FMDV抗原表位多肽及分子佐剂对小鼠上呼吸道免疫的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上呼吸道接种免疫作为新型的FMDV接种途径,正在被越来越多的预防医学研究工作者所重视。很大一部分流行病都是由呼吸道感染机体,因此是否能够建立起上呼吸道黏膜免疫保护是机体能否抵御病毒入侵的关键,上呼吸道粘膜免疫保护机制也为预防医学提供了研究防控疾病的有效途径。粘膜佐剂作为黏膜免疫研究的一个重要组成部分能够显著增强粘膜免疫保护效果。很多免疫增强剂都被应用到黏膜免疫的研究中来,但绝大多数佐剂都是经验总结的产物,作用机理难以透彻研究。FMDV经济上具有重大的影响,其每次大规模爆发流行都会给人类带来了数以亿计的经济损失,研究防控各亚型大流行的新型高通量疫苗迫在眉睫。因此研究上呼吸道黏膜免疫对防控该病流行是行之有效的手段之一。
     本研究结合了上呼吸道黏膜免疫、FMDV抗原表位多肽、CTB佐剂、核酸佐剂和细胞因子佐剂等研究内容在小鼠上进行了对比试验。利用分子生物学技术、基因工程技术、生物信息学技术和DNA逆向工程技术构建Asia 1 FMDV抗原表位多肽基因经Linker蛋白基因与CTB多肽基因串联构建了抗原表位多肽基因31c。反转录法克隆了成年牛干扰素cDNA即BoIFN-γ基因,将表达纯化得到的BoIFN-γ成熟多肽蛋白作为了辅助31C多肽的佐剂。在建立的多肽与全病毒对照组、细胞因子核酸佐剂与活性多肽佐剂对照组、上呼吸道免疫与皮下接种免疫对照组和CTB佐剂研究组等一系列研究中,通过间接ELISA检测分泌型IgA抗体水平,应用微量血清中和试验检测体液免疫水平,淋巴细胞增殖实验检测细胞免疫水平以及应用反转录荧光定量PCR检测IL-2、IL-4、IL-10和IFN-γ在颈部淋巴、肺脏及脾脏内的变化。通过以上数据统计分析得出黏膜免疫保护水平、全身体液免疫水平、全身细胞免疫水平和黏膜免疫诱导应答调节各个器官的细胞因子调节变化规律。
     实验数据表明人工合成的抗原表位级联多肽31C的免疫活性显著高于商品化多肽,证明了抗原表位多肽31C可以诱导小鼠产生中和性抗体和分泌型抗体。证明了鼻腔免疫多肽抗原不仅可以诱导口腔及鼻腔内产生分泌型抗体,其还可以诱导远端生殖道内产生分泌型抗体。鼻腔免疫具有较皮下免疫更早诱导免疫记忆性细胞的能力。验证了CTB佐剂可以辅助融合表达多肽显著提高后者的免疫原性。且证明了CTB具有提高口鼻分泌液中sIgA抗体水平的功效,通过鼻腔免疫小鼠,CTB可以显著增加结合在其表面抗原表位的体液免疫抗体水平。研究了mBoIFN-γ多肽pBoIFN-γ基因在粘膜佐剂中的作用,mBoIFN-γ作为效应细胞因子可以显著增强注入部位的IFN-γ表达水平和sIgA表达水平,并能增强全身的细胞免疫水平。pBoIFN-γ基因在作为粘膜佐剂注入机体后能持续发挥免疫增强效应,但是对于免疫部位而言,由于其连续持续的免疫使得局部免疫细胞对IFN-γ反应产生耐受并显著降低免疫位点的局部免疫水平。
Upper respiratory tract immunity as a novel way of immunization, more workers in immunology research got into it. A lot of infectious disease infected body from the respiratory tract, which is the best research strategy to research how to control the virus provides. Mucosal adjuvant as an important component of mucosal immunity, a lot of scholars are researching immune enhancer for mucosal immune, but the mechanism of majority of adjuvants are unknown. FMDV as an enormous economic and political impact of the disease, has brought hundreds of millions of human beings in economic losses, Investigating the prevention and controling of the popular new subtype of large high-throughput vaccine is imminent.
