四倍体栽培棉种高密度遗传图谱的构建及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高密度遗传图谱的构建是植物基因组研究的基础。富含功能标记的高密度遗传图谱为准确认识基因组结构,发掘功能基因,定位和利用重要经济性状相关QTLs奠定了基础,同时也为进一步开展基因组进化研究提供了前提条件。在已有研究基础上,本研究开展了棉花新型分子标记的开发和高密度遗传图谱的构建研究。
     本研究利用新开发的源于三个棉种(雷蒙德氏棉、陆地棉及海岛棉)的eSSRs、陆地棉Maxxa的gSSRs、基因的RT引物,网上公开释放的部分STV及Gh编号的引物,共计3592对,以及组配的部分REMAP标记,在作图亲本TM-1及Hai7124之间筛选多态性,进而完成图谱的加密工作。整合后的图谱包含2577个位点,覆盖了3591.0 cM的遗传距离,标记间的平均遗传距离为1.39 cM,全部分布于26条染色体上。图谱有四大特点::(1)富含功能标记。图谱中功能标记占总位点数的57.04%,eSSR位点占功能标记的78.44%;(2)明确四倍体栽培棉种中A亚组存在两个相互易位,涉及A2/A3和A4/A5四条染色体。在棉花基因组的13个部分同源群上共检测到180对SSR引物扩增产生的重复位点,在A2/D3,A3/D2,及A4/D5,A5/D4上共检测到28对重复位点;(3)存在四个偏分富集区。图谱中含偏分离位点220个,占总位点数的8.54%,在A2、A3、A7和D7上存在4个大的偏分富集区,且每一染色体上的偏分离富集区其偏分离方向一致;(4)是一张基于四倍体栽培棉种的高密度遗传图谱,可直接用于QTL定位及相关农艺性状分析等后续研究。
     通过比较四个棉种中所有随机设计的eSSR引物及源于陆地棉Maxxa的gSSR引物的重复基元类型、分布及其多态性之间的关系,发现在eSSRs中,重复基元最多的为三核苷酸重复;在gSSRs中,重复基元最多的为六核苷酸重复。四核苷酸重复在不同来源的SSR中所占的比例均较少;在源于四个棉种的eSSRs中,复合型及四、六核苷酸重复基元的多态率比较高;在多态引物中,所占比例最多的重复基元本身的多态率并不是很高,二核苷酸重复基元中,AC/TG的多态率较高,四核苷酸重复基元中,ATAC/TATG的多态率较高。
     比较了四个棉种中eSSR位点在图谱中的分布情况。发现:源于亚洲棉的eSSR.位点,At:Dt=1.5:1;源于雷蒙德氏棉的eSSR位点,At:Dt=1:1.5;源于陆地棉及海岛棉的eSSR位点,At:Dt=1:1。也就是说,源于A基因组棉种亚洲棉的eSSR位点在At亚组中检测到的要多,源于D基因组棉种雷蒙德氏棉的eSSR位点在Dt亚组中检测到的要多,源于四倍体棉种陆地棉及海岛棉的eSSR位点均匀分布在At、Dt亚组中。
     通过比较同一引物在TM-1、Hai7124及Maxxa中扩增产物分子量的大小,参照其在二倍体祖先棉种阿非利加棉及雷蒙德氏棉中扩增条带的特点,并结合该引物在图谱中的定位结果,将37个BACs准确定位到相应的亚组中。其中At亚组中有12个,Dt亚组中有25个。
     根据陆地棉Maxxa 97个BAC克隆中的344组LTR保守区域设计了14个单引物,与同一来源的60对SSR引物随机组配为REMAP标记,共产生188个多态位点,检出率高达11.19%,这些位点遍布在四倍体棉种整个基因组中。初步建立了棉花REMAP分子标记技术体系。
     通过共有的SSR标记将本实验室18个陆地棉图谱整合为一张高密度的陆地棉种内遗传图谱。该图谱包含67个连锁群,694个位点,覆盖了3552.8 cM的遗传距离,标记间的平均遗传距离为5.12 cM,并将67个连锁群全部定位到相应的26条染色体上,几乎覆盖了整个四倍体棉种基因组。研究了源于5个高强纤维供体(7235、HS427、PD6992、渝棉1号及J415)的95个优质纤维QTL的分布特点,结果显示:Dt亚组上比At亚组上检测到的优质纤维QTL要多,且更为集中。说明尽管At亚组的祖先产生可纺织的纤维,而Dt亚组的祖先不产生有价值的纤维,但Dt亚组的祖先在纤维生长发育及多倍体棉种进化过程中扮演着非常重要的角色。这是迄今为止拥有多个遗传背景且最为高密度的陆地棉整合遗传图谱,该图谱为棉花产量、棉纤维品质及抗性相关QTL的定位奠定了基础,并将进一步应用到陆地棉的分子设计育种中。
A high-density molecular map is the basement of genome research in plant. A saturated genetic map shares new light to our understanding of structural genomics, and is useful in the novel gene discovery, economically important QTLs analysis, et al. In this paper, we were mining DNA molecular markers and constructing high density genetic mapping in cotton.
