长春南湖底泥疏淩工程效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以长春南湖底泥疏浚工程为研究对象,在南湖底泥疏浚期间,经过2002~2003年连续2年(每年5~10月)水化学、浮游生物、底栖生物和底泥的采样分析,从构成湖泊水生生态系统的三个方面即水化学、水生生物和底泥研究了南湖底泥疏浚的实际效果。分析了南湖底泥疏浚前后水化学、浮游生物和底栖生物的变化,探讨了疏浚后南湖水化因子、浮游生物、底栖生物和底泥演化趋势。
    疏浚后南湖水质透明度、pH值变化不大;溶解氧和CODCr增加;总氮、氨氮、亚硝酸盐氮、硝酸盐氮、总磷和BOD5比疏浚前降低。水质主因子分析表明:疏浚前,南湖水化学因子中起控制作用的是总磷、CODCr,其次是氨氮和总氮;疏浚后起控制作用的是pH值、BOD5,其次是悬浮物。 疏浚前后水质配对样本t检验结果表明疏浚前后南湖总体的水质状况没有明显的变化(p<0.05)。
    疏浚后,2002年共鉴定出浮游植物285种及变种,2003年为334种及变种。2002-2003年间南湖浮游植物的优势种相对稳定,为α-中污带到β-中污带指示种。疏浚后浮游植物群落发生了演替,由疏浚前的绿藻—蓝藻—硅藻型演变为目前的绿藻—硅藻—蓝藻型。2002年检出浮游动物134种,2003年117种,浮游动物优势种多为α-中污带到β中污带指示种。底泥疏浚前后南湖浮游动物群落组成发生了变化,疏浚后浮游动物主要是原生动物和轮虫,枝角类和桡足类数量极少,不足1%。疏浚后2000~2003年浮游动物数量上升,生物量下降,表明南湖浮游动物小型化趋势明显。2003年检出底栖动物15种,以寡毛类、摇蚊幼虫和软体动物三个类群为主。南湖底栖动物的种类少,优势种水丝蚓、摇蚊幼虫和羽摇蚊幼虫,为中到重度富营养化的指示种。底泥疏浚对螺、蚌等软体动物干扰较大。疏浚后底栖动物的生物多样性减少,Margalef指数由3.45下降到1.87。
    南湖底泥疏浚后底泥中有机质含量下降17%,总氮含量下降36%,总磷平均值下降较小,仅为3.33%。总磷含量疏浚后变幅较大,变异系
    
    
    数为95%,I站含量明显偏高导致疏浚后总磷平均值的偏高,影响了底泥疏浚的效果。同疏浚前相比,疏浚后底泥中Cd含量降低;Zn和Cu含量增高,原因是位于南湖大桥西南I站的点源污染引起的。疏浚后底泥中重金属元素积累顺序为:Zn(18.15)>Hg(6.67) >Pb (5.64) >Cd(2.6) >Cu(2.54) >Ni(1.72) >C r(1.02)>As(1)。目前南湖底泥中重金属中C r和As 为土壤环境质量I级标准(GB15618-1995),Cu、Cd、Ni、Pb和Hg介于I级和II级之间,Zn达不到III级。在南湖底泥重金属中Zn污染最为严重。
Environmental effects of sediment dredging events have been uncommonly reported for shallow lake in China. A project of bottom sediment dredging has been carried at the Lake Nanhu since 2000 in order to control its eutrophication. During the period from May to October monthly in 2002~2003, the characteristic of the water physical-chemical, the plankton, zoobenthos and the pollutants in sediment had been investigated from 4 sample sites. The objective of this paper was to determine the effects of hydraulic sediment dredging at the Lake Nanhu prior to and after dredging.
    The effects on surface water pH and Secchi disk depth (SD) were negligible but dissolved oxygen (DO) and chemical oxygen demand by K2Cr2O7 method (CODcr) was increased. While total nitrogen (TN), ammonia nitrogen (NH4-N), nitrate nitrogen (NO3-N), nitrite nitrogen (NO2-N), total phosphorus (TP) and biological oxygen demand for five days (BOD5) were decreased. Factor Analysis of water quality indicated that the first factors were TP and CODcr, the second were TN and NH4-N prior to dredging. However, the first factors were pH value and BOD5, the second were suspended solids (SS) after dredging. The result of Paired Sample T test prior to and after dredging showed that the water quality had not been changed significantly.
    After dredging, the species number of phytoplankton was 285 and 334 respectively, between 2002 and 2003. The dominated species was stable in 2002-2003. The phytoplankton community took succession from chlorophyta-cyanophyta-diatom of prior to dredging to chlorophyta-diatom-cyanophyta of post dredging. The species numbers of zooplankton were 134 and 117 respectively, between 2002 and 2003. The dominated species was stable in 2002-2003. The zooplankton community changed. The zooplankton community was mainly consisted of protozoa and rotifer, and the number of cladocera and copepoda were less than 1 percent. The phenomena, which the number of zooplankton was up and the biomass was down, demonstrated miniaturization trend of the zooplankton was obvious. The sediment dredging had significant impact on mollusca. The Margalef Index of benthic animal community decreased from 3.45 to 1.87.
    