     In this study, the upper respiratory tract mucosal immunity, FMDV peptide epitopes, CTB adjuvant, gene adjuvant and cytokine adjuvants were studied in mice. Molecular biology techniques, genetic engineering technology, bio-informatics technology and methods of reverse engineering DNA technology were used to build the Asia 1 FMDV peptide epitopes with CTB adjuvant by Linker Protein, we got a peptide 31C. Reverse transcription from the adult cow total RNA,we cloned BoIFN-γgene and purified mature BoIFN-γprotein peptide 31C as a adjuvant polypeptide. Comparing the peptide and the virus group, cytokine gene adjuvant and peptide adjuvant group, upper respiratory tract immunity and subcutaneous injection immunization group, CTB adjuvant group, we got the level of sIgA and serum antibody levels of humoral immunity by indirect ELISA detection, the level of cell-mediated immunity by lymphocyte proliferation assay, detectde the Change of IL-2, IL-4, IL-10 and IFN-γin the neck lymphatic, lung and spleen by Realtime RT-PCR. Analysing the data obtained through the above-mentioned we got the changes of protection of mucosal immunity, humoral immunity of the whole body, systemic cellular immunity and cytokines in various organs of the regulation changes.
     Experimental data show that the immunological activity of 31C was significantly higher than the commercialization of peptide epitopes, 31C polypeptide could make the mice get sIga and humoral antibody. Nasal immunization induced the reproductive tract get sIgA. Nasal immunization got memory cells more earlier than the other group. The CTB adjuvant can help significantly enhance epitope peptide immunogenicity. CTB not only enhance the level of sIgA by nasal immunization, It could significant increase the activity of the epitope protein immunogenicity on it. The mBoIFN-γcan significantly enhance IFN-γexpression and sIgA levels in the injection site, and to enhance the cellular immunity level of body . The pBoIFN-γgene injected in the body as a mucosal adjuvant had The immune-enhancing effects for a long time, at the inject sites, got the tolerance to second vaccination.
     Researching about the mucosal immunity and immune peptides stiff job, this experiment got a lot of breakthrough in it.
引文
李光金,徐泉兴,等, (2001).联用抗口蹄疫病毒重组多肽及DNA疫苗诱发豚鼠产生特异免疫应答.高技术通讯11, 1-4
    李光金,徐泉兴,等, (2001).以猪IgG重链恒定区为抗原载体的抗口蹄疫病毒DNA疫苗的研制.生物工程学报17, 322-324
    李伍举,吴加金, (1996). pBV220载体中外源基因二级结构与表达水平的关系.生物技术通讯7(4):149-151
    李伍举,吴加金, (1997). pBV220载体中外源基因表达水平定量分析.病毒学报13, 126-133
    卢曾军等, (2004).同源重组法制备口蹄疫病毒多基因重组腺病毒.中国病毒学19(2): p. 125-128
    吕宏亮,刘松友,等(2008).干扰素对M2e - HBc疫苗鼻内免疫的佐剂作用.医学研究杂志37(11): 97~99
    萨姆布鲁克等著.(2002).分子克隆实验指南.黄培堂等译.第三版.北京:科学出版社,27-30
    杨志军,郑兆鑫, (2000).含T细胞表位和B细胞表位的抗O型FMDV基因工程疫苗诱导豚鼠产生免疫反应.复旦学报(自然科学版)
    易建中,郑兆鑫, (1997). A型口蹄疫病毒VP1免疫活性肽基因串联片断的化学合成及克隆与表达.复旦学报(自然科学版)
    殷震,刘景华, (1997).动物病毒学,第二版,科学出版社
    赵凯,郑兆鑫, (2000).以免疫球蛋白为载体的抗O型口蹄疫病毒基因工程疫苗的构建.生物工程学报16(6)
    Ahmed, M. A., Bamm, V. V., Shi, L., Steiner-Mosonyi, M., Dawson, J. F., Brown, L., Harauz, G., and Ladizhansky, V. (2009). Induced Secondary Structure and Polymorphism in an Intrinsically Disordered Structural Linker of the Cns: Solid-State Nmr and Ftir Spectroscopy of Myelin Basic Protein Bound to Actin. Biophys J 96(1), 180-191.
    Alexander, J., Oseroff, C., Dahlberg, C., Qin, M., Ishioka, G., Beebe, M., Fikes, J., Newman, M., Chesnut, R. W., Morton, P. A., Fok, K., Appella, E., and Sette, A. (2002). A Decaepitope Polypeptide Primes for Multiple Cd8+ Ifn-Gamma and Th Lymphocyte Responses: Evaluation of Multiepitope Polypeptides as a Mode for Vaccine Delivery. J Immunol 168(12), 6189-6198.
    Areas, A. P., Oliveira, M. L., Miyaji, E. N., Leite, L. C., Aires, K. A., Dias, W. O., and Ho, P. L. (2004). Expression and Characterization of Cholera Toxin B-Pneumococcal Surface Adhesin a Fusion Protein in Escherichia Coli: Ability of Ctb-Psaa to Induce Humoral Immune Response in Mice. Biochem Biophys Res Commun 321(1), 192-196.