     Total 3592 primer pairs were developed, including eSSRs from G. raimondii, G. hirsutum, G. barbadense-derived ESTs, gSSRs from 70 BAC clones of G. hirsutum cv. Maxxa and RT primers, REMAP maker, STV, Gh primers. They were used to screen polymorphisms in order to enhance our backbone genetic map in allotetraploid cotton. After integrating these new loci, our enhanced genetic map consists of 2577 loci covering 3591.0 cM, at 1.39 cM intervals in 26 linkage groups. This microsatellite-based, gene-rich linkage map contains 57.04% functional marker loci, of which 78.44% are eSSR loci. There were 208 duplicated loci, bridging 13 homoeologous At/Dt chromosome pairs. Two reciprocal translocations after polyploidization were further confirmed between A2 and A3, and between A4 and A5 chromosomes. Four big distorted intervals were found in the A2, A3, A7 and D7 chromosome. All distorted loci in the same chromosome were skewed towards the heterozygotes or homozygotes. This high-density cultivated cotton species genetic map will be used for QTL tagging and agronomic traits analysis.
     At the same time, relationship was observed between the level of polymorphism, motif type of the randomly developed eSSRs and gSSR from BAC clones of G. hirsutum cv. Maxxa. Among the eSSRs, trinucleotide are the most abundant motif, tetranucleotide are the least abundant motif. For the gSSRs, hexanucleotide are the most abundant motif, tetranucleotide are the least abundant motif. Their eSSRs polymorphic rates were higher for compound motif, tetranucleotide, hexanucleotide repeats. We also observed the polymorphic rate which the most abundant motif type was not high. AC/TG was the higher polymorphic rate in dinucleotide repeat, ATAC/TATG was the higher polymorphic rate in tetranucleotide repeat.
     A comparison of the eSSRs tagging information derived different genome showed that eSSR derived from G. arboretum were tagged At:Dt=1.5:1, derived from G raimondii were tagged At:Dt=1:1.5, derived from G. hirsutum and G. barbadense were tagged At:Dt =1:1. The tagging results showed that eSSRs derived from A genome species were preferentially tagged in the A-subgenome, and eSSRs from D genome species were preferentially tagged in the D-subgenome in the tetraploid linkage map. However, eSSRs derived from AD genome species were equally tagged in the A-and D-subgenomes of the tetraploid linkage map.
     By comprehensive analyses of the amplified product molecular size among tetraploid G. hirsutum cv. Maxxa, acc. TM-1, and G. barbadense cv. Hai7124, and diploid G. herbaceum var. africanum and G. raimondii,37 BACs were further anchored to their corresponding subgenome chromosomes, showing 12 BACs from the A-and 25 from the D-subgenome.
     14 primers were developed from 344 LTRs of 97 BAC clones in G hirsutum cv. Maxxa.60 gSSRs developed from 70 BAC clones were randomly assembled with 14 primers. Their REMAP maker produced 188 polymorphic loci, evenly distributing in the whole genome. REMAP technique was preliminarily constituted in cotton.
