棉花细胞质雄性不育恢复基因的图位克隆及PPR基因家族的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物细胞质雄性不育(Cytoplasmic male sterility, CMS).是一种不能产生有活力花粉的遗传现象,属母性遗传,在植物杂种优势利用中具有重要价值.利用胞质雄性不育系及恢复系和保持系的三系配套制种方式具有省工、方便、种子纯度高、成本较低等优点,将成为杂种棉商业化制种最有效的途径之一.棉花不仅是世界上最重要的天然纤维和重要的油料作物,而且也是一种重要的生物能源.棉花杂种优势十分明显,可有效提高产量、纤维品质与抗病、抗逆性.棉花由于“三系”中的恢复系存在恢复力不强的缺陷使得棉花CMS的应用受到极大的限制,“三系法”制种仍未实现产业化.因此,克隆棉花细胞质雄性不育育性恢复基因对于研究细胞质雄性不育机理,培育优良恢复系,更好的利用杂种优势具有重要的理论和实践意义.
     目前已克隆的恢复基因中,除了玉米Rf2编码乙醛脱氢酶外,矮牵牛Rf,萝卜Rf0及水稻的Rf1a和Rf1b都编码的是由PPR基序串联组成的PPR蛋白.PPR基因家族是近年来新发现的一个家族,同时也是植物中最大的家族之一.它编码一种以35个简氨基酸为重复单位串连排列组成的蛋白质,这些重复单元能形成一个超螺旋从而特异的与单链RNA结合.PPR蛋白在细胞器形成和植物发育的许多方面起着重要的调控作用。目前,在许多真核生物中都已经发现了PPR基因,但棉花上还没有关于PPR基因的报道.
     本研究选用本室根据GenBank棉花EST数据库中的序列开发设计的2803对EST-SSR引物采用基因型代表群分析法对亲本不育系104-7A和恢复系0-613-2R及22株小群体进行筛选,将选中的6对引物对613株BCl群体进行扩增,共筛选到6个与Rf1基因紧密连锁的分子标记.通过整合本室先前构建的助遗传图谱上的原有标记,利用Joinmap3.0作图软件对恢复基因进行精细定位,整合后的图谱含有18个标记(2个RAPD、3个STS标记和13个SSR标记),总遗传距离为0.65cM.本研究所获得的6个与Rf1紧密连锁的EST-SSR标记(NAU2650、NAU2924、NAU3205、NAU3652、NAU3938和NAU4040)表现为共分离,均与Rf1基因相距0.327cM,其中NAU3205为显性标记,其它5个都是共显性标记.
     利用6.个与助紧密连锁的EST-SSR标记对本室构建的0-613-2R恢复系BAC文库进行PCR筛选。先对二级混合克隆文库进行PCR筛选,筛选到阳性混合克隆后,再对一级混合克隆库进行筛选,最终得到阳性单克隆.6个EST-SSR标记共筛选到7个阳性BAC单克隆,其中NAU4040未筛选到阳性克隆,NAU3938筛选到3个阳性克隆,其它标记各筛选到1个阳性克隆,NotⅠ酶切检测其插入片段大小范围为105-130kb.将本室已获得的与Rf1相关的克隆整合后在助遗传图谱上的18对引物共获得56个阳性BAC克隆.选取助图谱上两侧最近的13个标记所筛选到的31个阳性BAC进行HindⅢ酶切指纹分析,利用Image3.10b和FPC V7.2软件对HindⅢ酶切图谱进行分析后构建Rf1区域的精细物理图谱.
     利用萝卜、矮牵牛和水稻恢复基因编码的蛋白序列分别作为查询探针对GenBank中棉花ESTs数据库进行tblastn扫描,对获得的所有ESTs利用CAP3软件组装并通过blastx预测每个contig的功能,获得三个与萝卜、矮牵牛和水稻恢复基因同源性较高的contigs。根据这三个contigs的序列设计特异引物对物理图谱上的所有BAC进行筛选,其中根据contig2设计的引物筛选到一个克隆Y43。综合物理图谱与同源序列分析的结果,将棉花Rf1基因定位在BACY43上并对该BAC全长测序.对获得的BAC序列进行基因预测,共获得24个ORF,其中4个ORF(ORF2、ORF3、ORF7和ORF18)编码PPR蛋白并含有线粒体定位信号。通过4个ORF的序列比对及对恢复系和不育系的测序比较,推断ORF3为助基因候选ORF.