    Babkin, I. V., Riazankin, I. A., Lebedev, L. R., Bulychev, L. E., Nesterov, A. E., Nosareva, O. V., and Babkina, I. N. (2008). [Immunogenic Properties of Recombinant Vaccinia Virus Containing the Human Il-2 Gene]. Vopr Virusol 53(1), 27-31.
    Baranowski, E., Ruiz-Jarabo, C. M., Sevilla, N., Andreu, D., Beck, E., and Domingo, E. (2000). Cell Recognition by Foot-and-Mouth Disease Virus That Lacks the Rgd Integrin-Binding Motif: Flexibility in Aphthovirus Receptor Usage. J Virol 74(4), 1641-1647.
    Bienenstock, J., Perey, D. Y., Gauldie, J., and Underdown, B. J. (1973). Chicken A: Physicochemical and Immunochemical Characteristics. J Immunol 110(2), 524-533.
    Borrego, B., Fernandez-Pacheco, P., Ganges, L., Domenech, N., Fernandez-Borges, N., Sobrino, F., and Rodriguez, F. (2006). DNA Vaccines Expressing B and T Cell Epitopes Can Protect Mice from Fmdv Infection in the Absence of Specific Humoral Responses. Vaccine 24(18), 3889-3899.
    Boyaka, P. N., and McGhee, J. R. (2001). Cytokines as Adjuvants for the Induction of Mucosal Immunity. Adv Drug Deliv Rev 51(1-3), 71-79.
    Brown, F., Benkirane, N., Limal, D., Halimi, H., Newman, J. F., Van Regenmortel, M. H., Briand, J. P., and Muller, S. (1999). Delineation of a Neutralizing Subregion within the Immunodominant Epitope (Gh Loop) of Foot-and-Mouth Disease Virus Vp1 Which Does Not Contain the Rgd Motif. Vaccine 18(1-2), 50-56.
    Cedillo-Barron, L., Foster-Cuevas, M., Cook, A., Gutierrez-Castaneda, B., Kollnberger, S., Lefevre, F., and Parkhouse, R. M. (2003). Immunogenicity of Plasmids Encoding T and B Cell Epitopes of Foot-and-Mouth Disease Virus (Fmdv) in Swine. Vaccine 21(27-30), 4261-4269.
    Choppin, J. (2008). [from Fundamental Immunology to Development of Vaccinology]. Med Sci (Paris) 24(1), 56-60.
    Chow, Y. H., Chiang, B. L., Lee, Y. L., Chi, W. K., Lin, W. C., Chen, Y. T., and Tao, M. H. (1998). Development of Th1 and Th2 Populations and the Nature of Immune Responses to Hepatitis B Virus DNA Vaccines Can Be Modulated by Codelivery of Various Cytokine Genes. J Immunol 160(3), 1320-1329.
    Collen, T., Dimarchi, R., and Doel, T. R. (1991). A T Cell Epitope in Vp1 of Foot-and-Mouth Disease Virus Is Immunodominant for Vaccinated Cattle. J Immunol 146(2), 749-755.
    Cooke, J. N., and Westover, K. M. (2008). Serotype-Specific Differences in Antigenic Regions of Foot-and-Mouth Disease Virus (Fmdv): A Comprehensive Statistical Analysis. Infect Genet Evol 8(6), 855-863.
    Davis, H. L., Weeratna, R., Waldschmidt, T. J., Tygrett, L., Schorr, J., and Krieg, A. M. (1998). Cpg DNA Is a Potent Enhancer of Specific Immunity in Mice Immunized with Recombinant Hepatitis B Surface Antigen. J Immunol 160(2), 870-876.
    Delventhal, S., Hensel, A., Petzoldt, K., and Pabst, R. (1992). Effects of Microbial Stimulation on the Number, Size and Activity of Bronchus-Associated Lymphoid Tissue (Balt) Structures in the Pig. Int J Exp Pathol 73(3), 351-357.
    Douce, G., Fontana, M., Pizza, M., Rappuoli, R., and Dougan, G. (1997). IntranasalImmunogenicity and Adjuvanticity of Site-Directed Mutant Derivatives of Cholera Toxin. Infect Immun 65(7), 2821-2828.
    Elson, C. O., Cong, Y., Iqbal, N., and Weaver, C. T. (2001). Immuno-Bacterial Homeostasis in the Gut: New Insights into an Old Enigma. Semin Immunol 13(3), 187-194.