     Using SSR as bridge markers, a saturated intraspecific genetic linkage joinmap was constructed from 18 different mapping populations of Upland cotton (Gossypium hirsutum L.). The new integrated Upland cotton intraspecific genetic linkage joinmap comparises 694 loci, that mapped to 67 linkage groups assigned perfectly to their corresponding 26 chromosomes with the average distance between markers of 5.12 cM, covering 3553 cM or nearly 100% of the total recombinational length of the tetraploid cotton genome. Further, elite fiber QTL from five super fiber quality donors,7235, HS427, PD6992, Yumian 1 and J415, were aligned on the joinmap and showed that more elite QTL were biased non-randomly on Dt subgenome than on At subgenome, even if At progenitor produces spinnable fiber but Dt progenitor does not. The result suggested that the Dt subgenome from the non-fiber-production ancestor plays an important role in the genetic control of fiber growth and development in polyploidy cotton. So far, this is the most saturated genetic linkage joinmap assembled from different genetic backgrounds of cotton populations in G hirsutum. The research is ongoing for the identification of QTL allele and homoelogous relationship for breeding target traits, such as yield, fiber quality and resistance etc, and further provides the foundation for molecular breeding by design in G hirsutum.
引文
1. 房栋,吕俊宏,郭旺珍,等.一个新的棉花MYB类基因(GhTF1)的克隆及染色体定位分析[J].作物学报,2008,34(2):207-21
    2. 郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆与分子育种[J].科学通报,2003,48:410-417
    3. 贺亚军,郭旺珍,张天真.棉花6个小分子质量热激蛋白基因的序列、表达与定位[J].作物学报,2008,34(9):1574-1580
    4. 胡文静,张晓阳,张天真,等.陆地棉优质纤维QTL的分子标记筛选及优质来源分析[J].作物学报,2008,34(4):578-586
    5. 胡艳.亚洲棉和陆地棉基因组BAC文库的构建及初步应用[D].南京:南京农业大学博士学位论文,2008
    6. 李成奇.棉花衣分等产量性状的遗传、QTL定位及不同衣分材料纤维初始发育的比较研究[D].南京:南京农业大学博士学位论文,2008
    7. 李首成,江先炎.利用陆中杂种后代选育棉花高强度优质材料[J].中国棉花,1997,24(11):9-11.
    8. 林忠旭,张献龙,聂以春,等.棉花SRAP遗传连锁图构建[J].科学通报,2003,48(15):1676-1679
    9. 柳李旺,朱协飞,郭旺珍,等.分子标记辅助选择聚合棉花Rf1育性恢复基因和抗虫Bt基因[J].分子植物育种,2003,1(1):48-52
    10.钱思颖,黄骏麒,彭跃进,等.陆地棉(G.hirsutum L.)异常棉(G.anomalum Wawr.& Peyr.)种间杂种的研究及其在育种上的应用[J].中国农业科学,1992,25(6):44-51
    11.宋宪亮,孙学振,张天真.偏分离及对植物遗传作图的影响[J].农业生物技术学报,2006,14(2):286-292
    12.宋宪亮.异源四倍体棉花栽培种分子连锁图谱的构建及部分性状QTL标记定位[D],山东农业大学博士学位论文,2005
    13.桑志勤.陆地棉优质纤维QTL的分子标记筛选及其定位[D].南京:南京农业大学硕士学位论文,2008
    14.余义斌,朱一超,张天真,等.棉花腺苷高半胱氨酸水解酶cDNA的克隆、表达及染色体定位[J].作物学报,2008,34(6):958-964
    15.宋宪亮.异源四倍体棉花栽培种分子连锁图谱的构建及部分性状QTL标记定位[D].山东:山东农业大学博士学位论文,2005
    16.王娟,郭旺珍,张天真,等.渝棉1号优质纤维QTL的标记与定位[J].作物学报,2007,33(12):1915-1921
    17.王沛政.新疆陆地棉抗病、高产等育种目标性状QTL标记及定位[D].南京:南京农业大学博士学位论文,2008
    18.吴茂清,张献龙,聂以春,等.四倍体栽培棉种产量和纤维品质性状的QTL定位[J].遗传学报,2003,30(5):443-452
    19.徐云碧和朱立煌.分子数量遗传学[M].北京:中国农业出版社,1994
    20.杨昶.棉花抗黄萎病基因分子标记定位研究[D].南京:南京农业大学博士学位论文,2008
    21.张天真,袁有禄,郭旺珍,等.棉花高强纤维QTLs的微卫星标记筛选[J].中国农业科学,2001,34(4):363-366
    22.张燕洁,朱一超,郭旺珍,等.与棉纤维发育相关基因GhSAMS,GhNLP的克隆、鉴定与定位[J].中国农业科学,2008,41(9):2581-2588
    23.周宝良,陈松,沈新莲,等.陆地棉高品质纤维种质基因库的拓建[J].作物学报,2003,29(4):514-519
    24.周宝良,沈新莲,陈松,等.利用三个野生种进行陆地棉纤维品质改良的效应比较[J].棉花学报,2003,15(1):22-25
    25. Alba R, Fei Z, Payton P, et al. ESTs, cDNA microarrays, and gene expression profiling:Tools for dissecting plant physiology and development[J]. Plant J,2004,39:697-714
    26. Arpat A, Waugh M, Sullivan J P, et al. Functional genomics of cell elongation in developing cotton fibers[J]. Plant Mol Biol,2004,54:911-929
    27. Beasley O J. Meiotic chromosome behavior in species hybrids, haploids, and induced polyploids of Gossypium[J]. Genetics,1942,27:25-54