     Investigation of the sediment showed that the mean concentrations of organic carbon and the mean total nitrogen decreased 17 percent and 36 percent respectively, compared with prior to sediment dredging. But the concentrations total phosphorus only decreased 3.33 percent. The discrepancy of total phosphorus between different sample sites was significant. The mean concentrations of TP sample site I was significant higher than that of three other’s. The concentrations of the Cd in sediment decreased than that of prior to dredging. While the concentrations of Zn and Cu increased than that of prior to dredging. The cause attributed to the point source situated in sample site I. The heavy metal in sediment contamination factors were very high for Zn (18.15), Hg (6.67), Pb (5.64) and considerable for Cd (2.6), Cu (2.54), Ni (1.72), C r (1.02), As (0.098). C r and As The pollution of Zn was most serious in all eight heavy metals analyzed, its concentration did not meet Soil Environmental Quality Standard(GB15618-1995).
引文
[1] 陈荷生, 石建华. 太湖底泥的生态疏浚工程. 水资源保护 3 11-16
    [2] 刘鸿亮, 金相灿, 荆一凤. 湖泊底泥环境疏浚工程技术. 重大工程 1999 1(1)
    [3] 李小平, 美国湖泊富营养化的研究和治理. 自然杂志 2000 24(2),63-68
    [4] Jennifer E. Ruley A. Rusch Rush an assessment of long-term post-restoration water quality trends in a shallow, subtropical, urban hypereutrophic lake. Ecological Engineering 2002 19, 265-280.
    [5] 刘丽萍, 陈静, 底泥疏挖工程对草海水生生态环境的影响预测. 云南环境科学 1999年18(1), 11-12 
    [6] 濮培民,王国祥,胡春华等. 底泥疏浚能控制湖泊富营养化吗?湖泊科学2000, 12(3) :269-279
    [7] By, Bret C. Harvey et al Effects of Suction Dredging on Sreeams: a Review and Evaluation Strategy. Fisheries Habitat 1998 23(8):8-14
    [8] Joshua Cleland. Results of Contaminated Sediment Cleanups Relevant to the Hudson River. Scenic Hudson 9 Vassar Street Poughdeepsie ,Ny 12601.2000
    [9] Falcao M. et al Short-term environmental impact of clam dredging in coastal waters(south of Portugal): chemical disturbance and subsequent recovery of seabed. Marine Environmental Research 2003 56(5):649-664
    [10] Vanderdose J,Verstraelen P. Boers P et al. Lake restoration with and without dredging of phosphorus-enriched upper sediment layers. Hydrobiology 1992, 233(1-3): 197-210
    [11] Nariyuki Takahashi. The effect of bottom sediment dredging and arrange the aquatic vegetation field use the dredged soil at the lake
    
    
    Sanarul. 9th International Conference on the Conservation and Management of Lakes, Session 3-1, 2001.425-428.
    [12] S.R. Jenkins, A.R.Brand. The effect of dredge capture on the escape response of the great scallop, Pecten maximus(L.): implication for the survival of undersized discards. Journal of Experiment Marine Biology and Ecology 266 (2001) 33-50
    [13] Julie A.Maguire et al. Effects of dredging on undersized scallops. Fisheries Research 56 (2002)155-165
    [14] Boyd SE, et al. Preliminary observations of the effects of dredging intensity on the re-colonisation of dredged sediments off southeast coast of England(Area 222). Estuarine Coastal and Shelf Science 2003 57(1-2): 209-223
    [15] M.A. Lewis. Dredging impact on an urbanized Florida bayou: effects on benthos and algal-periphyton, Environmental Pollution 115 (2001): 161-171
    [16] 吴洁,虞左明. 西湖浮游植物的演替及富营养化治理措施的生态效应.中国环境科学2001 21(6):540-544
    [17] 韩伟明. 底泥释磷及其对杭州西湖富营养化的影响. 湖泊科学1993 5(1):71-77
    [18] 陆子川. 湖泊底泥挖掘可能导致水体氮磷平衡破坏的研究. 中国环境监测. 2001 17(2)40-42
    [19] 秦伯强. 太湖水环境面临的主要问题、研究动态与初步进展. 湖泊科学1998 10(4):1-6
    [20] 徐旌.“湖泊富营养化治理与管理国际讨论会”综述, 云南地理环境研究2002 14(2)
    [21] 徐锐贤, 王才, 冯江等. 长春南湖富营养化与生态治理. 长春: 吉林科学出版社1999
    [22] 国家环境保护局编辑委员会. 水和废水监测分析方法. 第3版. 北京: 科学出版社
    [23] 全国主要湖泊、水库富营养化调查课题组编湖泊富营养化调查规
    