    Elson, C. O., and Ealding, W. (1984). Generalized Systemic and Mucosal Immunity in Mice after Mucosal Stimulation with Cholera Toxin. J Immunol 132(6), 2736-2741.
    Fischer, D., Rood, D., Barrette, R. W., Zuwallack, A., Kramer, E., Brown, F., and Silbart, L. K. (2003). Intranasal Immunization of Guinea Pigs with an Immunodominant Foot-and-Mouth Disease Virus Peptide Conjugate Induces Mucosal and Humoral Antibodies and Protection against Challenge. J Virol 77(13), 7486-7491.
    Fujihashi, K., Koga, T., van Ginkel, F. W., Hagiwara, Y., and McGhee, J. R. (2002). A Dilemma for Mucosal Vaccination: Efficacy Versus Toxicity Using Enterotoxin-Based Adjuvants. Vaccine 20(19-20), 2431-2438.
    Fukuiwa, T., Sekine, S., Kobayashi, R., Suzuki, H., Kataoka, K., Gilbert, R. S., Kurono, Y., Boyaka, P. N., Krieg, A. M., McGhee, J. R., and Fujihashi, K. (2008). A Combination of Flt3 Ligand Cdna and Cpg Odn as Nasal Adjuvant Elicits Nalt Dendritic Cells for Prolonged Mucosal Immunity. Vaccine 26(37), 4849-4859.
    Garabed, R. B., Johnson, W. O., and Thurmond, M. C. (2009). Analytical Epidemiology of Genomic Variation among Pan Asia Strains of Foot-and-Mouth Disease Virus. Transbound Emerg Dis 56(4), 142-156.
    Gerner, W., Hammer, S. E., Wiesmuller, K. H., and Saalmuller, A. (2009). Identification of Mhc Restriction and Anchor Residues of Foot-and-Mouth Disease Virus Derived Bovine T Cell Epitopes. J Virol.
    Gutierrez-Rivas, M., Pulido, M. R., Baranowski, E., Sobrino, F., and Saiz, M. (2008). Tolerance to Mutations in the Foot-and-Mouth Disease Virus Integrin-Binding Rgd Region Is Different in Cultured Cells and in Vivo and Depends on the Capsid Sequence Context. J Gen Virol 89(Pt 10), 2531-2539.
    Hamada, H., Hiroi, T., Nishiyama, Y., Takahashi, H., Masunaga, Y., Hachimura, S., Kaminogawa, S., Takahashi-Iwanaga, H., Iwanaga, T., Kiyono, H., Yamamoto, H., and Ishikawa, H. (2002). Identification of Multiple Isolated Lymphoid Follicles on the Antimesenteric Wall of the Mouse Small Intestine. J Immunol 168(1), 57-64.
    Hanaway, P. (2006). Balance of Flora, Galt, and Mucosal Integrity. Altern Ther Health Med 12(5), 52-60; quiz 61-52.
    Heath, A. W., and Playfair, J. H. (1992). Cytokines as Immunological Adjuvants. Vaccine 10(7), 427-434.
    Holland, N. B., Nishimiya, Y., Tsuda, S., and Sonnichsen, F. D. (2007). Activity of a Two-Domain Antifreeze Protein Is Not Dependent on Linker Sequence. Biophys J 92(2), 541-546.
    Holt, P. G., Haining, S., Nelson, D. J., and Sedgwick, J. D. (1994). Origin and Steady-State Turnover of Class Ii Mhc-Bearing Dendritic Cells in the Epithelium of the Conducting Airways. JImmunol 153(1), 256-261.
    Hou, Y., Hu, W. G., Hirano, T., and Gu, X. X. (2002). A New Intra-Nalt Route Elicits Mucosal and Systemic Immunity against Moraxella Catarrhalis in a Mouse Challenge Model. Vaccine 20(17-18), 2375-2381.
    Howard, K. E., and Burkhard, M. J. (2007). Fiv Infection Induces Unique Changes in Phenotype and Cellularity in the Medial Iliac Lymph Node and Intestinal Iel. AIDS Res Hum Retroviruses 23(5), 720-728.
    Iwasaki, A., and Kelsall, B. L. (1999). Freshly Isolated Peyer's Patch, but Not Spleen, Dendritic Cells Produce Interleukin 10 and Induce the Differentiation of T Helper Type 2 Cells. J Exp Med 190(2), 229-239.
    Jeong, K. I., Uetsuka, K., Nakayama, H., and Doi, K. (1999). Glycoconjugate Expression in Follicle-Associated Epithelium (Fae) Covering the Nasal-Associated Lymphoid Tissue (Nalt) in Specific Pathogen-Free and Conventional Rats. Exp Anim 48(1), 23-29.