    28. Beasley O J. The origin of the American tetraploid Gossypium species[J]. Am Nat,1940, 74:285-286
    29. Blenda A, Scheffler J, Scheffler B, et al. CMD:A cotton microsatellite database resource for Gossypium genomics[J]. BMC Genomics,2006,7:132-150
    30. Botstein D, White R L, Skolnick M, et al. Construction of genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet,1980,32:314-331
    31. Branco C J, Vieira E A, Malone G, et al. IRAP and REMAP assessments of genetic similarity in rice[J]. J Appl Genet,2007,48(2),2007,107-113
    32. Breto M P, Ruiz C, Pina J A, et al. The diversification of Citrus clem entina Hort. ex Tan., a vegetatively propagated crop species[J]. Molecular Phylogenetics and Evolution,2001,21 (2): 285-293
    33. Brubaker C L, Paterson A H, Wendel J F. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors[J]. Genome,1999,42:184-203
    34. Chakravarti A, Lasher LK, Reefer JE. A maximum likelihood for estimating genome length using genetic linkage data[J]. Genetics,1991,128 (1),175-182.
    35. Close T J, Wanamaker S I, Caldo R A, et al. A new resource for cereal genomics:22K barley GeneChip comes of age[J]. Plant Physiol,2004,134:960-968
    36. Cloutier S, Cappadocia M and Landry B S. Analysis of RFLP mapping inaccuracy in Brassica napus L[J]. Genetics,1997,95:83-91
    37. Culp T W, Moore R F, Pitner J B. Registration of seven cotton germplasm lines[J]. Crop Sci,1985, 25:201-202
    38. Endrizzi J E, Turcotte E L, Kohel R J. Genetic, cytology, and evolution of Gossypium [J]. Adv Genet,1985,23:271-375
    39. Eujayl I, Sorrells M E, Wolters P, et al. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat[J]. Theor Appl Genet,2002,104:399-407
    40. Ewing R M, Kahla A B, Poirot O, et al. Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression[J]. Genome Res.1999,9:950-959
    41. Fregeau D, Adato A. DNA typing with short tandem repeats:a sensitive and accurate approach to human identification[J]. Biotechniques,1993,15:100-119
    42. Frelichowski J E Jr, Palmer M B, Main D, et al. Cotton genome mapping with new microsatellites from Acala'Maxxa' BAC-ends[J]. Mol Gen Genomics,2006,275(5):479-491
    43. Fryxell P A. A revised taxonomic interpretion of Gossypium (Malvaceae). Rheedea[J],1992, 2:108-165
    44. Fryxell P A. The natural history of the cotton tribe[J]. Texas A&M University Press, College Station, Texas.1979
    45. Fulton T M, Van der Hoeven R, Eannetta N T, et al. Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants[J]. Plant Cell,2002,14: 1457-1467
    46. Ge H Y, Wang Y C, Guo W Z, et al. Inheritance and Molecular Tagging of Resistance against Verticillium Wilt in Upland Cotton[J]. Cotton Sci,2008,20(1):19-22
    47. Grover C E, Kim H R, Wing R A, et al. Incongruent patterns of local and global genome size evolution in cotton[J]. Genome Res 2004,14:1474-1482
    48. Guo W, Cai C, Wang C, et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium[J]. Genetics,2007,176:527-541
    49. Guo W, Cai C, Wang C, et al. A preliminary analysis of genome structure and composition in Gossypium hirsutum[J]. BMC Genomics,2008,9:314
    50. Gupta M, Chyi Y S. Amplification of DNA markers from evolutionary diverse genomer using single primers of simple-sequence repeats[J]. Theor Appl Genet,1994,89:998-1006
