华北土石山区优势灌草植物光合生理生态特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对华北土石山区不同生态区位优良灌草群落中的9种优势灌草植被的光合生理生态特征进行了系统研究。以荆条(Vitex negundo)、鸭跖草(Commelina communis)、龙牙草(Agrimonia pilosa)、狗尾草(Setaria viridis)、达乌里胡枝子(Lespedeza davurica)、野艾蒿(Artemisia lavandulaefolia)、菊芋(Helianthus tuberosus)、三籽两型豆(Amphicarpaea trisperma)和短尾铁线莲(Clematis brevicaudata)等9种优势灌草植被为研究对象,运用便携式光合气体分析系统(LI-6400),在控制温度、光照强度和CO2浓度等环境条件下测量和分析了各项光合参数的动态变化规律。通过对光合作用日动态、光响应、温度与CO2浓度响应以及荧光动力学分析,筛选出了影响各种植物光合作用变化的主要生理生态因子,剖析了不同因子间相互耦合作用于光合生产的路径,探讨了华北土石山区次生演替群落结构的变化趋势与光合作用驱动机制。主要结论如下:
     1、野艾蒿和菊芋净光合速率日变化呈单峰型曲线,达乌里胡枝子、三籽两型豆、短尾铁线莲、荆条、鸭跖草、龙牙草和狗尾草净光合速率日变化均呈双峰型曲线。三籽两型豆和短尾铁线莲有明显的“午休”现象,前者为午前高峰型,后者为午后高峰型。三籽两型豆、鸭跖草和龙牙草光合“午休”现象由气孔限制引起,荆条、狗尾草光合“午休”为非气孔限制。
     2、研究区9种植物光合效率从大到小依次为:野艾蒿>荆条>狗尾草>鸭跖草>龙牙草>三籽两型豆>菊芋>达乌里胡枝子>短尾铁线莲。羧化效率从大到小依次为:野艾蒿>菊芋>荆条>龙牙草>狗尾草>达乌里胡枝子>鸭跖草>三籽两型豆。
     3、运用逐步回归分别拟合出了9种植物光合速率与各影响因子间的最优回归方程,通过通径分析对影响华北土石山区优势灌草植物光合作用的诸因子重要性综合排序为:VpdL>Ci>CO2>Cond>PAR>Tair>RH。叶片光合速率受生理因子的制约要高于受生态因子的制约。
     4、荧光动力学分析显示,野艾蒿、荆条和狗尾草光合潜能较其他几种植物要高。短尾铁线莲、龙牙草和三籽两型豆对弱光的利用能力较强,菊芋和达乌里胡枝子光合作用受逆境胁迫的影响较小。
     5、研究区9种植物中荆条、野艾蒿、达乌里胡枝子和狗尾草对光照、CO2浓度与温度等主要影响因子的生态位较宽,在未来全球变化引起的立地条件波动下对山区生长环境的适应能力较强,优势度将会升高。三籽两型豆和短尾铁线莲光合生态位重叠度较高,龙牙草和鸭跖草生态相似性较大,可见在群落演替过程中对同一种资源的竞争也较为激烈。
This paper takes the Vitex negundo, Commelina communis, Agrimonia pilosa, Setaria viridis, Lespedeza davurica, Artemisia lavandulaefolia, Helianthus tuberosus, Amphicarpaea trisperma and Clematis brevicaudata these nine dominant shrub-grass in different ecological position in rocky mountain area of northern China as the research object, using Li-6400 photosynthesis measuring instrument system to study the dynamic change law of photosynthesis under the special environmental condition. The related mathematical models about the response characteristics of photosynthesis to the light and CO2 were established. The corresponding ecophysiological factors responsible for photosynthesis and transpiration of the nine plant species were analyzed via Stepwise Multi-variable regression methods. The results are as follows:
     1 The diurnal changes of photosynthetic active radiance of Artemisia lavandulaefolia and Helianthus tuberosus were single peak type in sunny days of their vegetal environment. But the curve of diurnal variation of Lespedeza davurica , Amphicarpaea trisperma, Clematis brevicaudata, Vitex negundo, Commelina communis, Agrimonia pilosa and Setaria viridis leaf photosynthesis showed two peaks. The photosynthetic rate of Amphicarpaea trisperma, Commelina communis and Agrimonia pilosa decline by means of stomatal limitation. But Vitex negundo and Setaria viridis was caused by non-stomatal limitation.
