi: 10.1016/j.tvjl.2009.04.011.
    [192]Qi X.F, Yang X.Y, Cheng A.C, et al. Intestinal mucosal immune response against virulent duck enteritis virus infection in ducklings[J]. Res Vet Sci,2009,87:218-225.
    [193]Malmarugan. S, S. Sulochana, Comparison of dot-ELISA passive haemagglutination test for the detection of antibodies to duck plague[J]. Indian Veterinary Journal,2002,79:648-651.
    [194]吴海波,邵军军,常惠芸.免疫层析快速诊断试纸条在动物疾病诊断中的应用[J].中国动物检疫,2005,22:43-45.
    [195]张守发,丁德,鞠玉琳,贾立军.胶体金免疫层析法与ELISA法对牛的新孢子虫血清抗体检测结果的比较[J].中国兽医杂志,2008,44:54-55.
    [196]Tanaka R., Yuhi T., Nagatani N., et al. A novel enhancement assay for immunochromatographic test strips using gold nanoparticles[J]. Anal Bioanal Chem,2006,385:1414-1420.
    [197]Liu G., Lin Y. Y, Wang J., et al. Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip[J]. Anal Chem,2007,79:7644-7653.
    [198]Cui S., Zhou S., Chen C., et al. A simple and rapid immunochromatographic strip test for detecting antibody to porcine reproductive and respiratory syndrome virus[J]. J Virol Methods,2008, 152:38-42.
    [199]王光华,独军政,丛国正,等.猪口蹄疫病毒VP1结构蛋白抗体间接ELISA方法的建立[J].生物工程学报,2007,23:961-966.
    [200]Chen S. P., Ellis T. M., Lee M. C., et al. Comparison of sensitivity and specificity in three commercial foot-and-mouth disease virus non-structural protein ELISA kits with swine sera in Taiwan[J]. Vet Microbiol,2007,119:164-172.
    [201]Gutierrez G., Alvarez I., Fondevila N., et al. Detection of bovine leukemia virus specific antibodies using recombinant p24-ELISA[J]. Vet Microbiol,2009,137:224-234.
    [202]Liu H. J., Kuo L. C., Hu Y. C., et al. Development of an ELISA for detection of antibodies to avian reovirus in chickens[J]. J Virol Methods,2002,102:129-138.
    [203]Paweska J. T., van Vuren P. J., Kemp A., et al. Recombinant nucleocapsid-based ELISA for detection of IgG antibody to Rift Valley fever virus in African buffalo[J]. Vet Microbiol,2008,127: 21-28.
    [204]李兆利,薛飞,朱远茂,等.牛传染性鼻气管炎病毒gB基因的截短表达与间接ELISA诊断方法的建立[J].畜牧兽医学报,2006,37:1328-1333.
    [205]袁宝,王琛,任文陟,等.犬瘟热病毒核蛋白基因的原核表达及其间接ELISA检测方法的建立[J].中国兽医学报,2008 28:775-778.
    [206]Peng D., Hu S., Hua Y, et al. Comparison of a new gold-immunochromatographic assay for the detection of antibodies against avian influenza virus with hemagglutination inhibition and agar gel immunodiffusion assays[J]. Vet Immunol Immunopathol,2007,117:17-25.
    [207]Yang J., Hua Q., Chen H., et al. Development and evaluation of an immunochromatographic strip for the detection of serum antibodies against bluetongue virus[J]. J Virol Methods,2010,163:68-73.
    [208]崔尚金,姜建宏,周艳君,等.猪繁殖与呼吸综合征胶体金抗体检测技术的建立和初步应用[J].中国预防兽医学报,2005,27:213-217.
    [209]边传周,郑鸣,任敏.胶体金免疫层析法检测猪PRV gE抗体方法的建立及应用[J].中国预防兽医学报,2006,28:204-207.
    [210]Buchner J., Pastan I., Brinkmann U. A method for increasing the yield of properly folded recombinant fusion proteins:single-chain immunotoxins from renaturation of bacterial inclusion bodies[J]. Anal Biochem,1992,205:263-270.
    [211]Masihi K. N., Lange W. Enzyme-linked immunosorbent assay for the detection of influenza type-specific antibodies[J]. J Immunol Methods,1980,36:173-179.
    [212]Richardson L. S., Yolken R. H., Belshe R. B., et al. Enzyme-linked immunosorbent assay for measurement of serological response to respiratory syncytial virus infection[J]. Infect Immun,1978,20: 660-664.
    [213]Mohan S. B., Warren R. C., Richardson M. D. Sero-diagnosis of invasive aspergillosis:attempts to determine antigen and antibody relevance to infection[J]. Mycopathologia,1980,70:37-41.
    [214]朱立平,陈学清,免疫学常用实验方法[M],人民军医出版社,北京,2000.