     为了了解陆地棉中PPR基因的分布和数量,本研究从147个陆地棉BAC中找到6个编码PPR蛋白的ORF,同时利用其它植物中已克隆的18个PPR基因编码的蛋白作为tblastn比对的查询探针,对GenBank中陆地棉EST数据库进行扫描,通过CAP3组装拼接鉴定出309个PPR unigene。为进一步研究陆地棉中PPR基因编码的蛋白结构和表达特点,以陆地棉0-613-2R为材料通过RT-PCR的方法克隆了5个PPR基因的全长cDNA序列,分别将它们命名为GhPPR1-GhPPR5,对其基因组结构分析发现它们都不含有内含子,ORF长度从867-1779 bp。结构域分析显示这5个PPR基因编码的氨基酸分别包含5-10个PPR重复单元,其中GhPPR1和GhPPR2属于PLS亚家族,GhPPR3-GhPPR5属于P亚家族,同时这5个基因与18个其它植物中的PPR基因的进化分析也显示同一亚家族中的成员聚集在一起。本研究还利用实时荧光定量PCR对这5个PPR基因在陆地棉不同组织和器官中的表达进行了分析,结果显示5个基因在根、茎、叶、花粉以及纤维中都表达,但在不同时期的相对表达量略有不同。
     育性基因的分离克隆一直是人们关心的课题,它对于认识不育性机理,揭示生命现象以及更有效地利用杂种优势都有着十分重要的意义。本研究利用图位克隆和同源序列克隆两种方法相结合的策略,在构建Rf1精细遗传图谱和物理图谱的基础上,根据恢复基因同源序列设计引物对物理图谱上的BAC克隆进行扫描,鉴定出包含Rf1基因的BAC克隆并对其全长测序,通过基因预测和特征分析及亲本序列差异分析获得了Rf1的候选ORF.棉花CMS育性恢复基因的成功克隆,可以通过转基因方法,培育具有优良性状的新型恢复系,可实现棉花杂种优势利用的重大突破,从而极大地推动我国棉花育种和生产的发展。同时,获得具有自主知识产权的棉花CMS育性恢复基因,可以更好地保护我国的基因资源。本研究还有助于揭示棉花细胞质雄性不育的分子机理,为进一步研究和利用棉花杂种优势奠定基础。
Plant cytoplasmic male sterility (CMS) is a maternally inherited trait that is unable to produce viable pollens, which plays an important role in utilization of hybrid vigor. Comparing with hand-emasculation and pollination, and genetic male sterile lines, utilization of CMS lines is much more effective and economical in producing commercially hybrid seeds. Cotton is not only the world's most important natural textile fiber and a significant oilseed crop, but also a crop that is of significance for foil energy and bioengergy production. The heterosis in cotton hybrid is much significant, especially in improving yields, fiber qualities, disease-resistances and stress tolerance. Some hybrid strains of cotton with CMS have been applied in production, but the utilization of CMS is rather limited because of the low yield of restoring lines and the noxiousness of the exotic cytoplasm in the male sterile lines. Therefore, the cloning of restoring gene plays an important value on studying the mechanism of CMS and heterosis utilization.
     With the exception of Rf2 from maize, all cloned Rf genes are members of the pentatricopeptide repeat gene family (PPR).The PPR protein family is one of the largest families which was found recently. These proteins contain multiple 35-amino acid repeats that are proposed to form a super helix capable of binding a strand of RNA. PPR proteins have been implicated in many crucial functions broadly involving organelle biogenesis and plant development. Up to now, PPR proteins have been identified in many eukaryotes, but there is still no report on PPR gene in cotton.
     A total of 2803 pairs of EST-SSR primers designed from cotton ESTs in Genbank were screened the restoring line 0-613-2R and the CMS line 104-7A with 22 small populations by genotypic difference analysis. The selected primers were amplified by using 613 individuals BC1 mapping populations, and 6 new EST-SSR primers were found to closely link to the Rf1 of cotton. Integrating other markers linked with the Rf1 gene identified by Yin et al (2006), fine map was made with Joinmap3.0 software. The genetic mapping contained 19 makers that were 13 for SSR,2 for RAPD, and 3 for STS and the total genetic distance was 0.65cM. The 6 EST-SSR primers (NAU2650、NAU292、NAU3205、NAU3652、NAU3938 and NAU4040)added to the genetic map of Rf1 in this study showed co-segregation, and all the 6 primers had a genetic distance of 0.327cM from Rf1.Among them, only NAU3205 was a dominant marker and other five markers showed co-dominance.
     In order to construct a fine physical map of Rf1, the 6 EST-SSR primers were used to screen the restoring line 0-613-2R BAC library. Finally 7 single positive clones were attained by PCR method. The 7 clones were digested with Not I enzyme indicating insert size of them with a range of 105 to 130 kb. After integrating with previous results of our laboratory, there are totally 56 single positive clones availably.31 clones selected from 13 markers tightly most linked to the Rf1 were used to digested with HindⅢ.The fingerprintings of these clones were used by Image 3.10b and FPC V7.2 software to construct physical map.
     The Rf genes of rice, radish and petunia were used as query probes for tBLASTn searches of the cotton EST database. All the hit sequences were assembled by CAP3 assembly tool and 63 contigs were attained. Blastx analysis was used for function prediction of these contigs, and 3 contigs were predicted to have a higher similarity with Rf genes of radish, petunia and rice. Specific primers of the 3 contigs were designed to screen the BAC clones in the physical map of the Rf1. We identified a clone Y43 screened by the primers of contig2, and presumed this BAC probably containing the Rf1 gene.24 ORF were acquired by sequencing and gene prediction of this BAC. ORF2、ORF3、ORF7and ORF18 were predicted to encode PPR protein and have a mitochondrially targeted signals in their N-terminal amino acids. Sequences alignment of the four ORF and the restoring line 0-613-2R and the CMS line 104-7A, the ORF3 was identified as a candidate ORF for the Rf1 gene which is almost entirely composed of 16 repeats of the 35-aa PPR motif.