     2 The AQY of nine plants are Artemisia lavandulaefolia> Vitex negundo > Setaria viridis > Commelina communis > Agrimonia pilosa > Amphicarpaea trisperma > Helianthus tuberosus > Lespedeza davurica > Clematis brevicaudata. The CE of nine plants are Artemisia lavandulaefolia> Helianthus tuberosus > Vitex negundo > Agrimonia pilosa > Setaria viridis > Lespedeza davurica > Commelina communis> Amphicarpaea trisperma.
     3 Multi-linear regression equations of Pn to ecological and physiological factors were set up. Importances of the factors were arrayed according to partial coefficients in corresponding equations. The sorted order of importance for all factors is: VpdL> Ci> CO2 concentration > Cond> PAR> Tair> RH. So physiological factors may have more direct and significant affects on photosynthetic courses.
     4 The fluorescent kinetic analysis showed that Artemisia lavandulaefolia, Vitex negundo and Setaria viridis have high photosynthetic capacity and potential. Clematis brevicaudata, Agrimonia pilosa and Amphicarpaea trisperma can use the weak light resource effectively. The adversity stress had little influence on photosynthesis of Helianthus tuberosus and Lespedeza davurica.
     5 In this research, Vitex negundo, Artemisia lavandulaefolia, Lespedeza davurica and Setaria viridis had rather broad ecological niche for light intensity, air temperature and CO2 concentration. So, they have strong ability of accommodation in the changing environment in the future. The Amphicarpaea trisperma's niche overlapping Clematis brevicaudata' niches are large in the mass which show keen competition for one kind of resource. According to physioecological characters of photosynthesis, the composition of species in different succession stages also changed significantly.
引文
[1]蒋高明.当前植物生理生态学研究的几个热点问题[J].植物生态学报,2001,25(5):514-519.
    [2]沈允钢.地球上最重要的化学反应——光合作用[M].北京:清华大学出版社,2000.
    [3] Hall D O, Rao K K. Photosynthesis (fifth edition)[M]. UK: Cambridge University Press, 1995, 159-164.
    [4]潘瑞炽,董愚得.植物生理学(第三版)[M].北京:高等教育出版社.1995,67-68.
    [5]杜占池,杨宗贵.十种草原植物光合速率与光照的关系[J].生态学报,1988,8(4):319-332.
    [6]高守疆,陈升枢,李明启.不同磷营养水平对烟草叶片光合作用和光呼吸的影响[J].植物生理学报,1989,15(3):281-287.
    [7]韩凤山,赵明,赵松山,等.小麦午睡原因的研究Ⅲ:形成小麦午睡生态生理因素作用的综合分析[J].作物学报,1988,14(4):296-302.
    [8]林植芳,李双顺,林桂珠.叶龄对苋菜光合作用特性的影响[J].植物学通报,1988,5(1): 41-44.
    [9]刘孟雨,陈培元.水分胁迫条件下气孔与非气孔因素对小麦光合的限制[J].植物生理学通讯, 1990,4:24-27.
    [10]唐鸿青,刘桐华,余彦波.小麦光合作用“午休”的生态因子研究[J].生态学报,1986,6(2): 128-132.
    [11]薛青武,陈培元.土壤干旱条件下氮素营养对小麦水分状况和光合作用的影响[J].植物生理学报,1990, 16(1): 49-56.
    [12]余彦波,刘桐华.植物光效生态学研究Ⅰ:小麦光合作用午休的原因[J].生态学报, 1985, 5(4):336-342.