    [215]Alonso A., Gomes, M.P.D., Martins,M.A., et al. Detection of foot-and-mouth disease virus infection-associated antigen antibodies:comparison of the enzyme-linked immunosorbent assay and agar gel immunodiffusion tests[J]. Prev Vet Med,1990,9:233-240.
    [216]冯娟,陈义平,王志亮.胶体金的应用研究新进展[J].中国动物检疫,2005,22:48-50.
    [217]蒋韬,梁仲,陈涓,等.O型口蹄疫病毒免疫层析试纸条检测方法的建立[J].畜牧兽医学报,2008 39:60-65.
    [218]王文勇,张松乐.免疫胶体金技术在快速诊断中的应用[J].中国卫生检验杂志,2003,13:391-392.
    [219]郭宇飞,程安春,汪铭书.鸭病毒性肠炎研究进展[J].中国兽医杂志,2006,42(8):41-43.
    [220]Davison S., Converse K. A., Hamir A. N., et al. Duck viral enteritis in domestic muscovy ducks in Pennsylvania[J]. Avian Dis,1993,37:1142-1146.
    [221]Pringle C. R. The universal system of virus taxonomy of the International Committee on Virus Taxonomy (ICTV), including new proposals ratified since publication of the Sixth ICTV Report in 1995[J]. Arch Virol,1998,143:203-210.
    [222]彭广能,郭万柱,程安春.四川省鸭瘟病原的分离鉴定[J].四川畜牧兽医,2000,6:18-20.
    [223]郭霄峰,廖明,严英华,等.利用PCR检测鸭瘟病毒[J].中国兽医科技2002,32:13-16.
    [224]马秀丽,宋敏训,李玉峰,等.PCR用于鸭瘟病毒诊断的研究[J].中国预防兽医学报2005,27:408-411.
    [225]宋涌,程安春,汪铭书,等.聚合酶链反应(PCR)检测鸭瘟病毒方法的建立和应用[J].中国兽医杂志,2005,41:17-20.
    [226]郭宇飞,程安春,汪铭书,等.鸭病毒性肠炎病毒荧光实时定量PCR检测方法的建立和应用[J].中国兽医科学,2006,36:444-448.
    [227]袁桂萍,程安春,汪铭书,等.鸭病毒性肠炎病毒强毒在人工感染鸭体内形态结构和发生学的电镜观察[J].畜牧兽医学报,2005,36:486-491.
    [228]Yuan G P., Cheng A. C., Wang M. S., et al. Electron microscopic studies of the morphogenesis of duck enteritis virus[J]. Avian Dis,2005,49:50-55.
    [229]程安春,廖永洪,朱德康,等.原位杂交检测人工感染鸭体内鸭瘟病毒的复制[J].病毒学报,2008,24:72-75.
    [230]程安春,廖永洪,朱德康,等.检测石蜡切片中鸭病毒性肠炎病毒间接原位PCR方法的建立[J].中国农业科学,2008,41:43365-4371
    [231]徐耀基,黄引贤.应用琼脂凝胶沉淀试验检测鹅鸭病料中的鸭瘟病毒[J].中国畜禽传染病,1992.4:36-37.
    [232]徐耀基,黄引贤.Dot-ELISA检测鸭瘟病毒的研究[J].中国畜禽传染病,1992,2:19-21.
    [233]Deng M. Y., Burgess E. C., Yuill T. M. Detection of duck plague virus by reverse passive hemagglutination test[J]. Avian Dis,1984,28:616-628.
    [234]徐耀基,黄引贤.应用微量固相放射免疫测定法检测鸭瘟病毒的初步研究[J].中国畜禽传染 病,1992,3:35-38.
    [235]程安春,廖永洪,汪铭书,等.生物素标记寡核苷酸探针原位检测石蜡切片鸭瘟病毒核酸[J].中国兽医学报,2009,29:403-408.
    [236]韩先杰,王君伟,布日额,等.地高辛标记核酸探针检测鸭瘟病毒[J].中国兽医杂志,2004,40:20-21.
    [237]贺东生,赵善昌.光敏生物素标记鸭瘟病毒核酸探针的制备及应用的研究[J].广西农业生物科学,1993,12:69-74.
    [238]徐超,汪铭书.鸭瘟病毒gC基因的发现、原核表达和应用研究,中国学位论文全文数据库,2008,9-15.
    [239]Kameyama K., Sakoda Y., Tamai K., et al. Development of an immunochromatographic test kit for rapid detection of bovine viral diarrhea virus antigen[J]. J Virol Methods,2006,138:140-146.
    [240]Tsuda Y., Sakoda Y, Sakabe S., et al. Development of an immunochromatographic kit for rapid diagnosis of H5 avian influenza virus infection[J]. Microbiol Immunol,2007,51:903-907.