    Johansson, E., Wallgren, P., Fuxler, L., Domeika, K., Lefevre, F., and Fossum, C. (2002). The DNA Vaccine Vector Pcdna3 Induces Ifn-Alpha Production in Pigs. Vet Immunol Immunopathol 87(1-2), 29-40.
    Kenneth, R. Y., L., N. H., and B., E. C. (2005). "Lymphocyte Homing: Chemokines and Adhesion Molecules in T Cell and Iga Plasma Cell Localization in the Mucosal Immune System."
    Kiyono, H., Kweon, M. N., Hiroi, T., and Takahashi, I. (2001). The Mucosal Immune System: From Specialized Immune Defense to Inflammation and Allergy. Acta Odontol Scand 59(3), 145-153.
    Klein, J. (2009). Understanding the Molecular Epidemiology of Foot-and-Mouth-Disease Virus. Infect Genet Evol 9(2), 153-161.
    Koga, T., McGhee, J. R., Kato, H., Kato, R., Kiyono, H., and Fujihashi, K. (2000). Evidence for Early Aging in the Mucosal Immune System. J Immunol 165(9), 5352-5359.
    Kolkowski, E. C., Fernandez, M. A., Pujol-Borrell, R., and Jaraquemada, D. (2006). Human Intestinal Alphabeta Iel Clones in Celiac Disease Show Reduced Il-10 Synthesis and Enhanced Il-2 Production. Cell Immunol 244(1), 1-9.
    Kumar, S., Ahi, Y. S., Salunkhe, S. S., Koul, M., Tiwari, A. K., Gupta, P. K., and Rai, A. (2009). Effective Protection by High Efficiency Bicistronic DNA Vaccine against Infectious Bursal Disease Virus Expressing Vp2 Protein and Chicken Il-2. Vaccine 27(6), 864-869.
    Kuolee, R., and Chen, W. (2008). M Cell-Targeted Delivery of Vaccines and Therapeutics. Expert Opin Drug Deliv 5(6), 693-702.
    Kuper, C. F., Koornstra, P. J., Hameleers, D. M., Biewenga, J., Spit, B. J., Duijvestijn, A. M., van Breda Vriesman, P. J., and Sminia, T. (1992). The Role of Nasopharyngeal Lymphoid Tissue. Immunol Today 13(6), 219-224.
    Lai, Y. G., Hou, M. S., Hsu, Y. W., Chang, C. L., Liou, Y. H., Tsai, M. H., Lee, F., and Liao, N. S. (2008). Il-15 Does Not Affect Iel Development in the Thymus but Regulates Homeostasis of Putative Precursors and Mature Cd8 Alpha Alpha+ Iels in the Intestine. J Immunol 180(6), 3757-3765.
    Leippert, M., Beck, E., Weiland, F., and Pfaff, E. (1997). Point Mutations within the Betag-Betah Loop of Foot-and-Mouth Disease Virus O1k Affect Virus Attachment to Target Cells. J Virol 71(2), 1046-1051.
    Logan, K. E., Chambers, M. A., Hewinson, R. G., and Hogarth, P. J. (2005). Frequency of Ifn-Gamma Producing Cells Correlates with Adjuvant Enhancement of Bacille Calmette-Guerin Induced Protection against Mycobacterium Bovis. Vaccine 23(48-49), 5526-5532.
    Maier, M., Seabrook, T. J., and Lemere, C. A. (2005). Modulation of the Humoral and Cellular Immune Response in Abeta Immunotherapy by the Adjuvants Monophosphoryl Lipid a (Mpl), Cholera Toxin B Subunit (Ctb) and E. Coli Enterotoxin Lt(R192g). Vaccine 23(44), 5149-5159.
    Man, A. L., Lodi, F., Bertelli, E., Regoli, M., Pin, C., Mulholland, F., Satoskar, A. R., Taussig, M. J., and Nicoletti, C. (2008). Macrophage Migration Inhibitory Factor Plays a Role in the Regulation of Microfold (M) Cell-Mediated Transport in the Gut. J Immunol 181(8), 5673-5680.
    Man, A. L., Prieto-Garcia, M. E., and Nicoletti, C. (2004). Improving M Cell Mediated Transport across Mucosal Barriers: Do Certain Bacteria Hold the Keys Immunology 113(1), 15-22.
    Marinaro, M., Staats, H. F., Hiroi, T., Jackson, R. J., Coste, M., Boyaka, P. N., Okahashi, N., Yamamoto, M., Kiyono, H., Bluethmann, H., Fujihashi, K., and McGhee, J. R. (1995). Mucosal Adjuvant Effect of Cholera Toxin in Mice Results from Induction of T Helper 2 (Th2) Cells and Il-4. J Immunol 155(10), 4621-4629.