     In order to study the number and distribution of PPR genes in upland cotton, we identified 6 ORF encoding PPR protein in 147 BAC sequences, and 309 PPR unigenes were found through extensive survey of the EST database of upland cotton. Furthermore, we isolated five full length cDNA of PPR genes from 0-613-2R which were named GhPPRl-GhPPR5. Domain analysis revealed that the deduced amino acid sequences of GhPPRl-5 contain from 5 to 10 PPR motifs and those PPR proteins were divided into two different PPR subfamilies. GhPPRl-2 belonged to PLS subfamily and GhPPR3-5 belonged to P subfamily. Phylogenetic analysis of the five GhPPR proteins and 18 other plant PPR proteins also revealed that the same subfamily clustered together. All the five GhPPR genes were constitutively expressed in roots, stems, leaves, pollens, and 15dpa fibers based on real-time quantitative RT-PCR, but the relative expression levels were a little different.
     The isolation and clone of restoring genes is concerned because it pays an important value on studying the mechanism of sterility and heterosis utilization. In our study, the strategy combining map-based cloning and homology cloning was used to isolate the Rf1 of cotton. On the basis of physical map construction of Rf1, specific primers were designed from homology EST of Rf genes to screen those BAC clones on the physical map of Rf1. The BAC clone containing Rf1 gene was identified to be sequenced, and finally a candidate ORF encoding PPR protein for Rf1 was identified through bioinformatics analysis and sequence alignment. This is the basic work for isolation and clone of restoring genes. We can breed new cotton restoring strains with excellent traits, break through the utilization of heterosis and greatly push cotton breeding and development of production through transgenic methods. The fertile restoring gene with property right also can protect our gene resources. The results of the research can be contributive to reveal the molecular machine about cotton CMS and establish a foundation for the study and use with cotton heterosis.
引文
1.陈树林,王沛政,胡保民.陆地棉EST-SSRs在向日葵中的通用性研究[J].西北植物学报2006,26(3):502-506
    2.方宣钧,吴为人,唐纪良.作物DNA标记辅助选择[M].北京:科学出版社,2001
    3.何光华,王文明,刘国庆,等.利用SSR标记定位明恢63的2对恢复基因[J].遗传学报,2002,29(9):798-802
    4.黄烈健.玉米抗病相关侯选基因DNA片段克隆[J].中国农业科学,2000,23(增刊):141-146
    5.黄青阳,景润春,何予卿,等.水稻红莲型细胞质雄性不育及恢复性的遗传[J].武汉大学学报,1999,45(4):455-458
    6.景润春,何予卿,黄青阳,等.水稻野败型细胞质雄性不育恢复基因的ISSR和SSLP的标记分析[J].中国农业科学,2000,33(2):10-15
    7.李成云.植物基因的克隆与转化(1)植物基因克隆的方法简介[M].云南农业科技,2000,4:43-45
    8.李继耕.细胞质雄性不育性的分子机理[J].遗传,1992,14(6):31-36
    9.李继耕.叶绿体遗传与细胞质雄性不育性[J].中国农业科学,1983,1:49-52
    10.刘媛,蔡嘉斌,蒋国松,等.基于EST的新基因克隆策[J].遗传,2008,30(3):257-272
    11.刘忠松,官春云,陈社员.植物雄性不育机理的研究及应用[M].中国农业出版社,2001
    12.刘少林,靖深荣,郭立平.棉花线粒体基因组和叶绿体基因组与细胞质雄性不育关系的RAPD研究.作物雄性不育及杂种优势研究进展[M].北京:中国农业出版社,1996
    13.柳李旺,朱协飞,郭旺珍,等.分子标记辅助选择聚合棉花Rf1育性恢复基因和抗虫Bt基[J].分子植物育种,2003,1(1):48-52
    14.潘家驹.作物育种学总论[M].北京:农业出版社,1992
    15.王冬冬,朱延明,李勇,等.电子克隆技术及其在植物基因工程中的应用[M].东北农业大学学报,2006,37(3):403-408
    16.王凯,张燕洁,张天真.一种高通量提取棉花BAC-DNA的方法[J].棉花学报,2005,17(2):125-126
    17.王石平.用同源序列的染色体定位寻找水稻抗病基因DNA片段[J].植物学报,1998,40(1):42-.45
    18.王熹,陶龙兴,黄效林,等.细胞质雄性不育棉花线粒体蛋白质和DNA的分析[J].作物学报,2000,26(1):35-39
    19.王中华.水稻BT型细胞质雄性不育基因和恢复基因的克隆及其分子相互作用机理的研究[M].华南农业大学博士论文,2004
    20.吴乃虎.基因工程原理[明.第二版.北京:科学出版社,1998
    21.吴巧雯,张锐,候思宇,等.生物技术通讯植物细胞质雄性不育及其育性恢复的分子生物学研究进展[J].2008,19:456-462
    22.杨齐衡,李林.酵母双杂交技术及其在蛋白质研究中的应用[J].生物化学与生物物理学报,1999,31(3):221-225
    23.张军,武耀廷,郭旺珍,等.棉花微卫星标记的PAGE/银染快速检测[J].棉花学报,2000,12(5):267-269
    24.张群宇,刘耀光,张桂权,等.野败型水稻细胞质雄性不育恢复基因Rf4的分子标记定位[J].遗传学报,2002,29(11):1001-1004
    25.张天真,靖深蓉.棉花雄性不育杂交种选育的理论和实践[M].北京:中国农业出版社,1998
    26.张天真,靖深蓉.杂种棉选育的理论与实践[M].北京:科学出版社,1998
    27.张志峰.水稻PPR基因家族系统分析[M].中国科学院遗传与发育研究所硕士论,2008
    28.朱英国.水稻雄性不育生物学[M].武汉大学出版社,2000
    29. Aarts M G, Dirkse W G, Stiekema W J, et al. Transposon tagging of a male sterility gene in Arabidopsis [J]. Nature,1993,363:715-717
    30. Akagi H, Nakamura A, Yokozeki-Misono Y, et al. Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein [J].Theor Appl Genet,2004,108:1449-1457
    31. Akagi H, Sakamoto M, Shinjyo C, et al. A unique sequence located downstream from the rice mitochondrial atp6 may cause male sterility[J]. Curr Genet,1994,25:52-58
    32. Akagi H, Shimada H, Fujimura T. High-frequency inter-parental recombination between mitochondrial genomes of rice cybrids [J].Curr Genet,1995,29:58-65
    33. Anderson M D, Cornish E L, Man S L, et al. Cloning of cDNA for a stylar glycop protein associated with expression of self-incompatibility in Nicotianaalata [J]. Nature,1986,321:38-44
