新城疫病毒F蛋白-Ii嵌合体与MHC分子结合特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在免疫系统中,主要组织相容性复合物(Major histocompatibility complex,MHC)Ⅰ、Ⅱ分子作为肽受体,具有提呈抗原肽的功能。恒定链(Invariant Chain,Ii)是一种非多态性Ⅱ型跨膜糖蛋白,它是MHCⅡ分子生物合成及MHCⅡ分子结合外源性抗原肽过程中重要的分子伴侣。研究表明,在内质网中Ii辅助MHCⅡ亚单位初始折叠和低聚化,并与MHCⅡ分子组装成(αβIi)_3九聚体,同时Ii的CLIP区(the class-Ⅱassociated Iichain peptide)即第81-104位氨基酸片段,占据MHCⅡ的抗原结合凹槽,有效屏蔽了MHCⅡ类分子在内质网中与内源性抗原肽结合。细胞中缺乏Ii会导致MHCⅡα链和β链不能正确折叠,从而被较长时间滞留于内质网中。
     迄今为止,Ii与MHCⅡ分子相互关系的研究多集中在哺乳动物,有关禽类的研究还未见报导。从推测的氨基酸序列分析看,人、小鼠、大鼠的CLIP区(尤其是91-99aa:MRMATPLLM)是完全保守的,但这种高度的保守性未出现包括禽类在内的其他物种中。对于鸡Ii与鸡Ⅱ类抗原递呈分子亚单位在细胞中的定位如何,Ii链能否与MHCⅡα和MHCⅡβ的单链聚合,Ii链中的CLIP区在聚合中起何作用,外源性抗原肽替代CLIP后,Ii链是否还能与MHCⅡ链聚合?为了探讨这些问题,我们构建了表达红色荧光蛋白(Red Fluorescent Protein,RFP)的鸡Ⅱ类抗原递呈分子亚单位即MHCⅡα链和β链的真核表达载体和表达增强型绿色荧光蛋白(Enhanced Green Fluores cenceProtein,EGFP)的Ii真核表达载体,使用瞬时表达系统,检测Ii与单个MHCⅡ亚单位在COS-7细胞中的表达和定位,并通过免疫共沉淀进一步研究它们之间的相互关系。研究表明,带有荧光蛋白的融合蛋白保持了目的蛋白(Ii、MHCⅡα和MHCⅡβ)的活性和标记蛋白(GFP和RFP)的特性且定位于细胞的内膜系统;其次鸡Ii链与单链MHCⅡα或MHCⅡβ之间存在细胞内的共定位,并且它们之间能够形成复合体,在这一过程中CLIP区担当关键角色。为了探索研制高效的核酸疫苗,我们将以新城疫病毒的F_(343)抗原表位基因(aa327-359)替换鸡Ii链CLIP编码基因构建的Ii嵌合体分别与单个MHCⅡ亚单位共转染COS-7细胞,通过荧光显微镜观察Ii嵌合体改变了抗原表位在细胞中的定位,并且通过免疫共沉淀证实用NDV的F_(343)抗原肽取代CLIP区的Ii嵌合体保持与单链MHCⅡα或MHCⅡβ聚合。这些结果提示,只要保持Ii分子基本的空间结构,Ii链就能与MHCⅡα或MHCⅡβ链形成聚合体。因此,在新型高效基因疫苗的设计中,Ii可以充当抗原肽潜在的运输载体将抗原肽靶向性地传递到MHCⅡ递呈抗原分子的路径中。
     病毒性抗原作为内源性抗原由MHCⅠ类分子呈递,而Ii分子作为MHCⅡ分子的伴侣蛋白主要协助递呈外源性抗原。MHCⅠ类分子和MHCⅡ类分子的合成均起源于内质网,它们在细胞中的分选则发生在高尔基体的反面膜囊,MHCⅠ类分子通过膜泡运输离开高尔基体到达细胞表面,MHCⅡ类分子则进一步到达溶酶体。MHCⅠ与MHCⅡ所走路线的不同可能与Ii的引导有关。为了了解鸡的Ii分子与MHCⅠ类分子之间的关系,本文还探讨了它们之间是否存在相互作用。为此,我们首先获得了鸡MHCⅠ分子亚单位的基因,并进一步构建了相应的原核表达质粒,用pET-32a和Rosseta菌组合表达带有信号肽的MHCⅠα、MHCⅠβ_(2m)。其次,我们构建了能表达红色荧光蛋白的鸡MHCⅠ类抗原递呈分子亚单位的真核表达载体,并与能表达增强型绿色荧光蛋白的Ii真核表达载体,使用瞬时表达系统共转染COS-7,荧光显微镜检测与免疫共沉淀的结果表明,单个的鸡MHCⅠα重链或β_(2m)轻链均不能与鸡Ii有效结合,Ii分子要求与完整的MHCⅠ分子结合才能形成复合体。
Major histocompatibility complex(MHC) classⅡmolecules are polymorphic cell surface glycoproteins that serve the immune system as peptide receptors.The invariant chain(Ii) is a non-polymorphic typeⅡtransmembrane protein and acts as a chaperone during MHC classⅡ(MHCⅡ) biosynthesis and binding foreign peptide antigens.In biosynthesis Ii assists initial folding and oligomerisation of the MHCⅡsubunits.The final assembled classⅡ-Ii complex is a nonamer,consisting of a single Ii trimer associated with three classⅡheterodimers.The association of Ii with MHC classⅡmolecules involves the direct occupancy of the peptide-binding groove with a region of Ii known as the CLIP (classⅡ-associated invariant chain peptide,amino acids 81-104) domain.Occupancy of the classⅡpeptide binding site with CLIP plays an important role in preventing MHC classⅡmolecules from the loading of endogenetic antigenic peptides in the endoplasmic reticulum(ER).In the absence of Ii,unassembled MHCⅡαandβchains are largely retained within ER.