    [13]张其德,唐崇钦,林世青,等.光强度对小麦幼苗光合特性的影响[J].植物学报, 1988,30(5): 508-514.
    [14]葛滢,常杰,陈增鸿,等.青冈(Quercus glauca)净光合作用与环境因子的关系[J].生态学报, 1999, 19(5):683-688.
    [15]杨丽涛,Timothy JA.欧洲杨、榛子、短叶松和黑云杉气体交换的日变化[J].植物生态学报, 2000, 24(4): 408-419.
    [16]张小全,徐德应.杉木中龄林针叶光合作用对光斑的响应[J].植物生态学报,2000,24(5): 534-540.
    [17]沈允钢.光合作用在世纪之交的研究动向[J].生物学通报,1999,34(6):32-38.
    [18]杜林方.光合作用研究的一些进展[J].世界科技研究与发展,1999,21(1):58-62.
    [19]郭连旺,许大全,沈允钢.田间棉花叶片光合效率中午降低的原因[J].植物生理学报,1994, 20(4): 360-366.
    [20]许大全,徐宝基,李德耀.植物光合效率的日变化[J].植物生理学报,1997,23(4): 410-416.
    [21] Genthon C.B, Raynaud D, Vostok ice core: climatic response to CO2 and orbital forcing changes over the last climatic cycle[J]. Nature, 1987,329:414-418.
    [22]蒋高明,韩兴国,林光辉.大气浓度升高对植物的直接影响[J].植物生态学报,1997,21(6): 489-502.
    [23]郭建平,高素华.CO2浓度倍增对大豆影响的试验研究[J].大气科学,1996,20(2):243-249.
    [24]蒋高明,渠春梅.北京山区辽东栎林中几种木本植物光合作用对CO2浓度升高的响应[J].植物生态学报,2000,24(2):204-208.
    [25]彭长连,林植芳,孙梓健.水稻光合作用对加富CO2的响应[J].植物生理学报,1998, 24(3): 272-278.
    [26]项斌,林舜华.紫花苜蓿对CO2倍增的反应:生态生理研究和模型拟合[J].植物学报,1996, 38(1): 63-71.
    [27]谢会成,姜志林,叶镜中.麻栎光合作用的特性及其对CO2倍增的响应[J].南京林业大学学报(自然科学版),2002,26(4):67-70.
    [28]谢会成,姜志林.栓皮栎对CO2增长的生理生态响应[J].西南林学院学报,2002,22(1):1-4.
    [29]周党卫,韩发,膝中华.UV-B辐射增强对植物光合作用的影响及植物的相关适应性研究[J].西北植物学报,2002,22(4):1004-1010.
    [30]冯朝阳.华北山地不同植被恢复方式生态系统服务功能研究--以北京市门头沟区为例[D].北京:中国科学院研究生院,2007.
    [31]许大全.光合作用效率[M].上海:上海科学技术出版社,2002, 13-14.
    [32]黄占斌,山仑.春小麦水分利用效率日变化及其生理生态基础的研究[J].应用生态学报, 1999, 14(1): 47-52.
    [33]周国逸.生态系统水热原理及其应用[M].北京:气象出版社,1997
    [34] Wenkert W.Water fransport and balance the plant :an overview [M].In:limitations to Efficient Water Use in Crop Production [M].Amer. Soc.Agron. CropSci. Soc. Amer, Soil.Soc . Amer .Madison,1983,137-172.
    [35]郝黎任,樊元,郝哲欧,等.SPSS实用统计分析[M].北京:中国水利水电出版社,2002.
    [36] Anderson J M, Park Y I, Chow W S. Photoinactivation and photoprotection of photosystemⅡin nature [J]. Physiol Plant, 1997,100:214-223.
    [37] Demming B, Adams W W. Phtoprotection and other response of plant to high light stress [J]. Annu. Rev. Plant Physiol plant Mol Biel, 1992, 43:599-626.