    Mateu, M. G., Da Silva, J. L., Rocha, E., De Brum, D. L., Alonso, A., Enjuanes, L., Domingo, E., and Barahona, H. (1988). Extensive Antigenic Heterogeneity of Foot-and-Mouth Disease Virus of Serotype C. Virology 167(1), 113-124.
    Mateu, M. G., Hernandez, J., Martinez, M. A., Feigelstock, D., Lea, S., Perez, J. J., Giralt, E., Stuart, D., Palma, E. L., and Domingo, E. (1994). Antigenic Heterogeneity of a Foot-and-Mouth Disease Virus Serotype in the Field Is Mediated by Very Limited Sequence Variation at Several Antigenic Sites. J Virol 68(3), 1407-1417.
    Matoba, N., Geyer, B. C., Kilbourne, J., Alfsen, A., Bomsel, M., and Mor, T. S. (2006). Humoral Immune Responses by Prime-Boost Heterologous Route Immunizations with Ctb-Mpr(649-684), a Mucosal Subunit Hiv/Aids Vaccine Candidate. Vaccine 24(23), 5047-5055.
    McDermott, M. R., and Bienenstock, J. (1979). Evidence for a Common Mucosal Immunologic System. I. Migration of B Immunoblasts into Intestinal, Respiratory, and Genital Tissues. J Immunol 122(5), 1892-1898.
    McGhee, J. R., Mestecky, J., Elson, C. O., and Kiyono, H. (1989). Regulation of Iga Synthesis and Immune Response by T Cells and Interleukins. J Clin Immunol 9(3), 175-199.
    McKee, A. S., MacLeod, M., White, J., Crawford, F., Kappler, J. W., and Marrack, P. (2008). Gr1+Il-4-Producing Innate Cells Are Induced in Response to Th2 Stimuli and Suppress Th1-Dependent Antibody Responses. Int Immunol 20(5), 659-669.
    Mera, K., Nagai, M., Brock, J. W., Fujiwara, Y., Murata, T., Maruyama, T., Baynes, J. W., Otagiri, M., and Nagai, R. (2008). Glutaraldehyde Is an Effective Cross-Linker for Production of Antibodiesagainst Advanced Glycation End-Products. J Immunol Methods 334(1-2), 82-90.
    Mestecky, J. (2005). "Mucosal Immunology." 3rd ed. Elsevier Academic Press, Amstedam ; Boston.
    Millar, D. G., Hirst, T. R., and Snider, D. P. (2001). Escherichia Coli Heat-Labile Enterotoxin B Subunit Is a More Potent Mucosal Adjuvant Than Its Vlosely Related Homologue, the B Subunit of Cholera Toxin. Infect Immun 69(5), 3476-3482.
    Mousavi, T., Tajik, N., Moradi, M., and Radjabzadeh, M. F. (2008). Cpg Immunotherapy in Chenopodium Album Sensitized Mice: The Comparison of Ifn-Gamma, Il-10 and Ige Responses in Intranasal and Subcutaneous Administrations. Clin Mol Allergy 6, 10.
    Nesterova, M. V., Johnson, N. R., Stewart, T., Abrams, S., and Cho-Chung, Y. S. (2005). Cpg Immunomer DNA Enhances Antisense Protein Kinase a Rialpha Inhibition of Multidrug-Resistant Colon Carcinoma Growth in Nude Mice: Molecular Basis for Combinatorial Therapy. Clin Cancer Res 11(16), 5950-5955.
    Nimal, S., McCormick, A. L., Thomas, M. S., and Heath, A. W. (2005). An Interferon Gamma-Gp120 Fusion Delivered as a DNA Vaccine Induces Enhanced Priming. Vaccine 23(30), 3984-3990.
    Nussler, N. C., Stange, B., Nussler, A. K., Settmacher, U., Langrehr, J. M., Neuhaus, P., and Hoffman, R. A. (2001). Upregulation of Intraepithelial Lymphocyte (Iel) Function in the Small Intestinal Mucosa in Sepsis. Shock 16(6), 454-458.
    Owen, R. L., and Jones, A. L. (1974). Epithelial Cell Specialization within Human Peyer's Patches: An Ultrastructural Study of Intestinal Lymphoid Follicles. Gastroenterology 66(2), 189-203.
    Pang, G., Clancy, R., and Saunders, H. (1990). Dual Mechanisms of Inhibition of the Immune Response by Enterocytes Isolated from the Rat Small Intestine. Immunol Cell Biol 68 ( Pt 6), 387-396.