     So far,the studies on the association of MHCⅡwith Ii have been mainly focusing on mammal,especially human,and have never been shown in poultry.Analysis of the putative amino acid sequence of Ii indicated that the CLIP region(especially aa 91-99: MRMATPLLM) is completely conserved between human,mouse and rat.But this striking conservation does not extend to other species,including poultry.Whether can chicken Ii associate with single MHCⅡαorβchain and what does its CLIP play? Can the Ii replaced CLIP with exogenous antigens peptides associate with MHCⅡsubunits? For studying these questions,we respectively constructed the eukaryotic expression plasmids pEGFP-C1-Ii,pDsRed2-N1-α,pDsRed2-N1-βthat fused red or enhanced green fluorescent protein.The recombinant plasmids were transiently transfected into COS-7 cells with Lipofectamine 2000.Immunofluorescence microscopy was carried out to detect the expression and cellular localization of Ii and single MHCⅡsubunit,and immunoprecipitation was used for analyzing the association of chicken Ii orΔCLIP- Ii with the MHCⅡsubunits.The results indicated that the fusion genes ofα,βor Ii was predominantly expressed and localized in cellular endomembrane system,and changed the cytoplasm localization of the fluorescent protein.Chicken Ii with individual MHCⅡαorβpolypeptides colocalized in cellular endomembrane system,and its CLIP region plays a key role on the assembly of Ii with MHCⅡsubunits.Furthermore,we also found that the Ii replaced CLIP with Newcastle disease virus F_(343) epitopes(NDV F_(343)) can not only efficiently load F_(343) antigenic peptides into the vesicles of endomembrane system but also. restore the association with MHCⅡsubunits in the transfected cells.Thus,MHCⅡpolymer assembly is not blocked as long as the basic steric molecular structure of Ii is maintained,and different binding models exist in different species or MHCⅡisotypes. Moreover,in the designing of effective DNA vaccines,chicken Ii could act as a potential "carrier" of the antigenic peptides for the delivery of an antigenic peptide to the MHC classⅡpathway.
     Both MHCⅠand MHCⅡmolecules are synthesized in the ER,yet they were sorted in trans-Golgi.MHCⅠmolecules were transported to the cellular surface by vesicles,and MHCⅡmolecules must be transported to lysosome.The different sorting route of MHCⅠand MHCⅡmolecules may be related to the guidance of Ii.To investigate the intracellular localization and association of chicken major histocompatibility complex classⅠsubunits with invariant chain,we carried out a series of the experiments.At first,the sequences of MHCⅠαandβ_(2m) subunits were amplified with RT-PCR,and sequentially the prokaryotic expressive vector pET-32a-MHCⅠαand pET-32a-MHCⅠβ_(2m) containing signal peptides was constructed and expressed by Rosetta bacteria.Secondly,we constructed the eukaryotic expression plasmids of MHCⅠαand MHCⅠβ_(2m) that fused red or enhanced green fluorescent protein,respectively.The recombinant plasmids of MHCⅠsubunits and pEGFP-C1-Ii that can express enhanced green fluorescent protein were transiently transfected into COS-7 cells.The colocalization was found in endocytic compartments when GFP-Ii,MHCⅠα-RFP and MHCⅠβ_(2m)-RFP were co-expressed in COS-7 cells. Immunoprecipitation of Ii showed that GFP-Ii co-isolated with MHCⅠα-GFP and MHCⅠβ_(2m)-GFP subunits when COS-7 cells were transiently transfected with pEGFP-C1-Ii, pEGFP-N1-MHCⅠαand pEGFP-N1-MHCⅠβ_(2m).Thus,Chicken Ii can not effectively associate with singleαorβ_(2m) subunits from chicken MHCⅠmolecules,but Ii and the integrated MHCⅠmolecule can form the complexes that are colocalized in endomembrane system of COS-7 cells.
引文
[1]Lipp J,Dobberstein B.Signal recognition paticle-dependent membrane insertion of mouse invariant chain:a membrain-spanning protein with a cytoplasmically exposed amine terminus.Cell Biology,1986,102:2169-2175.
    [2]Claesson L,Peterson PA.Association of human gamma chain with class Ⅱtransplantation antigens during intracellular transport.Biochemistry,1983,22:3206-3213.
    [3]肖雨龙,于益芝.恒定链胞浆尾部在MHC Ⅱ类分子递呈抗原中的作用研究进展.国外医学免疫学分册,1999,22(3):116-118.
    [4]W.E.保罗[美]编著.基础免疫学.北京:科学出版社.2003,297-370.
    [5]Jones PP,Murphy DB,Hewgill D,et al.Detection of a common polypeptide chain in I-A and I-E subregion immunoprecipitates.Immunochemistry,1978,16:51-60.
    [6]王巧巧.MHC Ⅱ分子的伴随蛋白-Ii链.国外医学免疫学分册,1999,22:307-310.