    [38]洪双松,许大全.小麦和大豆叶片荧光参数对强光响应的差异[J].科学通报,1997,42: 753-756.
    [39] Xu D Q, Shen Y K. Light stress: photoinhibition of photosynthesis in plants under natural conditions [A]. In Pessarakli M (eds.), Handbook of Plant and Crop Stress [C]. New York: Marcel Dekker,1999:483-497.
    [40] IPCC, WGI. Climate Change[M]. Cambrige university Press, 1990.
    [41]徐德应.大气CO2增长和气候变化对森林的影响研究进展[J].世界林业研究,1994,(2): 26-32.
    [42] Kimball B A. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations[J]. Agronomy Journal. 1983,(75):779-788.
    [43]蒋高明,韩兴国.大气CO2浓度升高对植物的直接影响——国外十余年来模拟实验研究之主要手段及基本结论[J].植物生态学报,1997,21(6):489-502.
    [44] Clough J M, Peet MM and Kramer PJ. Effects of high atmosphere CO2 and sink size on rates of photosynthesis of a soybean cultivar[J]. Plant physiology, 1981,67:1007- 1010.
    [45] Cure JD and Acock B. Crop responses to carbon dioxide doubling: Aliterature survey[J]. Agricultural and Forest Meteorology,1986,38:127-145.
    [46] Downton WJS, Bjorkman O, Pike CS. Consequence of increased atmospheric concentrations of carbon dioxide for growth and photosynthesis of higher phants. /Pearman GI(ed) Carbon dioxide and climate: Australian Research. Canberra, Australian Academy of Science, 1980.
    [47] Wong SC. Elevated atmospheric partial pressure of CO2 and plant growth. I. Interactions of nitrogen nutrition and photosynthetic capacity in C3 and C4 plants[J]. Oecologia, 1979,44:68-74.
    [48] Delucia E, Sasck T W and Strain B R. Photosynthetic inhibition after long term exposure to elevated levels of atmospheric carbon dioxide[J]. Photosynthesis Research, 1985,7:175-184.
    [49] Yellle S, Beeson Jr. RC, Trudel M J et al. Acclimation of two tomato species to high atmospheric CO2[J]. Plant physiology,1989,90:1465-1472.
    [50] Peet MM and Kramer P J. Effects of decreasing source/sink ratio in soybeans on photosynthesis, photorespiration, transpiration and yield. Plant, Cell and Environment, 1980,3:201-206.
    [51] Peet MM, Huber SCI and Patterson DT. Acclimation to high CO2 in monoecious cucumber.II Carbon exchange rates, Enzyme activities and starch and nutrient concentration[J]. Plant Physiology,1986,80:63-67.
    [52]曾小平,赵平,彭少肠,等. 5种木本豆科植物的光合特性研究[J].植物生态学报, 1997, 21(6): 539-544.
    [53] Radin JW. Reconciling water use difficiencies of cotton in field and laboratory[J]. CropSci, 1992, 32(1):13-18.
    [54]曾光辉,郭延平,等.果树光合作用的环境调控[J].北方园艺,2004(3):32-33.
    [55] Anderson J.M. Photo regulation of the composition.function and structure of the lakoid membranes[J].Ammu.Rev.Plant Physiol,1986,37:93-136.
    [56]田大伦,罗勇,项文化,闫文德.樟树幼树光合特性及其对CO2浓度和温度升高的响应[J].林业科学,2004,40(5):88-92.
    [57]陆钊华,徐建民,陈儒香,李光友,白嘉雨,陈德祥.桉树无性系苗期光合作用特性研究[J].林业科学研究,2003,16(5):575-580.
    [58] Rohacek K. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning and mutual relationships [J]. Photosynthetica, 2002, 40(1):13-29.
    [59] Bassi R, Croce R, Cugini D, et al. Mutational analysis of a higher plant antenna protein provides identification of chromospheres bound into multiple sites [J]. Proc Natl Acad Sci USA, 1999, 96:10056-10061.