    
    范. 北京: 科学出版社1987
    [24] 章宗涉,黄祥飞. 淡水浮游生物研究方法. 北京: 科学出版社 1991
    [25] 国家环保局水生生物监测手册编委会编. 水生生物监测手册. 南京: 东南大学出版社,1992
    [26] 大连水产学院. 淡水生物学(上册). 北京: 农业出版社 1985
    [27] 史瑞和,鲍士旦. 土壤农业化学分析. 北京: 农业出版社 1982
    [28] 中国科学院南京土壤研究所. 土壤理化分析.上海: 上海科学技术出版社 1979
    [29] 卢纺岱 SPSS for Windows 统计分析. 北京: 电子工业出版社 2000
    [30] 李植生,梁小民等. 东湖水化学现状.刘建康主编. 东湖生态学研究(二).
     北京: 科学出版社, 1995 36-73
    [31] 李波,濮培民,韩爱民. 洪泽湖水因子分析中国环境科学2003 23(1) : 69-73
    [32] 刘现明,韩康.大窑湾水环境要素变化特征及其相关关系, 环境科学学报, 1997 17(1) :53-59
    [33] 王小雨,冯江. 长春南湖底泥疏浚前后水因子分析及动态变化.
    中国环境监测.2004 (2)
    [34] 祝廷成. 长春南湖公园生态本底的调查研究. 北京: 科学出版社 1999 278-286
    [35] 金相灿主编. 湖泊富营养化控制和管理技术. 北京: 化学工业出版社, 2001
    [36] 贺宝根,周乃晟等. 底泥对河流的二次污染浅析. 环境污染与防治, 1999,2(3):41-43
    [37] 范成新,秦伯强,孙越. 梅梁湖和五里湖水—沉积界面的物质交换. 湖泊科学, 1998 10(1): 73-78
    [38] 濮培民,王国祥等. 健康水生态系统的退化及其修复-理论、技术及应用. 湖泊科学,2001 13(3):193-202
    
    [39] Vera Istvanovics, Successful eutrophication management in lake Balaton, Hungary-method, expectations, surprises, and recommendations.Study on lake eutrophication and its countermeasure in China, 中国环境科学出版社. 2001 161-172
    [40] 王海珍,陈德辉等. 水生植被对富营养化湖泊生态恢复的作用. 自然杂志. 2001 24(1): 33-36
    [41] 王小雨,冯江等. 湖泊富营养化的底泥疏浚工程,环境保护. 2003 302(2) :22-23
    [42] Elisa R. Parodi Benthic microalgal communities in the inner part of the Bahía Blance estuary (Argentina): A preliminary qualitative study
    [43] Chapman D ed. Water quality assessment :a guide to the use of biota ,sediment and water in Environmental Monitoring London: Chapman & Hall, 1992
    [44] 孙刚,盛连喜,李明全. 长春南湖底栖动物群落特征及其与环境因子的关系. 应用生态学报2001,12(2) :319~320
    [45] 李兴春. 长春市南湖内源治理工程方案研究—环保疏浚. 东北师范大学硕士学位论文
    [46] 孙胜龙,丁蕴铮. 长春南湖底泥磷、氮和重金属元素环境地球化学行为研究. 环境科学研究1999,12(4):37~41
    [47] 国家“六五”科技攻关项目. 环境保护与污染综合防治技术(65—37)环境背景值调查研究(中册)
    [48] Hankason L.An ecoglgical risk index for aquatic pollution control. A Sedimentalogical approach. Water Res 1980.14:975-1001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700