    [7]Anderson M,Miller J.Invariant Chain Can Function as a Chaperone Protein for Class Ⅱ Major Histocompatibility Complex Molecules.Proc Natl Acad Sci USA,1992,89:2282-2286.
    [8]Kropshofer H,Vogt A,Hammerling G.Structural features of the invariant chain fragment CLIP controlling rapid release from HLA-DR molecules and inhibition of peptide binding.Proc Natl Acad Sci USA,1995,92:8313-8317.
    [9]Serwe M,Reuter G,Sponaas A,et al.Both invariant chain isoforms Ii31 and Ii41 promote class Ⅱantigen presentation.Int Immunol,1997,9:983-991.
    [10]Bikoff E,Huang L,Episkopou V,et al.Defective major histocompatibility complex class Ⅱassembly,transport,peptide acquisition,and CD4+ T cell selection in mice lacking invariant chain expression.J Exp Med,1993,177:1699-1712.
    [11]Wright RJ,Bikoff EK,Stockinger B.The Ii41 isoform of invariant chain mediates both positive and negative selection events in T-cell receptor transgenic mice.Immunology,1998,95:309-313.
    [12]Shachar I,Flavell R.Requirement for Invariant Chain in B Cell Maturation and Function.Science,1996,274:106-108.
    [13]Matza D,Wolstein O,Dikstein R,et al.Invariant chain induces B cell maturation by activating a TAF(Ⅱ) 105-NF-kappa B-dependent transcription program.J Biol Chem,2001,276:27203-27206.
    [14]Matza D,Lantner F,Bogoch Y,et al.Invariant chain induces B cell maturation in a process that is independent of its chaperonic activity.Proc Natl Acad Sci USA,2002,99:3018-3023.
    [15]Matza D,Kerem A,Medvedovsky H,et al.Invariant chain-induced B cell differentiation requires intramembrane proteolytic release of the cytosolic domain.Immunity,2002,17:549-560.
    [16] Vigna JL, Smith KD, Lutz CT. Invariant chain association with MHC class I: preference for HLA class I/beta 2-microglobulin heterodimers, specificity, and influence of the MHC peptide-binding groove. J Immunol, 1996, 157: 4503-4510.
    [17] Reber AJ, Turnquist HR, Thomas HJ, et al. Expression of invariant chain can cause an allele-dependent increase in the surface expression of MHC class I molecules. Immunogenetics,2002,54:74-81.
    [18] Burton JD, Ely S, Reddy PK, et al. CD74 is expressed by'multiple myeloma and is a promising target for therapy. Clin Cancer Res, 2004, 10:6606-6611.
    [19] Rangel LB, Agarwal R, Sherman-Baust CA, et al. Anomalous expression of the HLA-DR alpha and beta chains in ovarian and other cancers. Cancer Biol Ther, 2004, 3:1021-1027.
    [20] Chamuleau ME, Souwer Y, Van Ham SM, et al. Class Il-associated invariant chain peptide expression on myeloid leukemic blasts predicts poor clinical outcome. Cancer Res, 2004,64:5546-5550.
    [21] Young AN, Amin MB, Moreno CS, et al. Expression profiling of renal epithelial neoplasms: a method for tumor classification and discovery of diagnostic molecular markers. Am J Pathol, 2001,158:1639-1651.
    [22] Datta MW, Shahsafaei A, Nadler LM, et al. Expression of MHC class Il-associated invariant chain (Ii; CD74) in thymic epithelial neoplasms. Appl Immunohistochem Mol Morphol, 2000,8:210-215.
    [23] Ansari AA. A possible role of the MHC-associated invariant chain in rheumatoid arthritis. Semin Arthritis Rheum, 1993,23:193-197.
    [24] Hess AD, Thoburn C, Chen W, et al. The N-terminal flanking region of the invariant chain peptide augments the immunogenicity of a cryptic "self epitope from a tumor-associated antigen. Clin Immunol, 2001, 101:67-76.
    [25] Van Tienhoven EA, ten Brink CT, van Bergen J, et al. Induction of antigen specific CD4+ T cell responses by invariant chain based DNA vaccines. Vaccine, 2001, 19:1515-1519.
    [26] Fujii S, Senju S, Chen YZ, et al. The CLIP-substituted invariant chain efficiently targets an antigenic peptide to HLA class II pathway in L cells. Hum Immunol, 1998, 59: 607-614.
    [27] Xu M, Lu X, Kallinteris NL, et al. Immunotherapy of cancer by antisense inhibition of Ii protein,an immunoregulator of antigen selection by MHC class II molecules. Curr Opin Mol Ther, 2004, 6:160-165.
    [28] Bijlmakers MJ, Benaroch P, Ploegh HL. Mapping functional regions in the lumenal domain of the class Il-associated invariant chain. J Exp Med, 1994, 180: 623-629.
    [29] Gedde-Dahl M, Freisewinkel I, Staschewski M, et al. Exon 6 is essential for invariant chain trimerization and induction of large endosomal structures. J Biol Chem, 1997, 272: 8281~8287.
    [30] Genuardi M, Saunders G. Localization of the HLA class II -associated invariant chain gene to human chromosome band 5q32. Immunogenetics, 1988, 28: 53-56.
    [31] Yamamoto K, Floyd-Smith G, Francke U, et al. The gene encoding the la-associated invariant chain is located on chromosome 18 in the mouse. Immunogenetics, 1985, 21: 83-90.