    34. Aubourg, S, Boudet N, Kreis M, et al. In Arabidopsis thaliana,1% of the genome codes for a novel protein family unique to plants [J].Plant Molecular Biology,2000,42 (4):603-613
    35.Arondel V, Lemieux B, Hwang I, et al. Map-based cloning of a gene controlling omega23 fatty acid desaturation in Arabidosis [J].Science,1992,258:1353-1355
    36. Benne R, Van den Burg J, Brakenhoff J P, et al. Major transcript of the frameshifted coxll gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA [J].Cell, 1986,46:819-826
    37. Bentolila S, Alfonso AA, Hanson MR. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants [J]. Proc Natl Acad Sci USA,2002,99:10887-10892
    38.Bentolila S, Chateigner-Boutin A L, Hanson M R. Ecotype allelic variation in C-to-U editing extent of a mitochondrial transcript identifies RNA-editing quantitative trait loci in Arabidopsis [J].Plant Physiol,2005,139:2006-2016
    39. Bock R. Sense from nonsense:how the genetic information of chloroplasts is altered by RNA editing [J].Biochimie,2000,82:549-557
    40. Boeshore M L, Hanson M R, Izhar S. A variant mitochondrial DNA arrangement specific to Petunia sterile somatic hybrids [J]. Plant Molecular Biology,1983,4:125-132
    41.Boguski M S, Schuler G D. EST ablishing a human transcript map [J].Nat Genet,1995,10: 369-371
    42. Bonhomme S, Budar F, Ferault M, et al. A 2.5 kb Ncol fragment of Ogura radish mitochondrial DNA is correlated with cytoplasmic male-sterility in Brassica cybrids [J]. Current Genetics,1991, 19:121-127
    43. Bonhomme S, Budar F, Lancelin D, et al. Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids [J].Mol Gen Genet,1992,235:340-348
    44. Brown G G, Formanova N, Jin H, et al. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats [J]. Plant J,2003,35:262-272
    45. Charles A, Lurin C, Small ID. The multifarious roles of PPR proteins in plant mitochondrial gene expression [J]. Physiologia Plantarum,2007,129:14-22
    46. Chen Z J, Liang G H, Kofoid K D. Chloroplast DNA polymor-phism in fertile and male-sterile cytoplasm of sorghum(Sorghum bicolor (L.) Moench)[J].Theor Appl Gene,1993,80:727-731
    47. Clark, E M, Gafni Y, Izhar S. Loss of CMS-specific mitochondrial DNA arrangement in fertile segregants of Petunia hybrids [J]. Plant Molecular Biology,1988,11:249-253
    48. Coulson A, Sulston J, Brenner S, et al. Toward a physical map of the genome of the nematode Caenorhabditis elegans [J]. Proc Natl Acad Sci USA,1986,83:7821-7825
    49. Covello P S, Gray M W. RNA editing in plant mitochondria [J].Nature,1989,341:662-666
    50. Cui X, Wise R P, Schnable P S. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize [J]. Science,1996,272:1334-1336
    51. Cushing D A, Forsthoefel N R, Gestaut D R, et al. Arabidopsis embl75 and other ppr knockout mutants reveal essential roles for pentatricopeptide repeat (PPR) proteins in plant embryogenesis [J]. Planta,2005,221:424-436
    52. Das Gupta J, Li Q S, Thomson A B, et al. Characterization of a cDNA encoding a novel plant poly (A) polymerase [J]. Plant Molecular Biology,1998,37(4):729-734
    53. Desloire S, Gherbi H, Laloui W, et al. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family [J].EMBO Rep,2003,4:588-594
    54. Dewey R E, Levings C S, Timothy, D H. Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm [J].Cell,1986,44: 439-449
    55.Dewey R E, Siedow J N, Timothy D H, et al. A 13-kilodalton maize mitochondrial protein in E. coli confers sensitivity to Bipolaris maydis toxin [J].Science,1988,239:292-295
    56. Dewey R E, Timothy D H, Levings C S, et al. Chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize [J].Curr Genet,1991,20:475-482
    57. Ding Y H, Liu N Y, Tang Z S, et al. Arabidopsis GLUTAMINE-RICH PROTEIN23 is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase Ⅱ subunit Ⅲ [J]. Plant Cell,2006,18:815-830
    58. Emanuelsson O, Nielsen H, Brunak S, et al. Predicting Subcellular Localization of Proteins Based on their N-terminal Amino Acid Sequence [J].Journal of Molecular Biology,2000,300:1005-1016
    59. Fen C,Guo J, Nie Y. Cytoplasmic-nuclear male sterility in cotton:comparative RFLP analysis of mitoehondrial DNA[J].Beltwide Cotton Conferences,2000,511-512
    60. Feng C D, Stewart J M, Zhang J F. STS markers linked to the Rf1 fertility restorer gene of cotton [J]. Theor Appl Gene,2005,110 (2):237-243
    61. Feng J X, Ji S J, Shi Y H, et al. Analysis of five differentially expressed gene families in fast elongating cotton fiber [J].Acta Biochim Biophys Sin,2004,36:51-56