    Paul, W. E. (1999). "Fundamental Immunology." 4th ed. Lippincott-Raven, Philadelphia. Perez, A. M., Konig, G., Spath, E., and Thurmond, M. C. (2008). Variation in the Vp1 Gene of Foot-and-Mouth Disease Virus Serotype a Associated with Epidemiological Characteristics of Outbreaks in the 2001 Epizootic in Argentina. J Vet Diagn Invest 20(4), 433-439.
    Pfaff, E., Thiel, H. J., Beck, E., Strohmaier, K., and Schaller, H. (1988). Analysis of Neutralizing Epitopes on Foot-and-Mouth Disease Virus. J Virol 62(6), 2033-2040.
    Playfair, J. H., and De Souza, J. B. (1987). Recombinant Gamma Interferon Is a Potent Adjuvant for a Malaria Vaccine in Mice. Clin Exp Immunol 67(1), 5-10.
    Rana, S. K., and Bagchi, T. (2008). Development and Characterization of Monoclonal Antibodies against Fmd Virus Type Asia-1 and Determination of Antigenic Variations in the Field Strains. Vet Immunol Immunopathol 122(3-4), 241-249.
    Rodriguez, L. L., Barrera, J., Kramer, E., Lubroth, J., Brown, F., and Golde, W. T. (2003). A Synthetic Peptide Containing the Consensus Sequence of the G-H Loop Region of Foot-and-Mouth Disease Virus Type-O Vp1 and a Promiscuous T-Helper Epitope Induces Peptide-Specific Antibodies but Fails to Protect Cattle against Viral Challenge. Vaccine 21(25-26), 3751-3756.
    Sanyal, A., Gurumurthy, C. B., Venkataramanan, R., Hemadri, D., and Tosh, C. (2000). Comparison of Amino Acid Sequences at the Amino Acid 130-160 Region of Vp1 Polypeptide of Indian Field Isolates of Foot-and-Mouth Disease Virus Serotype Asia 1. Acta Virol 44(2), 85-90.
    Shi, X. J., Wang, B., Zhang, C., and Wang, M. (2006). Expressions of Bovine Ifn-Gamma and Foot-and-Mouth Disease Vp1 Antigen in P. Pastoris and Their Effects on Mouse Immune Response to Fmd Antigens. Vaccine 24(1), 82-89.
    Shimizu, I., Tomita, Y., Iwai, T., Kajiwara, T., Okano, S., Nomoto, K., and Tominaga, R. (2006). Sequential Analysis of Anti-Alpha Gal Natural Antibody-Producing B Cells in Galt Knockout Mice in Cyclophosphamide-Induced Tolerance. Scand J Immunol 63(6), 435-443.
    Singh, M., and O'Hagan, D. (1999). Advances in Vaccine Adjuvants. Nat Biotechnol 17(11), 1075-1081.
    Song, H., Fang, W., Wang, Z., Zheng, D., Du, J., Li, H., Li, Y., and Qiu, B. (2004a). Detection of Foot-and-Mouth Virus Antibodies Using a Purified Protein from the High-Level Expression of Codon-Optimized, Foot-and-Mouth Disease Virus Complex Epitopes in Escherichia Coli. Biotechnol Lett 26(16), 1277-1281.
    Song, H., Zhou, L., Fang, W., Li, Y., Wang, X., Fang, H., Li, X., Wu, M., and Qiu, B. (2004b). High-Level Expression of Codon Optimized Foot-and-Mouth Disease Virus Complex Epitopes and Cholera Toxin B Subunit Chimera in Hansenula Polymorpha. Biochem Biophys Res Commun 315(1), 235-239.
    Su, B., Wang, J., Wang, X., Jin, H., Zhao, G., Ding, Z., Kang, Y., and Wang, B. (2008). The Effects of Il-6 and Tnf-Alpha as Molecular Adjuvants on Immune Responses to Fmdv and Maturation of Dendritic Cells by DNA Vaccination. Vaccine 26(40), 5111-5122.
    Tamura, S., Funato, H., Nagamine, T., Aizawa, C., and Kurata, T. (1989). Effectiveness of Cholera Toxin B Subunit as an Adjuvant for Nasal Influenza Vaccination Despite Pre-Existing Immunity to Ctb. Vaccine 7(6), 503-505.
    Tascon, R. E., Ragno, S., Lowrie, D. B., and Colston, M. J. (2000). Immunostimulatory Bacterial DNA Sequences Activate Dendritic Cells and Promote Priming and Differentiation of Cd8+ T Cells. Immunology 99(1), 1-7.