    [32] Strubin M, Berte C, Mach B. Alternative splicing and alternative initiation of translation explain the four forms of the la antigen-associated invariant chain. EMBO J, 1986, 5: 3483-3488.
    [33] Fineschi B, Arneson L, Naujokas M, et al. Proteolysis of major histocompatibility complex class II-associated invariant chain is regulated by the alternatively spliced gene product, p41. Proc Natl Acad Sci USA, 1995, 92:10257-10261.
    [34] Bevec T, Stoka V, Pungercic G, et al. Major histocompatibility complex class II-associated p41 invariant chain fragment is a strong inhibitor of lysosomal cathepsin L. J Exp Med, 1996,183:1331-1338.
    [35] O'Sullivan DM, Noonan D, Quaranta V. Four la invariant chain forms derive from a single gene by alternate splicing and alternate initiation of transcription/translation. J Exp Med, 1987, 166:444-460.
    [36] Stumptner-Cuvelette P., Benaroch P. Multiple roles of the invariant chain in MHC class II function.Biochimica et Biophysica Acta, 2002, 1542:1-13.
    [37] Lotteau V, Teyton L, Peleraux A, et al. Intracellular transport of class II MHC molecules directed by invariant chain. Nature, 1990, 348: 600-605.
    [38] Koch N, Harris AW. Differential expression of the invariant chain in mouse tumor cells: relationship to B lymphoid development. J Immunol, 1984, 132: 12-15.
    [39] Koch N, Lauer W, Habicht J, et al. Primary structure of the gene for the murine la antigen-associated invariant chains (Ii). An alternatively spliced exon encodes a cysteine-rich domain highly homologous to arepetitive sequence of thyroglobulin. Embo J, 1987, 6:1677-1683.
    [40] Teyton L, O'Sullivan D, Dickson PW, et al. Invariant chain distinguishes between the exogenous and endogenous antigen presentation pathways. Nature, 1990, 348:39-44.
    [41] Pieters J, Bakke O, Dobberstein B. The MHC class II-associated invariant chain contains two endosomal targeting signals within its cytoplasmic tail. J Cell Sci, 1993,106 (Pt 3):831~846.
    [42] Odorizzi CG, Trowbridge IS, Xue L, et al. Sorting signals in the MHC class II invariant chain cytoplasmic tail and transmembrane region determine trafficking to an endocytic processing compartment. J Cell Biol, 1994, 126: 317-330.
    
    [43] Pieters J. MHC class II restricted antigen presentation. Curr Opin Immunol, 1997, 9:89-96.
    [44] Ghosh P, Amaya M, Mellins E, et al. The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature, 1995, 378: 457-462.
    [45] Jasanoff A, Wagner G, Wiley DC. Structure .of a trimeric domain of the MHC class II-associated chaperonin and targeting protein Ii. Embo J, 1998, 17: 6812~6818.
    [46] Jasanoff A, Park SJ, Wiley DC. Direct observation of disordered regions in the major histocompatibility complex class II-associated invariant chain. Proc Natl Acad Sci USA, 1995, 92:9900-9904.
    [47] Park SJ, Sadegh-Nasseri S, Wiley DC. Invariant chain made in Escherichia coli has an exposed N-terminal segment that blocks antigen binding to HLA-DRl and a trimeric C-terminal segment that binds empty HLA-DR1. Proc Natl Acad Sci USA, 1995, 92:11289-11293.
    [48] Bertolino P, Rabourdin-Combe C. The MHC class II-associated invariant chain: a molecule with multiple roles in MHC class II biosynthesis and antigen presentation to CD4+ T cells. Crit Rev Immunol, 1996, 16:359-379.
    [49] Machamer CE, Cresswell P. Biosynthesis and glycosylation of the invariant chain associated with HLA-DR antigens. J Immunol, 1982, 129: 2564-2569.
    [50] Warmerdam PA, Long EO, Roche PA. Isoforms of the invariant chain regulate transport of MHC class II molecules to antigen processing compartments. J Cell Biol, 1996, 133: 281-291.
    [51] Roche PA, Teletski CL, Stang E, et al. Cell surface HLA-DR-invariant chain complexes are targeted to endosomes by rapid internalization. Proc Natl Acad Sci USA, 1993, 90: 8581-8585.
    [52] Anderson MS, Swier K, Arneson L, et al. Enhanced antigen presentation in the absence of the invariant chain endosomal localization signal. J Exp Med, 1993, 178: 1959-1969.
    [53] Genuardi M, Saunders GF. Localization of the HLA class II-associated invariant chain gene to human chromosome band 5q32. Immunogenetics, 1988, 28: 53-56.
    [54] Xu, F. Z., Ye H., Wang J. J., et al. The Effect of the Site-directed Mutagenesis of the Ambient Amino Acids of the Leucine-based Sorting Motifs on the Localization of Chicken Invariant Chain. Poultry Science, 2008, 87:1980-1986.
    [55] Bangia N, Watts TH. Evidence for invariant chain 85-101 (CLIP) binding in the antigen binding site of MHC class II molecules. Int Immunol, 1995, 7:1585-1591.
    [56] Kageyama T, Yonezawa S, Ichinose M, et al. Potential sites for processing of the human invariant chain by cathepsins D and E. Biochem Biophys Res Commun, 1996, 223: 549-553.
    [57] Morton PA, Zacheis ML, Giacoletto K.S, et al. Delivery of nascent MHC class II-invariant chain complexes to lysosomal compartments and proteolysis of invariant chain by cysteine proteases precedes peptide binding in B-lymphoblastoid cells. J Immunol, 1995, 154:137-150.