    62. Fields S, Song O.A novel genetic system to detect protein-protein interactions [J].Nature,1989, 340:245-246
    63. Fisk D G, Walker M B, Barkan A. Molecular cloning of the maize gene crpl reveals similarity between regulators of mitochondrial and chloroplast gene expression [J].EMBO J,1999,18: 2621-2630
    64. Frary A, Nesbitt T C, Frary A, et al. fw2.2:a quantitative trait locus key to the evolution of tomato fruit size[J].Science,2000,289:85-88
    65. Geddy R, Brown G G. Genes encoding pentatricopeptide repeat (PPR) proteins are not conserved in location in plant genomes and may be subject to diversifying selection [J].BMC Genomics,2007,8: 130-142
    66. Giancola S, Marhadour S, Desloire S, et al. Characterization of a radish introgression carrying the Ogura fertility restorer gene Rfo in rapeseed, using the Arabidopsis genome sequence and radish genetic mapping [J].Theor Appl Genet,2003,107:1442-1451
    67.Giege P, Brennicke A. From gene to protein in higher plant mitochondria [J].CR Acad Sci,2001, 324:209-217
    68.Gillman J D, Bentolila S, Hanson M R. The petunia restorer of fertility protein is part of a large mitochondrial complex that interacts with transcripts of the CMS-associated locus [J]. Plant J,2007, 49:217-227
    69. Girauda T J, Hauge B M, Valonc C. Isolation of the Arabidosis ABI3 gene by positional cloning [J]. Plant Cell,1992,4:1251-1261
    70. Glab N, Wise R P, Pring D R, et al. Expression in Saccharomyces cerevisiae of a gene associated with cytoplasmic male sterility from maize:Respiratory dysfunction and uncoupling of yeast mitochondria [J]. Mol Gen Genet,2004,223:24-32
    71. Gregory L, Blatch M L. The tetratricopeptide repeat:a structural motif mediating protein-protein interactions [J]. BioEssays,1999,21:932-939
    72. Grelon M, Budar F, Bonhomme S, et al. Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids [J]. Mol Gen Genet,1994,243:540-547
    73. Gualberto J M, Lamattina L, Bonnard G, et al. RNA editing in wheat mitochondria results in the conservation of protein sequences [J]. Nature,1989,341:660-662
    74. Guo W Z, Cai C P, Wang C, et al. A microsatellite-based,gene-rich linkage map reveals genome structure,function and evolution in Gossypium [J]. Genetics,2007,176:527-541
    75. Guo W Z, Zhang T Z, Pan J J, et al. Identification of RAPD marker linked with fertility-restoring gene of cytoplasmic male sterile lines in upland cotton [J]. Chinese Science Bulletin,1998,43: 52-54
    76. Gutierrez-Marcos J F, Dal Pra M, Giulini A, et al. Empty pericarp4 encodes a mitochondrion-targeted pentatricopeptide repeat protein necessary for seed development and plant growth in maize [J]. Plant Cell,2007,19:196-210
    77. Han, Z G, Wang C B, Song X L, et al. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSR in allotetraploid cotton [J].Theor Appl Genet,2006,112:430-439
    78. Handa H, Nakajima K. Different organization and altered transcription of the mitochondrial atp6 gene in the male-sterile cytoplasm of rapeseed (Brassica napus L.) [J]. Curr Genet,1992,21: 153-159
    79. Hashimoto M, Endo T, Peltier G, et al. A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis [J].Plant J,2003,36:541-549
    80. He S, Abad A R, Gelvin S B, et al. A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco [J]. Proc Natl Acad Sci USA,1996,93 (21): 11763-11768
    81.Hendrix B, Stewart J M. Estimation of the Nuclear DNA Content of Gossypium Species [J].Ann Bot,2005,95:789-797
    82. Hiesel R, Wissinger B, Schuster W, et al. RNA editing in plant mitochondria [J].Science,1989,246: 1632-1634
    83.Hoch B, Maier R M, Appel K, et al. Editing of a chloroplast mRNA by creation of an initiation codon [J].Nature,1991,353:178-180
    84. Howell M D, Fahlgren N, Chapman E J, et al. Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA-and tasiRNA-directed targeting [J].Plant Cell,2007,19:926-942
    85. Huang J, Lee S H, Lin C, et al. Expression in yeast of the T-urfl3 protein from Texas male-sterile maize mitochondria confers sensitivity to methomyl and to Texas-cytoplasm-specific fungal toxins [J].EMBO J,1990,9:339-347
    86.Huang X, Madan A. CAP3:A DNA Sequence Assembly Program [J]. Genome Research,1999,9: 868-877
    87.Iwabuchi M, Koizuka N, Fujimoto H, et al. Identification and expression of the kosena radish (Raphanus sativus cv. Kosena) homologue of the ogura radish CMS-associated gene, orf138 [J]. Plant Mol Biol,1999,39:183-188