    51. Han Z G, Wang C B, Song X L, et al. Characteristics, development and mapping of Gossypium hirsutum derived-ESSR in allotetraploid cotton [J]. Theor Appl Genet,2006,112:430-439
    52. Han Z G, Guo W Z, Song X L, et al. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton [J]. Mol. Genet. Genomics,2004,272: 308-327
    53. Han Z G, Guo W Z, Zhang T Z. Mapping of One Fiber Factor 1 Gene Based on Single Nucleotide Polymorphisms in Gossypium[J]. Acta Agronomica Sinica,2007,33(2):256-26
    54. Hawkins J S, Kim H, Nason J D, et al. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium[J]. Genome Res,2006, 16:1252-1261
    55. Hughes A, Friedman R. Expression patterns of duplicate genes in the developing root in Arabidopsis thaliana[J]. J. Mol. Evol.2004,60:247-256
    56. Jiang C, Wright R J, El-Zik K M, et al. Polyploid formation created unique avenues for response to selection in Gossypium (cotton) [J]. Proc Natl Acad Sci USA,1998,95:4419-4424
    57. Jiang F, Zhao J, Zhou L, et al. Molecular mapping of Verticillium wilt resistant QTL clustered on D7 and D9 chromosomes in Upland cotton[J]. China Science (C),2008
    58. Kakani A, Saha V T, Zipf A et al. Genetic mechanism and chromosomal location of pollen-specific gene(s) in Gossypium[J]. Crop Science,1999,39:668-673
    59. Kalendar R, Grob T, Regina M, et al. IRAP and REMAP:two new retrotransposon-based DNAfinger. printing techniques[J]. Theor Appl Genet,1999,98:704-711
    60. Kalendar R, Tanskanen J, Immonen S, et al. Genome evolution of wild barley (Hordeum spontaneum) by bare-lretrotransposon dynamics in response to sharp microclimatic divergence[J]. Proc Nati Acad Sci USA,2000,97(12):6603-6607
    61. Karaca M, Saha S, Jenkins J N, et al. Simple sequence repeat (SSR) markers linked to the Ligon Lintless (Lil) mutant in cotton[J]. J Hered,2002,93:221-224
    62. Kashi Y, King D, Soller M. Simple sequence repeats as a source of quantitative genetic variation[J]. Trends. Genet,1997,13:74-78
    63. Kawasaki S, Borchert C, Deyholos M, et al. Gene expression profiles during the initial phase of salt stress in rice[J]. Plant Cell,2001,13:889-906
    64. Kianian S F and Quiros C F. Generation of a Brassica oleracea composite RFLP map:Linkage arrangements among various populations and evolutionary implications[J]. Theor Appl Genet,1992, 84:544-554
    65. Kohel R J, Richmond T R. Isolines in cotton, Effects of nine dominant genes [J]. Crop Sci,1971, 11:287-289
    66. Kohel R J, Yu J, Park Y H, et al. Molecular mapping and charac-terization of traits controlling fiber quality in cotton[J]. Euphytica,2001,121:163-172
    67. Kosambi D D. The estimation of map distance from recombinaination values[J]. Ann. Eugen,1994, 12:172-175
    68. Lacape J M, Nguyen T B, Courtois B, et al. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum×Gossypium barbadense backcross generation[J]. Crop Sci,2005, 45:123-140
    69. Lacape J M, Nguyen T B, Thibivilliers S, et al. combined RFLP-SSR-AFLP map of trtraploid cotton based on a Gossypium hirsutum×Gossypium barbadense backcross population[J]. Genome, 2003,46:612-626
    70. Lander E S, Green P, Abrahamson J, et al. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations [J]. Genomics, 1987,1:174-181
    71. Lander E S. The new genomics:global views of biology[J]. Science,1996,274:536-539
    72. Li C Q, Guo W Z, Zhang T Z. (2008) Fiber initiation development in upland cotton (Gossypium hirsutum L.) cultivars varied in lint percentage[J]. Euphytica,2008, DOI 10.1007/s 10681-008-9740-3