    [58] Vogt AB, Stern LJ, Amshoff C, et al. Interference of distinct invariant chain regions with superantigen contact area and antigenic peptide binding groove of HLA-DR. J Immunol, 1995, 155: 4757-4765.
    [59] Stumptner P, Benaroch .P. Interaction of MHC class II molecules with the invariant chain: role of the invariant chain (81-90) region. Ernbo J, 1997, 16: 5807-5818.
    [60] Lindstedt R, Liljedahl M, Peleraux A, et al. The MHC class II molecule H2-M is targeted to an endosomal compartment by a tyrosine-based targeting motif. Immunity, 1995, 3: 561-572.
    [61] Marks MS, Roche PA, van Donselaar E, et al. A lysosomal targeting signal in the cytoplasmic tail of the beta chain directs HLA-DM to MHC class II compartments. J Cell Biol, 1995, 131:351-369.
    [62] Copier J, Kleijmeer MJ, Ponnambalam S, et al. Targeting signal and subcellular compartments involved in the intracellular trafficking of HLA-DMB. J Immunol, 1996, 157: 1017-1027.
    [63] Fineschi B, Sakaguchi K, Appella E, et al. The proteolytic environment involved in MHC class Il-restricted antigen presentation can be modulated by the p41 form of invariant chain. J Immunol,1996, 157:3211-3215.
    [64] Lennon-Dumenil AM, Roberts RA, Valentijn K, et al. The p41 isoform of invariant chain is a chaperone for cathepsin L. Embo J, 2001, 20: 4055-4064.
    [65] Nakagawa T, Roth W, Wong P, et al. Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science, 1998, 280: 450-453.
    [66] Zavasnik-Bergant V, Schweiger A, Bevec T, et al. Inhibitory p41 isoform of invariant chain and its potential target enzymes cathepsins L and H in distinct populations of macrophages in human lymph nodes. Immunology, 2004, 112: 378-385.
    [67] Pierre P, Shachar I, Matza D, et al. Invariant chain controls H2-M proteolysis in mouse splenocytes and dendritic cells. Journal of Experimental Medicine, 2000, 191:1057-1062.
    [68] Kenty G, Martin WD, Van Kaer L, et al. MHC class II expression in double mutant mice lacking invariant chain and DM functions. J Immunol, 1998, 160: 606-614.
    [69] Rajagopalan G, Smart MK, Krco CJ, et al. Expression and function of transgenic HLA-DQ molecules and lymphocyte development in mice lacking invariant chain. J Immunol, 2002, 169:1774-1783.
    [70] Kenty G, Bikoff EK. BALB c invariant chain mutant mice display relatively efficient maturation of CD4 (+) T cells in the periphery and secondary proliferative responses elicited upon peptide challenge. Journal of Immunology, 1999, 163: 232-241.
    [71] Matza D, Kerem A, Shachar I. Invariant chain, a chain of command. Trends in Immunology, 2003,24: 264-268.
    [72] Lipp J, Dobberstein B. "The membrane-spanning segment of invariant chain (I gamma) contains a potentially cleavable signal sequence." Cell, 1986, 46(7): 1103-1112.
    [73] Brown MS, Ye J, Rawson RB, et al. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell, 2000,.100: 391-398.
    [74] Wolfe MS, Kopan R. Intramembrane proteolysis: theme and variations. Science, 2004,305:1119-1123.
    [75] Maehr R, Kraus M, Ploegh HL. Mice deficient in invariant-chain and MHC class II exhibit a normal mature B2 cell compartment. Eur J Immunol, 2004, 34: 2230-2236.
    [76] Zhong Jiang, Minzhen Xu, Louis Savas, Invariant chain expression in colon neoplasms. Virchows Arch, 1999, 435:32-36.
    [77] Ostrand-Rosenberg S. Tumor immunotherapy: the tumor cell as an antigen-presenting cell. Curr Opin Immunol, 1994, 6:722-727.
    [78] Neumann J, Eis-Hubinger AM, Koch N. Herpes simplex virus type 1 targets the MHC class II processing pathway for immune evasion. J Immunol, 2003, 171: 3075-3083.
    [79] Schindler M, Wurfl S, Benaroch P, et al. Down-modulation of mature major histocompatibility complex class II and up-regulation of invariant chain cell surface expression are well-conserved functions of human and simian immunodeficiency virus nef alleles. J Virol, 2003, 77:10548-10556.
    [80] Roch PA, Marks MS, Cresswell P. Formation of a nine-subunit complex by HLA calss II glycoproteins and the invariant chain. Nature, 1991, 354: 392-394.
    [81] Germain, R.N. and Rinker, A.GJ. Peptide binding inhibits protein aggregation of invariant-chain free class II dimmers and promotes surface expression of occupied molecules. Nature, 1993, 3:725-728.
    [82] Busch R, Cloutier I, Sekaly RP, et al. Invariant chain protects class II histocompatibility antigens from binding intact polypeptides in the endoplasmic reticulum. EMBO J, 1996, 15: 418-428.
    [83] Bonnerot C, Marks MS, Cosson P, et al. Association with BiP and aggregation of class II MHC molecules synthesized in the absence of invariant chain. EMBO J, 1994, 13: 934-944.