    [241]张丽颖,刘畅,鲍永华,等.牛病毒性腹泻病毒(BVDV)抗原捕获ELISA检测方法的建立[J].畜牧与兽医,2009:13-19.
    [242]秦海斌,刘怀然,曲连东,等.兔出血症病毒抗原捕获ELISA检测方法的建立[J].中国兽医学报,2008,28:28-31.
    [243]刘建文,余兴龙,张丽颖,等.单克隆抗体捕捉猪瘟病毒抗原ELISA方法的建立[J].畜牧兽医学报,2006,37:474-479.
    [244]Jia R.Y., Cheng A.C., Wang M.S., et al. Development and evaluation of an antigen-capture ELISA for detection of the UL24 antigen of the duck enteritis virus, based on a polyclonal antibody against the UL24 expression protein[J]. J Virol Methods,2009,161:38-43.
    [245]Zhang G. P., Guo J. Q., Wang X. N., et al. Development and evaluation of an immunochromatographic strip for trichinellosis detection[J]. Vet Parasitol,2006,137:286-293.
    [246]Kim C., Alhassan A., Verdida R. A., et al. Development of two immunochromatographic tests for the serodiagnosis of bovine babesiosis[J]. Vet Parasitol,2007,148:137-143.
    [247]Sithigorngul W., Rukpratanporn S., Sittidilokratna N., et al. A convenient immunochromatographic test strip for rapid diagnosis of yellow head virus infection in shrimp[J]. J Virol Methods,2007,140:193-199.
    [248]邓省亮,赖卫华,许杨.胶体金免疫层析法快速检测黄曲霉毒素B1的研究[J].食品科学,2007,28:232-236.
    [249]朱明东,洪林娣.胶体金免疫层析法快速诊断牛布鲁氏菌病的研究[J].中国人兽共患病学报,2008,24:755-759.
    [250]Jin Y, Jang J. W., Lee M. H., et al. Development of ELISA and immunochromatographic assay for the detection of neomycin[J]. Clin Chim Acta,2006,364:260-266.
    [251]Shi C., Zhao S., Zhang K., et al. Preparation of colloidal gold immunochromatography strip for detection of methamidophos residue[J]. J Environ Sci (China),2008,20:1392-1397.
    [252]邵军军.胶体金免疫层析试纸条在病原体检测及医学诊断中的应用[J].实用诊断与治疗杂志,2008,22(1):39-40.
    [253]Schefe J. H., Lehmann K. E., Buschmann I. R., et al. Quantitative real-time RT-PCR data analysis: current concepts and the novel "gene expression's CT difference" formula[J]. J Mol Med,2006,84: 901-910.
    [254]郭慧琛,刘在新,孙世琪,等.口蹄疫病毒多基因重组质粒的体外表达及衣壳组装[J].病毒学报,2005,21(3):32.432.
    [255]陈轶霞,才学鹏,景志忠,等.羊痘病毒P32基因真核表达载体的构建、表达及其免疫原性[J].病毒学报,2008,24(2):431-731.
    [256]刘定燮,周晓巍,黄培堂.哺乳动物细胞表达系统及其研究进展[J].生物技术通讯,2003,14(4):308-311.
    [257]Brian Dalby, Sharon Cates,and Adam Harris, et al. Advanced transfection with Lipofectamine 2000 reagent:primary neurons, siRNA, and high-throughput applications, Methods,2004,33(2): 95-103.
    [258]吕学斌,李江凌,高荣,等.梅山猪LH-β基因真核表达系统的构建及体内外转染表达效果的研究[J].畜牧兽医学报,2005,36(9),877-881.
    [259]倪黎纲,何先红,余飞,等.鸡抗病毒Mx蛋白修饰及其真核表达载体的构建[J].畜牧兽医学报,2008,39(7):891-894.
    [260]江涛,张东林,聂浩,等.弓形虫MIC3基因真核表达质粒的构建及在IBRS-2细胞内的表达[J].畜牧兽医学报,2007,38(8):827-831.
    [261]胡敬东,赵宏坤,崔治中.鸡白细胞介素18成熟蛋白基因真核表达质粒的构建及其在鸡胚成纤维细胞中的表达[J].畜牧兽医学报,2006,37(1),91-94.
    [262]郑喜邦,云彦,胡勇策,等.牛Nanog基因克隆及其在皮肤成纤维细胞中的表达[J].畜牧兽医学报,2008,39(5):547-554.
    [263]李俊,符芳,袁小远,等.猪繁殖与呼吸综合征病毒(PRRSV)SD2株ORF5/ORF6双基因真核表达载体在哺乳动物细胞中的表达[J].病毒学报,2006,22(6):471-475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700