    73. Lin Z X, He D H, Zhang X L, et al. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD[J]. Plant Breeding,2005,124:180-187
    74. Lin Z X, Zhang Y X, Zhang X L, et al. A high-density integrative linkage map for Gossypium hirsutum [J]. Euphytica,2008, DOI 10.1007/s10681-008-9822-2
    75. Liu S, Cantrell R G, McCarty J C et al. Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions[J]. Crop Sci,2000,40:1459-1469
    76. Lorieux M, Goffinet B, Perrier X et al. Maximum-likelihood models for mapping genetic markers showing segregation distortion.1. Backcross populations[J]. Theor Appl Genet,1995a, 90:73-80
    77. Lorieux M, Perrier X, Goffinet B et al. Maximum-likelihood modles for mapping genetic markers showing segregation distortion.2. F2populations[J]. Theor Appl Genet,1995b,90: 81-89
    78. Lu H, Romero-Severson J and Bemardo R. Chromosomal regions associated with segregation distortion in maize[J]. Theor Appl Genet,2002,105:622-628
    79. Mei M, Syed N H, Gao W, et al. Genetic mapping and QTL analysis of fiberrelated traits in cotton (Gossypium)[J]. Theor Appl Genet,2004,108:280-291
    80. Meng C, Cai C, Zhang T, et al. Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L[J]. Plant Sci,2009,176:352-359
    81. Michalek W, Weschke W, Pleissner K P, et al. EST analysis in barley defines a unigene set comprising 4,000 genes[J]. Theor Appl Genet,2002,104:97-103
    82. MillerW J, Capy P.2004. Mobile genetic elements:Protocols and genomic app lications[J]. Methods inMolecular Biology,260:146-171
    83. Nguyen T B, Giband M, Brottier P, et al. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers[J]. Theor Appl Genet,2004,109:167-175
    84. Park Y H, Alabady M S, Ulloa M, et al. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred (RIL) cotton population[J]. Mol Gen Genomics,2005,274:428-441
    85. Paterson A H, Saranga Y, Menz M, et al. QTL analysis of genotype environment interaction affecting cotton fiber quality[J]. Theor Appl Genet,2003,106:384-396
    86. Paterson A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis[J]. Plant. Mol. Biol. Rep.1993,11:122-127
    87. Perfectti F and Pascual L. Segregation distortion of isozyme loci in cherimoya(Annona cherimola Mil1)[J]. Theor Appl Genet,1996,93:440-446
    88. Qin H D, Guo W Z, Zhang Y M, et al. QTL mapping of agronomic and fiber traits based on a four-way cross population in Gossypium hirsutum L[J]. Theor Appl Genet,2008,117:883-894
    89. Qureshi S N, Saha S, Kantety R V, et al. EST-SSR:A new class of genetic markers in cotton. [J]. J Cotton Sci,2004,8:112-123
    90. Reddy O U K, Pepper A E, Abdurakhmonov I, et al. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research[J]. J Cotton Sci,2001,5:103-113
    91. Reinisch A, Dong J M, Brubaker C L, et al. A detailed RFLP map of cotton, Gossypium hirsutum× Gossypium barbadense; chromosome organization and evolution in a disomic polyploid genome[J]. Genetics,1994,138:829-847
    92. Ren L H, Guo W Z, Zhang T Z. Identification of quantitative trait loci (QTLs) affecting yield and fiber properties in chromosome 16 in cotton using substitution line[J]. Acta Botanica Sinica,2002, 44(7):815-820
    93. Roder M S, Korzun V, Gill B S, et al. The physical mapping of microsatellite markers in wheat[J]. Genome,1998a,41:278-283
    94. Roder M S, Korzun V, Wendehake K, et al. A microsatellite map of wheat[J]. Genetics,1998b,149: 2007-2023