    [84] Bremnes B, Madsen T, Gedde-Dahl M, et al. An LI and ML motif in the cytoplasmic tail of the MHC-associated invariant chain mediate rapid internalization. J Cell Sci, 1994, 107 (Pt 7):2021-2032.
    [85] Neumann J, Koch N. Assembly of major histocompatibility complex class II subunits with invariant chain. FEBS Letters, 2005, 579: 6055-6059.
    [86] Dijkstra JM, Kiryu I, Kollner B, et al. MHC class II invariant chain homologues in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol, 2003, 15: 91-105.
    [87] Zhong DL, Yu WY, Liu YH, et al. Molecular cloning and expression of two chicken invariant chain isoforms produced by alternative splicing. Immunogenetics, 2004, 56: 650-656.
    [88]Zhong DL,Yu WY,Bao M,et al.Molecular cloning and mRNA expression,of duck invariant chain.Veterinary Immunology and Immunopathology,2006,110:293-302.
    [89]刘岗,仲大莲,刘雪兰等.应用RACE法克隆鸽恒定链基因的研究.遗传,2008,30(1):77-80.
    [90]Ashman JB,Miller J.A Role for the Transmembrane Domain in the Trimerization of the MHC Class Ⅱ-Associated Invariant Chain.Journal of Immunology,1999,163:2704-2712.
    [91]Kukol A,Torres J,Arkin IT.A structure for the trimeric MHC class Ⅱ-associated invariant chain transmembrane domain.J.Mol.Biol,2002,320:1109-1117.
    [92]Dixon AM,Stanley BJ,Matthews EE,et al.Invariant Chain Transmembrane Domain Trimerization:A Step in MHC Class Ⅱ Assembly.Biochemistry,2006,45:5228-5234.
    [93]Frauwirth K,Shastri N.Introducing endogenous antigens into the major histocompatibility complex(MHC) class Ⅱ presentation pathway.Both Ii mediated inhibition and enhancement of endogenous peptide/MHC class Ⅱ presentation require the same Ii domains.Immunology,2001,102:405-415.
    [94]Kvist S,Wiman K,Claesson L,et al.Membrane insertion and oligomeric assembly of HLA-DR histocompatibility antigens.Cell,1982,29:61-69.
    [95]Koch N,McLellan AD,Neumann J.A revised model for invariant chain-mediated assembly of MHC class Ⅱ peptide receptors.Trends Biochem.Sci,2007,12:532-537.
    [96]Siebenkotten,I.M.,Carstens,C.and Koch,N.Identification of a sequence that mediates promiscuous binding of invariant chain to MHC class Ⅱ allotypes.J.Immunol,1998,160:3355-3362.
    [97]Neumann J,Koch N.A novel domain on HLA-DR β chain regulates the chaperone role of the invariant chain[J].Journal of Cell Science,2006,119:4207-4214.
    [98]Koch M,Camp S,Collen T,et al.Structures of an MHC class Ⅰ molecule from b21 chickens illustrate promiscuous Peptide binding.Immunity,2007,27:885-899.
    [99]Mitchell DA,Nair SK,Gilboa E,et al.Dendritic cell/macrophage precursors capture exogenous antigen for MHC class Ⅰ presentation by dendritic cells.Eur J Immunol,1998,28(6):1923.
    [100]Antoniou AN,Powis SJ,Elliott T.Assembly and export of MHC class Ⅰ peptide ligands.Curr.Opin.Immunol,2003,15:75-81.
    [101]Pfeifer JD,Wick MJ,Roberts RL,et al.Phagocytic processing of bacterial antigens for class Ⅰ MHC presentation to T cells.Nature,1993,361:359-362.
    [102]Cerundolo V,Elliott T,Elvin J,et al.Association of the human invariant chain with H-2 Db class Ⅰ molecules.Eur.J.Immunol,1992,22:2243-2248.
    [103] Simon J. Powis. CLIP-region mediated interaction of Invariant with MHC class I molecules.FEBS Letters, 2006, 580: 3112-3116.
    [104] Hess AD, Thoburn C, Chen WR, et al. The N-terminal flanking region of the invariant chain peptide augments the immunogenicity of a cryptic 'self epitope from a tumor-associated antigen (vol 101, pg 67,2001). Clinical Immunology, 2001, 101: 381-381.
    [105] Wu TC, Guarnieri FG, Staveley-O'Carroll KF, et al. Engineering an intracellular pathway for mdjor histocompatibility complex class II presentation of antigens'. Proc Natl Acad Sci USA, 1995,92:11671-11675.
    [106] Sanderson S, Frauwirth K, Shastri N. Expression of endogenous peptide-major histocompatibility complex class II complexes derived from invariant chain-antigen fusion proteins.Proc Natl Acad Sci USA, 1995, 92:7217-7221.
    [107] Bremnes B, Rode M, Gedde-Dahl M, et al. The MHC class II-associated chicken invariant chain shares functional properties with its mammalian homologs. Exp Cell Res, 2000, 259:360-369.
    [108] Nagata T, Aoshi T, Suzuki M, et al. Induction of protective immunity to Listeria monocytogenes by immunization with plasmid DNA expressing a helper T-cell epitope that replaces the class II-associated invariant chain peptide of the invariant chain. Infect Immun, 2002, 70:2676-2680.
    [109] Nagata T, Higashi T, Aoshi T, et al. Immunization with plasmid DNA encoding MHC class II binding peptide/CLIP-replaced invariant chain (Ii) induces specific helper T cells in vivo: the assessment of Ii p31 and p41 isoforms as vehicles for immunization. Vaccine,2001,20:105-114.