    88.Iwabuchi M, Kyozuka J, Shimamoto K. Processing followed by complete editing of an altered mitochondrial atp6 RNA restores fertility of cytoplasmic male sterile rice [J].EMBO J,1993,12: 1437-1446
    89. Johal G S, Briggs S P. Reductase activity encoded by the HMI disease resistance gene in maize [J]. Science,1992,258:985-987
    90. John D M, Francis C O, Odile M, et al. The crel and cre3 nematode resistance genes are located at homeologous loci in the wheat genome[J].Mol Plant Microbe Interact,2003,16:1129-1134
    91.Jones D A, Thomas C M, Hammond-Kosack K E, et al. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging [J].Science,1994,266:789-793
    92. Kadowaki K, Suzuki T, Kazama S. A chimeric gene containing the 5'portion of atp6 is associated with cytoplasmic male-sterility of rice [J].Mol Gen Genet,1990,224:10-16
    93.Kato H, Tezuka K, Feng Y Y, et al. Structural diversity and evolution of the Rf-1 locus in the genus Oryza [J].Heredity,2007,99:516-524
    94. Kazama T, Toriyama K. A pentatricopeptide repeat-containing gene that promotes the processing of
    aberrant atp6 RNA of cytoplasmic male-sterile rice [J].FEBS Lett,2003,544:99-102
    95.Kim H J, Triplett B A. Cotton fiber germin-like protein. I. Molecular cloning and gene expression [J].Planta,2004,218:516-524
    96. Komori T, Ohta S, Murai N, et al. Map-based cloning of a fertility restorer gene, Rf-1,in rice (Oryza sativa L.)[J]. Plant J,2004,37:315-325
    97. Kotera E, Tasaka M, Shikanai T. A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts [J].Nature,2005,433:326-330
    98.Koussevitzky S, Nott A, Mockler T C, et al. Signals from chloroplasts converge to regulate nuclear gene expression [J].Science,2007,316:715-719
    99. Levings C S III. Thoughts on cytoplasmic male sterility in cms-T maize [J]. Plant Cell,1993,5, 1285-1290
    100. Leyser H M O, Lincoln C A. Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiqutin-activating enzyme El [J].Nature,1993,364:161-164
    101. L'Homme Y, Brown G G. Organizational differences between cytoplasmic male sterile and male fertile Brassica mitochondrial genomes are confined to a single transposed locus [J]. Nucl Acids Res,1993,21:1903-1909
    102.L'Homme Y, Stahl R J, Li X Q, et al. Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene [J]. Current Genetics,1997,31 (4):325-335
    103. Li X, Qian Q, Fu Z, et al. Control of tillering in rice [J].Nature,2003,422:618-621
    104. Li X Q, Jean M, Landry B S, et al. Restorer genes for different forms of Brassica cytoplasmic male sterility map to a single nuclear locus that modifies transcripts of several mitochondrial genes [J]. Proc Natl Acad Sci USA,1998,95 (17):10032-1003
    105. Liu F, Cui X, Horner H T, et al. Mitochondrial Aldehyde Dehydrogenase Activity Is Required for Male Fertility in Maize [J].Plant Cell,2001,13:1063-1078
    106. Liu L, Guo W, Zhu X, et al. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L.[J].Theor Appl Gene,2003,106:461-469
    107. Liu X Q, Xu X, Tan Y P, et al. Inheritance and molecular mapping of two fertility-restoring loci for Honglian gametophytic cytoplasmic male sterility in rice (Oryza sativa L.) [J]. Mol Gen Genet, 2004,271:586-594
    108.Lurin C, Andres C, Aubourg S, et al. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis [J]. Plant Cell,2004,16:2089-2103
    109. Mackenzie S, McIntosh L. Higher plant mitochondria [J].Plant Cell,1999,11:571-586
    110. Manthey G M, McEwen J E. The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae [J].EMBO J,1995,14:4031-4043
    111.Manuel G, Claros P V. Computational Method to Predict Mitochondrially Imported Proteins and their Targeting Sequences [J].European Journal of Biochemistry,1996,241:779-786
    112. Martin G B, Brommmonschenkel S H, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato [J].Science,1993,262:1432-1436
    113.Meierhoff K, Felder S, Nakamura T, et al. HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs [J]. Plant Cell,2003,15:1480-1495
    114. Meng C M, Cai C P, Zhang T Z, et al. Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L. [J]. Plant Science,2009,176(3):352-359
    115.Minet M, Dufour M E, Lacroute F. Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs [J].Plant J,1992,2:417-422
    116. Miyamoto T, Obokata J, Sugiura M. Recognition of RNA editing sites is directed by unique proteins in chloroplasts:biochemical identification of cis-acting elements and trans-acting factors involved in RNA editing in tobacco and pea chloroplasts [J].Mol Cell Biol,2002,22:6726-6734