    95. Rong J K, Abbey C, Bowers J E, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium)[J]. Genetics,2004,166:389-417
    96. Rong J K, Feltus F A, Waghmare V N, et al. Meta-analysis of polyploidy cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development[J]. Genetics,2007,176:2577-2588
    97. Ronning C M, Stegalkina S S, Ascenzi R A, et al. Comparative analyses of potato expressed sequence tag libraries[J]. Plant Physiol,2003,131:419-429
    98. Schlueter J A, Dixon P, Granger C, et al. Mining EST databases to resolve evolutionary events in major crop species[J]. Genome,2004,47:868-876
    99. Shappley Z W, Jenkins J N, Meredith W R, et al. An RFLP linkage map of Upland cotton, Gossypium hirsutum L[J]. Theor Appl Genet,1998a,97:756-761
    100. Shappley Z W, Jenkins J N, Zhu J, et al. Quantitative trait loci associated with agronomic and fiber traits of upland cotton [J]. J Cotton Sci,1998b,2:153-163
    101. Shen X L, Guo W Z, Zhu X F, et al. Genetic Mapping of Quantitative Trait Loci for Fiber Quality and Yield Trait by RIL Approach in Upland Cotton[J]. Euphytica,2007,155:371-380
    102. Shen X L, Guo WZ, Zhu X F, et al. Molecular mapping of QTLs for qualities in three diverse lines in Upland cotton using SSR markers[J]. Mol Breed,2005,15:169-181
    103. Shen X L, Zhang T Z, Guo W Z, et al. Mapping QTLs with main effects, epistatic effects and QTL x environment interaction for fiber and yield traits in RILs of Upland cotton[J]. Crop Sci,2006, 46:61-66
    104. Song X L, Wang K, Guo W Z, et al. A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. ×G. barbadense L[J]. Genome,2005,48:378-390
    105. Stelly D M. Interfacing cytogenetics with the cotton genome mapping effort[A]. In Proceedings of the Betwide Cotton Conference, New Orleans, La.,10-14 January 1993. National Cotton Council, Memphis, Tenn.1993, p.1545-1550
    106. Taliercio E, Allen R D, Essenberg M, et al. Analysis of ESTs from multiple Gossypium hirsutum tissues and identification of SSRs[J]. Genome,2006,49(4):306-319
    107. Ulloa M, Meredith W R, Shapply Z W, et al. RFLP genetic linkage maps from F2.3 populations and a joinmap of Gossypium hirsutum L.[J]. Theor Appl Genet,2002,104:200-208
    108. Ulloa M, Meredith W R. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population[J]. Cotton Sci,2000,4:161-170
    109. Ulloa M, Saha S, Jenkins J N, et al. Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) joinmap[J]. J. Hered,2005, 96:132-144
    110. Van Ooijen JW, Voorrips R E. JoinMapR Version 3.0:software for the calculation of genetic linkage maps[J]. CPRO-DLO, Wageningen,2001
    111. Voorrips, R E. MapChart:Software for the graphical presentation of linkage maps and QTLs[J], J. Heredity,2002,93 (1):77-78
    112. Wang B H, Guo W Z, Zhu X F, et al. QTL Mapping of Fiber Quality in an Elite Hybrid Derived-RILs in Upland Cotton[J]. Euphytica,2006a,152:367-378
    113. Wang B H, Guo W Z, Zhu X F, et al. QTL Mapping of Yield and Yield Components for Elite Hybrid Derived-RILs in Upland Cotton[J]. Genetics and Genomics,2007,34:35-45
    114. Wang B H, Wu Y T, Guo W Z, et al. Genetic dissection of heterosis for fiber qualities in an elite cotton hybrid grown in second-generation[J]. Crop Sci,2007,47:1384-1392
    115. Wang B H, Wu Y T, Huang N T, et al. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agronomica Sinica, 2007,33(11):1755-1762
    116. Wang C B, Guo W Z, Cai C P, et al. Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii Ulbrich[J]. Chinese Science Bulletin.2006b,51: 557-561