    Tully, D. C., and Fares, M. A. (2009). Shifts in the Selection-Drift Balance Drive the Evolution and Epidemiology of Foot-and-Mouth Disease Virus. J Virol 83(2), 781-790.
    Wang, C. Y., Chang, T. Y., Walfield, A. M., Ye, J., Shen, M., Chen, S. P., Li, M. C., Lin, Y. L., Jong, M. H., Yang, P. C., Chyr, N., Kramer, E., and Brown, F. (2002). Effective Synthetic Peptide Vaccine for Foot-and-Mouth Disease in Swine. Vaccine 20(19-20), 2603-2610.
    Wang, D. M., Shen, W. T., Li, X. Y., and Zhou, P. (2008). [Analysis of the Antigenicity of the Expression Product of Fusion Antigen Epitope Genes of Fmdv.]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 24(11), 1048-1050.
    Wernery, U., and Kaaden, O. R. (2004). Foot-and-Mouth Disease in Camelids: A Review. Vet J 168(2), 134-142.
    Wiedermann, U., Jahn-Schmid, B., Lindblad, M., Rask, C., Holmgren, J., Kraft, D., and Ebner, C. (1999). Suppressive Versus Stimulatory Effects of Allergen/Cholera Toxoid (Ctb) Conjugates Depending on the Nature of the Allergen in a Murine Model of Type I Allergy. Int Immunol 11(10), 1717-1724.
    Wilson, R. A., Coulson, P. S., Betts, C., Dowling, M. A., and Smythies, L. E. (1996). Impaired Immunity and Altered Pulmonary Responses in Mice with a Disrupted Interferon-Gamma Receptor Gene Exposed to the Irradiated Schistosoma Mansoni Vaccine. Immunology 87(2), 275-282.
    Wu, H. Y., Nguyen, H. H., and Russell, M. W. (1997). Nasal Lymphoid Tissue (Nalt) as a Mucosal Immune Inductive Site. Scand J Immunol 46(5), 506-513.
    Wyatt, C. R., Barrett, W. J., Brackett, E. J., Schaefer, D. A., and Riggs, M. W. (2002). Association of Il-10 Expression by Mucosal Lymphocytes with Increased Expression of Cryptosporidium Parvum Epitopes in Infected Epithelium. J Parasitol 88(2), 281-286.
    Xu-Amano, J., Kiyono, H., Jackson, R. J., Staats, H. F., Fujihashi, K., Burrows, P. D., Elson, C. O., Pillai, S., and McGhee, J. R. (1993). Helper T Cell Subsets for Immunoglobulin a Responses: Oral Immunization with Tetanus Toxoid and Cholera Toxin as Adjuvant Selectively Induces Th2 Cells in Mucosa Associated Tissues. J Exp Med 178(4), 1309-1320.
    Yamamoto, K., Do Valle, G. R., Xu, M., Miwatani, T., and Honda, T. (1995). Amino Acids of the Cholera Toxin from Vibrio Cholerae O37 Strain S7 Which Differ from Those of Strain O1. Gene 163(1), 155-156.
    Yamamoto, S., Takeda, Y., Yamamoto, M., Kurazono, H., Imaoka, K., Yamamoto, M., Fujihashi, K., Noda, M., Kiyono, H., and McGhee, J. R. (1997). Mutants in the Adp-Ribosyltransferase Cleft of Cholera Toxin Lack Diarrheagenicity but Retain Adjuvanticity. J Exp Med 185(7), 1203-1210.
    Yang, C. D., Liao, J. T., Lai, C. Y., Jong, M. H., Liang, C. M., Lin, Y. L., Lin, N. S., Hsu, Y. H., and Liang, S. M. (2007). Induction of Protective Immunity in Swine by Recombinant Bamboo Mosaic Virus Expressing Foot-and-Mouth Disease Virus Epitopes. BMC Biotechnol 7, 62.
    Yi, J. Z., Liu, M. Q., Zhu, C. Z., Zhang, Q., Sheng, Z. T., Du, Q. Y., Yan, W. Y., and Zheng, Z. X. (2004). Recombinant Bivalent Vaccine against Foot-and-Mouth Disease Virus Serotype O/a Infection in Guinea Pig. Acta Biochim Biophys Sin (Shanghai) 36(9), 589-596.
    Yura, M., Takahashi, I., Terawaki, S., Hiroi, T., Kweon, M. N., Yuki, Y., and Kiyono, H. (2001). Nasal Administration of Cholera Toxin (Ct) Suppresses Clinical Signs of Experimental Autoimmune Encephalomyelitis (Eae). Vaccine 20(1-2), 134-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700