    117. Monna L, Kojima S, Sasaki T, et al. Genetic dissection of a genomic region for a quantitative trait locus,Hd3,into two loci,Hd3a an d Hd3b controlling heading date in rice [J].TheorAppl Genet, 2002,104:772-778
    118.Mulligan R M, Williams M A, Shanahan M T. RNA editing site recognition in higher plant mitochondria [J].J Hered,1999,90:338-344
    119. Nakamura T, Meierhoff K, Westhoff P, et al. RNA-binding properties of HCF152, an Arabidopsis PPR protein involved in the processing of chloroplast RNA [J].Eur J Biochem,2003,270: 4070-4081
    120. Nguyen T B, Giband M, Brottier P, et al. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers[J]. Theor Appl Genet,2004,109:167-175
    121. O'Toole N, Hattori M, Andres C, et al. On the expansion of the pentatricopeptide repeat gene family in plants [J].Mol Biol Evol,2008,25:1120-1128
    122.Okuda K, Myouga F, Motohashi R, et al. Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing [J].Proc Natl Acad Sci USA,2007,104:8178-8183
    123.Paterson A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis [J].Plant Mol Biol Rep,1993,11:122-127
    124. Reddy O U K, Pepper A E, Abdurakhmonov I, et al. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research [J]. J Cotton Sci,2001,5:103-113
    125. Saha D, Prasad A M, Srinivasan R. Pentatricopeptide repeat proteins and their emerging roles in plants [J]. Plant Physiol Biochem,2007,45:521-534
    126. Salone V, Rudinger M, Polsakiewicz M, et al. A hypothesis on the identification of the editing enzyme in plant organelles [J]. FEBS Lett,2007,581:4132-4138
    127. Sasaki T, Song J Y, Kogaban Y, et al. Toward cataloguing all rice genes:Large-scale sequencing of randomly chosen rice cDNAs from a callus cDNA library [J]. Plant J,1994,6:615-624
    128.Schmitz-Linneweber C, Williams-Carrier R, Barkan A. RNA immunoprecipitation and microarray analysis show a chloroplast Pentatricopeptide repeat protein to be associated with the 5'region of mRNAs whose translation it activates [J].Plant Cell,2005,17:2791-2804
    129. Schnable P S, Wise R P. The molecular basis of cytoplasmic male sterility and fertility restoration [J]. Trends Plant Sci,1998,3:175-180
    130. Shen X L, Guo W Z, Zhu X F, et al. Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers [J]. Mol Breed,2005,15:169-181
    131. Shikanai T. RNA editing in plant organelles:machinery, physiological function and evolution [J].' Cell Mol Life Sci,2006,63:698-708
    132. Siebert P D, Chenchik A, Kellogg D E, et al. An improved PCR method for walking in uncloned genomic DNA [J]. Nucleic Acids Res,1995,23:1087-1088
    133. Singh M, Brown G G Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region [J]. Plant Cell,1991,3:.1349-1362
    134. Singh M, Brown G G. Characterization of expression of a mitochondrial gene region associated with the Brassica "Polima" CMS:developmental influences [J]. Curr Genet,1993,24:316-322
    135. Singh M, Hamel N, Menassa R, et al. Nuclear genes associated with a single Brassica CMS restorer locus influence transcripts of three different mitochondrial gene regions [J].Genetics,1996,143: 505-516
    136. Small I, Fabrice N P, Claire L. Predotar:A tool for rapidly screening proteomes for N-terminal targeting sequences [J]. Proteomics,2004,4:1581-1590
    137. Small ID, Peeters N. The PPR motif-a TPR-related motif prevalent in plant organellar proteins [J]. Trends in Biochemical Sciences,2000,25:45-47
    138. Soderlund C, Humphray S, Dunham A, etal. Contigs built with fingerprints, markers and FPC V4.7 . [J]. Genome Res,2000,10:1772-1787
    139. Soderlund C, Longden I, Mott R. FPC:a system for building contigs from restriction fingerprinted clones [J].CABIOS,1997,13:523-535
    140. Song P, Allen R D. Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display [J].Biochim Biophys Acta,1997,1351:305-312
    141.Song W Y, Wang G L, Chen L L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21 [J].Science,1995,270:1804-1806
    142. Staub J E, Box J, Meglic V, et al. Comparison of isozyme and randim amplified polymo rphoc DNA data for determining interspecific variation in cucumber [J].Genet Resources and Crop Evolution, 1997,44(3):257-269
    143.Steinhauser S, Beckert S, Capesius I, et al. Plant mitochondrial RNA editing [J].J Mol Evol,1999, 48:303-312
    144. Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved inphotope riod sensitivity, encodes the alpha subunit of protein kinase CK2 [J].Proc Natl Acad Sci USA,2001,98: 7922-7927