    117. Wang K, Song X L, Han Z G, et al. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping [J]. Theor Appl Genet, 2006c,113:73-80
    118. Wang P, Ding Y Z, Lu Q X, et al. Development of Gossypium barbadense chromosome segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum [J]. Theor Appl Genet, 2008,53:1065-1069
    119. Wendel J F, Albert V A. Phylogenetics of the cotton genus (Gossypium):Character-state weighted parsimony analysis of chloroplast-DNA restriction site data and its systemic and biogeographic implication[J]. Syst Bot,1992,17:115-143
    120. Wendel J F, Cronn R C, Johnston J S et al. Feast and famine in plant genomes[J]. Genetics,2002, 115:37-47
    121. Wendel J F, Cronn R C. Polyploidy and the evolutionary history of cotton[J]. Adv Agron,2003, 78:139-186
    122. Wendel J F. New World tetraploid cottons contain Old World cytoplasm[J]. Pro Natl Acad Sci USA,1989,86:4132-4136
    123. Wendel J F, Schnabel A, Seelanan T. Bidirectional interlocus concerted following allopolyploid speciation in cotton (Gossypium)[J]. Proc. Natl. Acad. Sci. USA.,1995,92:280-284
    124. Williams J G K, Kubelic A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucl Acid Res,1990,18:6351-6535
    125. Wisman E, Ohlrogge J. Arabidopsis microarray service facilities[J]. Plant Physiol,2000,124: 1468-1471
    126. Yang C, Guo W Z, Li G Y, et al. QTLs mapping for Verticillium wilt resistance at seedling and maturity stages for in G. barbadense L[J]. Plant Sci,2008,174:290-298
    127. Yu J, Kohel R J, Dong J M, et al. Toward positional cloning of a major glandless gene in cotton[A]. In Proc of the Beltwide Cotton Conference, National Cotton Council, Memphis, TN,2000, 1:516-517
    128. Zabeau M, Vos P. Selective restriction fragment amplification:a general method for DNA fingerprinting[J]. Patent Application World intellectual Property Organization, WO,1993, 93/06239
    129. Zaitzev G S. A contribution to the classification of the genus Gossypium. L[J]. Bull Appl Bot, Genet Plant Breeding,1928,18:1-65. (in Russian, in English on p.39-65)
    130. Zhang J, Guo W Z, Zhang T Z. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. x Gossypium barbadense L.) with a haploid population[J]. Theor Appl Genet,2002, 105:1166-1174
    131. Zhang J, Wu Y T, Guo W Z, et al. Fast screening of miscrosatellite markers in cotton with PAGE/silver staining[J]. Cotton Sci Sin,2000,12:267-269
    132. Zhang X D, Jenkins J N, Callahan F E, et al. Molecular cloning, differential expression, and functional characterization of a family of class I ubiquitin-conjugating enzyme (E2) genes in cotton (Gossypium)[J]. Biochim Biophys Acta,2003,1625(3):269-279
    133. Zhang Z S, Xiao Y H, Luo M, et al. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.)[J]. Euphytica,2005,144:91-99
    134. Zhao L, Cai C, Zhang T, et al. Fine Mapping of the Red Plant Gene R1 in Upland Cotton (Gossypium hirsutum)[J]. Chinese Science Bulletin.2009, DOI 10.1007/s11434-009-0225-0
    135. Zhao X P, Si Y, Hanson R E, et al. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton[J]. Genome Res 1998,8:479-492
    136. Zhou B L, Zhu X F, Guo W Z, et al. Major gene plus poly-gene inheritance of super quality fiber properties in Upland cotton introgressed from Gossypium anomalum Wawra & Peyritsch[J]. Cotton Sci,2006,18(1):60-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700