    [60] Spurr S H. Origin of the concept of forest succession [J]. J. Ecol., 1952, 33: 426-427.
    [61] Clements F E. Nature and structure of the climax [J]. J. Ecol. 1936,24:252-284. [62] Tansley AG. The classification of vegetation and the concept of development [J]. J. Ecol. 1920, 8: 118-149.
    [63] Bazzaz F A. The physiological ecology of plant succession [J]. Annu. Rev. Ecol. Syst.1979,10:351-371.
    [64] Bazzaz F A. Physiological ecology of plant succession: A comparative Review [J]. Annu. Rev. Ecol. Syst. 1980,11:287-310.
    [65] Bazzaz F A, Carlson R G. Photosynthetic Acclimation to variability in the Environment of early and late successional plants [J]. Oecologia. 1984,54:313-316.
    [66]丁圣彦.浙江天童常绿阔叶林演替系列栲树和木荷成为优势种的原因[J].河南大学学报, 2001,31(1):79-83.
    [67]林栋,吕世海,冯朝阳,等.华北山地阳坡中生灌草植被对CO2浓度和温度变化的光合响应[J].草业科学, 2008,25(4):135-140.
    [68]廖建雄,王根轩.谷子叶片光合速率日变化及水分利用效率[J].植物生理学报,1994,18(1): 86-94.
    [69] Sestak Z. Photosynthetic characteristics during ontogenesis of leave (I) Chlorophylls [J]. Photosynthetica, 1997, 11:367-448.
    [70] DEMMIG-A DAMS B,A-DAMSW WⅢ.Vsing cholorophyⅡfluorescence to assess the fraction of absorbed light allocated to therimal dissipation of excess excitation [J]. Physiologia Plantarum, 1996, 98:253-264.
    [71] SIMMONS S R, JONES R J. Contributions of pre-silking assimilates to grain yield of maize [J].CropSci, 1985, 25:1004-1006.
    [72] Depka B, Jahans P, Trebst A.β_carotene to zeaxanthin conversion in the rapid turnover of the D1 protein of photo systems.[J] FEBS Lett, 1998,424:267-270.
    [73] Rohacek K. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning and mutual relationships. [J] Photosynthetica, 2002, 40(1):13~29.
    [74]常杰,葛滢,陈增鸿,等.青冈常绿阔叶林主要植物种叶片的光合特性及其群落学意义[J].植物生态学报,1999,23(5):393-400.
    [75]丁圣彦,宋永昌.常绿阔叶林演替过程中马尾松消退的原因[J].植物学报,1998,40(8): 755-760.
    [76]丁圣彦.常绿阔叶林演替系列中木荷和栲树呼吸作用特性的比较[J].生态学报,2001,21(1): 61-67.
    [77] Strain B R. Direct effects of increasing atmospheric CO2 on plants ad ecosystems[J]. TrendEcol Evol, 1987,2:18~21.
    [78]蒋延玲,周广胜.兴安落叶松林碳平衡和全球变化影响研究[J].应用生态学报, 2001, 12(4): 481- 484.
    [79]赵平,彭少麟.大气CO2浓度升高与森林群落结构的可能性变化[J].生态学报,2000,20(6):1090-1096.
    [80]赵平,彭少麟,曾小平.全球变化背景下大气CO2浓度升高与森林群落结构和功能的变化[J].广西植物,2001,21(4):287-294.
    [81] Osterhout W J, Hass AR, On the dynamic of photosynthesis [J]. J. Gen. Physiol., 1918,1:1-16.
    [82] Edwards G, Walker D A. C3, C4: mechanisms, cellular and environmental regulation of photosynthesis [M]. Oxford London: Blackwell Scientific Publications, 1983,156-200.
    [83]克雷默尔PJ,考兹洛夫斯基TT著.汪振儒等译.木本植物生理学[M].北京:中国林业出版社,1992.
    [84] Whitmore, T.C. Canopy gaps and the two major groups of forest trees[J]. Ecology, 1989, 70: 536-538.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700