    145. Tan X L, Tan Y L, Zhao Y H, et al. Identification of the Rf gene conferring fertility restoration of the CMS Dian-type 1 in rice by using simple sequence repeat markers and advanced inbred lines of restorer and maintainer [J].Plant Breed,2004,123:338-341
    146. Tang H V, Pring D R, Muza F R, et al. Sorghum mitochondrial orf25 and a related chimeric configuration of a male-sterile cytoplasm [J].Curr Genet,1996,29:265-274
    147. Tang H V, Pring D R, Shaw L C, et al. Transcript processing internal to a mitochondrial open reading frame is correlated with fertility restoration in male-sterile sorghum [J]. Plant J,1996,10: 123-133
    148. Thurau T, Kifle S, Jung C, et al. The promoter of the nematode resistance gene Hslpro-1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana [J].Plant Mol Biol,2003,52:643-660
    149. Tsuchiya N, Fukuda H, Sugimura T, et al. LRP130, a protein containing nine pentatricopeptide repeat motifs, interacts with a single-stranded cytosine-rich sequence of mouse hypervariable minisatellite Pc-1 [J].Eur J Biochem,2002,269:2927-2933
    150. Tsudzuki T, Wakasugi T, Sugiura M. Comparative analysis of RNA editing sites in higher plant chloroplasts [J]. J Mol Evol,2001,53:327-332
    151. Wang C B, Guo W Z, Cai C P, et al. Char-acterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii [J].Ulbrich Chin Sci Bull,2006,51:557-561
    152. Wang F, Stewart J M, Zhang J. Molecular markers linked to the Rf2 fertility restorer gene in cotton [J].Genome,2007,50:818-824
    153. Wang H M, Ketela T, Keller W A, et al. Genetic correlation of the orf2241atp6 gene region with Polima CMS in Brassica somatic hybrids [J]. Plant Mol Biol,1995,27:801-807
    154. Wang Z, Zou Y, Li X, et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing [J]. Plant Cell,2006,18:676-687
    155. Wang Z X, Yano M, Yamanouchi U, et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease desistance genes [J].Plant J,1999, 19:55-64
    156. Wen L, Chase C D. Pleiotropic effects of a nuclear restorer-of-fertility locus on mitochondrial transcripts in male-fertile and S male-sterile maize [J].Curr Genet,1999,35:521-526
    157. Willemsen V, Scheres B. Mechanisms of pattern formation in plant embryogenesis[J]. Annu Rev Genet,2004,38:587-614
    158.Williams-Carrier R, Kroeger T, Barkan A. Sequence-specific binding of a chloroplast pentatricopeptide repeat protein to its native group Ⅱ intron ligand [J].RNA,2008,14:1930-1941
    159. Williams P M, Barkan A. A chloroplast-localized PPR protein required for plastid ribosome accumulation [J]. Plant J,2003,36:675-686
    160. Wintz H, Hanson M R. A termination codon is created by RNA editing in the petunia atp9 transcript [J].Curr Genet,1991,19:61-64
    161.Yamamoto K, Sasaki T. Large scale EST sequencing in rice [J]. Plant Mol Biol,1997,35(1): 135-144
    162. Yamazaki H,Tasaka M, Shikanai T. PPR motifs of the nucleus-encoded factor, PGR3,function in the selective and distinct steps of chloroplast gene expression in Arabidopsis [J].Plant J,2004,38: 152-163
    163.Yano M, Katayose Y, Ashikari M, et al. Hdl, a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene [J].Plant Cell,2001,12:2473-2484
    164. Yao F Y, Xu C G, Yu S B, et al. Mapping and genetic analysis of two fertility restorer loci in the wild-abortive cytoplasmic male sterility systemof rice (Oryza sativa L.) [J].Euphytica,1997,98: 183-187
    165.Yin J, Guo W, Yang L, et al. Physical mapping of the fertility-restoring gene to a 100 kb region in cotton [J].Theor Appl Genet,2006,112:1318-1325
    166. Yoshimura S,Yamanouchi U, Katayose Y, et al. Expression of Xal,a bacterial blight-resistance gene in rice is induced by bacterial inoculation [J].Proc Natl Acad Sci USA,1998,95:1663-1668
    167. Zabala G, Gabay-Laughnan S, Laughnan J R. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize [J]. Genetics,1997, 147:847-860
    168. Zhang J F, Stewart J M. Inheritance and genetic relationships of the D8 and D2-2 restorer genes for cotton cytoplasmic male sterility [J]. Crop Sci,2001,41:289-294
    169. Zhang J F, Stewart J M. Identication of molecular markers linked to the fertility restorer genes for CMS-D8 in cotton (Gossypium hirsutum L.) [J].Crop Sci,2004,44:1209-1217
    170. Zhao G R, Liu J Y, Du X M. Molecular cloning and characterization of cotton cDNAs expressed in developing fiber cells [J]. Biosci Biotechnol Biochem,2001,65:2789-2793
    171.Zhao X, Wing R A, Paterson A H. Cloning and characterization of the majority of repititive DNA in cotton (Gossypium) [J].Genome,1995,38:1177-1188

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700