    [110] Bonehill A, Heirman C, Tuyaerts S, et al. Efficient presentation of known HLA class II-restricted MAGE-A3 epitopes by dendritic cells electroporated with messenger RNA encoding an invariant chain with genetic exchange of class II-associated invariant chain peptide. Cancer Res, 2003, 63: 5587-5594.
    [111] Gregers TF, Fleckenstein B, Vartdal F, et al. MHC class II loading of high or low affinity peptides directed by Ii/peptide fusion constructs: implications for T cell activation. Int Immunol, 2003, 15:1291-1299.
    [112] Van Bergen J, Schoenberger SP, Verreck F, et al. Efficient loading of HLA-DR with a T helper epitope by genetic exchange of CLIP. Proc Natl Acad Sci USA, 1997,94:7499-7502.
    [113] Busch R, Rinderknecht CH, Roh S, et al. Achieving stability through editing and chaperoning:regulation of MHC class II peptide binding and expression. Immunol. Rev, 2005, 207:242-260.
    [114]Zechel MA,Chaturvedi P,Lee-Chan EC,et al.Modulation of antigen presentation and class Ⅱ expression by a class Ⅱ-associated invariant chain peptide.J.Immunol,1996,156:4232-4239.
    [115]Chaturvedi P,Hengeveld R,Zechel MA,et al.The functional role of class Ⅱ-associated invariant chain peptide(CLIP) in its ability to variably modulate immune responses.Int.Immunol,2000,12:757-765.
    [116]Mukherjee R,Chaturvedi P,Lee-Chan E,et al.Exogenous CLIP localizes into endocytic compartment of cells upon internalization:Implications for antigen presentation by MHC class Ⅱmolecules.Molecular Immunology,2008,45:2166-2176.
    [117]Xu M,Jackson R,Adams S,et al.Studies on activities of invariant chain peptides on releasing or exchanging of antigenic peptides at human leukocyte antigen-DR1.Arzneimittelforschung,1999,49:791-799.
    [118]Humphreys RE,Adams S,Koldzic G,et al.Increasing the potency of MHC class Ⅱ-presented epitopes by linkage to Ii-Key peptide.Vaccine,2000,18:2693-2697.
    [119]Kallinteris NL,Lu X,Wu S,et al.Ii-Key/MHC class Ⅱ epitope hybrid peptide vaccines for HIV.Vaccine,2003,21:4128-4132.
    [120]Kallinteris NL,Wu S,Lu X,et al.Linkage of Ii-Key segment to gp100(46-58) epitope enhances the production of epitope-specific antibodies.Vaccine,2005,23:2336-2338.
    [121]Gillogly ME,Kallinteris NL,Xu M,et al.Ii-Key/HER-2/neu MHC class-Ⅱ antigenic epitope vaccine peptide for breast cancer.Cancer Immunol Immunother,2004,53:490-496.
    [122]Xu M,Li J,Gulfo JV,et al.MHC class Ⅱ allosteric site drugs:new immunotherapeutics for malignant,infectious and autoimmune diseases.Scand J Immunol,2001,54:39-44.
    [123]Lu X,Kallinteris NL,Li J,et al.Tumor immunotherapy by converting tumor cells to MHC class Ⅱ-positive,Ii protein-negative phenotype.Cancer Immunol Immunother,2003,52:592-598.
    [124]Wang Y,Xu M,Che M,et al.Curative antitumor immune response is optimal with tumor irradiation followed by genetic induction of major histocompatibility complex class Ⅰ and class Ⅱmolecules and suppression of Ii protein.Hum Gene Ther,2005,16:187-199.
    [125]Hillman GG,Kallinteris NL,Li J,et al.Generating MHC Class Ⅱ+/Ii- phenotype after adenoviral delivery of both an expressible gene for MHC Class Ⅱ inducer and an antisense Ii-RNA construct in tumor cells.Gene Ther,2003,10:1512-1518.
    [126]B.W.卡尔尼克.禽病学.第十版.北京:中国农业出版社,1999,691-726.
    [127]贺东生,秦智锋,刘福安.新城疫病毒系统发育分析及强弱毒株的鉴别诊断.动物医学进展,2000,2:27-31.
    [128]Pitt JJ,Da Silva EGerman JJ.Determination of the disulfide bond arrongement of Newcastle disease virus hemaggulutinon neuraminidase.J Bio Chem,2000,275(9): 6469-6478.
    [129]程相朝.新城疫病毒的基因组与结构蛋白特征.河南科技大学学报,2004,24(1):20-25.
    [130]王忠田,王泽霖,陈溥言等.新城疫病毒分子生物学最新研究进展.动物医学进展,2002.2:33-36.
    [131]曹殿军,刘明,王莉林等.新城疫病毒F48E9株病毒糖蛋白的功能分析.中国兽医学报,1996,6:534-539.
    [132]古长庆,金宁一,殷震.鸡新城疫病毒的F和HN蛋白在细胞融合中的作用[J].预防兽医学进展,2001,1:5-7.
    [133]LoriW.McGinnes,TrudyG.Morrison.Role of carbohydrate processing and calnexin binding in the folding and activity of the HN protein of Newcastle disease virus.Virus Research,1998,53:175-185.
    [134]Stone-Hulslander J,Morrison TG.Detection of an interaction between the HN and F proteins in Newcastle disease virus-infected cells.Journal of Virology,1997,9:6287-6295.
    [135]Morrison T,Portner A.The Paramyxovirus.Plenum.New York,1991,347-375.
    [136]Toyods T,Gotoh B,Sakaguchi T,et al.Identification of amino acid relevant three antigenic determinants on the fusion protein of NDV that are involved in fusion inhibition and neutralization.Girol,1988,62:4427-4430.
    [137]Yusoff K,Nesbit M,McCarney H.Location of Neutralizing epitopes on the fusion proteins of Neweastlediseasse virus strain Beaudette C.Gen.Virol,1989,70:3105-3109.
    [138]S.Collins,Sally Franklin,I.Strong,et al.Antigenic and phylogenetic studies on a variant Newcastle disease virus using anti-fusion protein monoclonal antibodies and partial sequencing of the fusion protein gene.Avian Pathology,1998,27:90-96.
    [139]Singh MO,Hang D.Recent adjuvantin veterinary vaccine.Adjuvant Int.Parasitol,2003,33:469-478.
    [140]Sakaguchi M,Nakamura H,Sonoda Y,et al.Protection of chickens from Newcastel disease by vaccine by vaccination with a linear plasmd DNA expressing the F protein of Newcastel disease virus.Vaccine,1998,16(16):1469-1503.
    [141]Emmanuel D,JacobY,Saran MF,et al.Lyssavirus glycoproteins Expressing immunologically potent foreign B cell and cytotoxic TLymphocyte epitopes as prototypes for multivalent vaccines.J.Gene ral Virology,1999,80:2343-2351.
    [142]Wong HT,ChengS CS,ChenE WC,et al.Plasimds encoding foot and mouth disease virus VPI epitopes elicited immune responses in miceand swine and protected awine against viral infection.Virology,2000,278:27-35.
    [143]Xiao Y,Lu Y,Chen YH.Epitope-vaccine as aw.Immunology Letters,2001,77:.3-6.
    [144]Masashi N,Yutaka N,Yoko A.Identification of Bovine Invariant Chain Gene by Nucleotide Sequencing.Biophys Biiiochem Res Commun,1996,222:7-12.
    [145]Yoder JA,Haire RN,Litman GW.Cloning of two zebrafish cDNAs that share domains with the MHC class Ⅱ-associated invariant chain.Immunogenetics,1999,50:84-88.
    [146]郭荣,邹萍,范华骅等.CⅡTA反义cDNA抑制Hela绌胞表面MHC Ⅱ类抗原的表达.中华血液学杂志,2003,24(12):636-639.
    [147]白俊,任军,韩月恒等.HBsAg与恒定链融合基因真核表达载体的构建及鉴定.细胞与分子免疫学杂志,2004,20(6):727-728.
    [148]高明,王海平,王燕宁等.BALB/c小鼠Ⅰ-Adαβ链和恒定链Ii在COS-7细胞中的共定位.军事医学科学院院刊.2004,6(28):505-507.
    [149]Liang MN,Lee C,Xia Y,et al.Molecular modeling and design of invariant chain peptides with altered dissociation kinetics from class Ⅱ MHC.Biochemistry,1996,35:14734-14742.
    [150]Cresswell P.Invariant chain structure and MHC class Ⅱ function.Cell,1996,84:505-507.
    [151]Thayer W P,Ignatowicz L,Weber DA,et al.Class Ⅱ-Associated Invariant Chain Peptide-Independent Binding of Invariant Chain to Class Ⅱ MHC molecules.J Immunol,1999.162:1502-1509.
    [152]J.萨姆布鲁克,DW.拉塞尔等著(美)(黄培堂等译).分子克隆实验指南(第二版).北京:科学出版社,2002.
    [153]翟中和,王喜忠,丁明孝.细胞生物学(第一版).北京:高等教育出版社,2000.
    [154]Bremnes B,Rode M,Gedde-Dahl M,et al.The MHC Class Ⅱ-Associated Chicken Invariant Chain Shares Functional Properties with Its Mammalian Homologs.Experimental Cell Research,2000,259:360-369.
    [155]Guarante L,Roberts TM,Ptashne M.A technique for expressing eukaryotic in bacteria.Science,1980,209:1428-1430.
    [156]Ito W,Knrosawa Y.Development of a prokarytic expression vector that exploits dicitronic gene organization.Gene,1992,118:87-91.
    [157]Marston FA,Hartley D L.Solubilization of protein aggregates Methods.Enzymol,1990,182:264-276.
    [158]Derbyshire AM,Joyce CM.Re-engineering the polymerase domain of Klenow fragment and evaluation of overproduction and purification strategies.Nucleic Acids Res,1993,21(23):5439-5448.
    [159]刘光亮,童铁钢,王群等.鸡MHC 1α-生物素化序列融合基因的构建、表达及纯化.农业生物技术学报,2006,14(5):662-668.
    [160]Tobias JW,Shader TE,Rocap G,et al.The N end rule in bacteria.Science,1991,254:1374-1377.
    [161]Claesson L,larhammer D,Rask L,et al.cDNA clone for the human α chain of class Ⅱhistocompatibility antigens and its implication for the protein structure.Proc.Natl.Acad.Sci.USA,1983,80:7395-7399.
    [162]Sugita M,Brenner MB.Association of the invariant chain with major histocompatibility complex class Ⅰ molecules directs trafficking to endocytic compartments.J.Biol.Chem,1995,270:1443-1448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700