油菜EMS诱变群体的构建以及油脂代谢相关基因等位多态性与油脂品质关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是世界上重要的油料作物,含油量的提高和脂肪酸品质改良是当今油菜育种重要的目标。分子标记辅助选择育种(MMAPB)是提高作物农艺性状和种子品质性状的有效手段,现有的各种DNA分子标记的开发应用以及丰富的基因组和ESTs序列数据信息为遗传研究和分子标记辅助育种提供了极大的便利。人们对于模式植物拟南芥油脂合成相关基因功能的深入理解对于油菜品质育种具有极大的参考价值。
     然而据我们所知,目前几乎还没有关于油菜的油脂代谢相关基因位点的等位变异与种子脂肪酸成分积累的关系的研究报道。本文旨在研究那些偏向于在种子中表达,并且影响脂肪酸组分的关键基因位点在EMS诱导的M2群体中,以及54个地方栽培品种资源中的等位多态性,及其这些等位变异与种子品质,特别是不饱和脂肪酸含量之间的关系。研究的结果如下:
     1.利用甲基磺酸乙酯(EMS)溶液处理甘蓝型油菜双低品种“浙双72"种子,经田间M1代观察和M2代筛选及部分M3代验证,最终筛选到叶色、叶形、株高、茎色、花色、花瓣、雄性不育及开花期等性状发生明显变异的M2突变株;对M3种子的主要脂肪酸组分之间,以及脂肪酸组分与种子含油量进行了相关与回归分析,同时描述了各种脂肪酸组分和含油量的变异幅度与分布,提取了2558份包含突变性状的M2植株叶片的DNA。
     2.对基因FAD2、FAD6、FAD7和FAD8在甘蓝型油菜幼嫩种子和叶片中的转录水平差异作了分析,发现FAD2和FAD6在叶片和种子中转录水平无明显差异,而FAD7和FAD8基因更偏向于在叶片中转录。同时对6个FAD基因的12条BAC克隆序列和GeneBank的EST序列运用DNAStar5.0的MegAlign程序进行序列比对,结果以聚类分枝树的形式呈现,结果显示FAD3、FAD7和FAD8的序列相似度较高,FAD2的序列与FAD5和FAD6的序列处与不同的分枝,三者相似度较低。
     3.利用HRM技术分析FAD2基因的SNP变异,最终在比对区域统计出12个导致氨基酸序列变化的M2样品。在这12个样品中,、只有3个样品种子的油酸含量相对CK有显著提高,有6个油酸含量显著降低,有3个油酸含量与对照差异不明显。3个样品(代号529-3,1841-2和1823-4)种子油酸含量的升高可能与比对区域DNA序列的变异导致的FAD2酶蛋白氨基酸的突变有关。
     4.从拟南芥600多个与油脂合成和代谢相关基因位点中选出75个倾向于在种子中表达的基因来研究所选油菜地方种质资源的基因等位多态性,一共在上述75个基因上设计了150对引物,平均每个基因包含两对引物。在Tapitor和宁油7号两个油菜品种间进行筛选标记发现52对引物具有多态性,这些具有多态性的引物被当作ILP标记,在上述52个标记中挑出34个多态性较好的标记,这些标记被用来检测包含54个油菜地方栽培品种的油脂代谢基因的内含子的多态性。平均每对引物在覆盖的区域扩增出5.6个等位位点,分析油脂代谢相关基因的等位多态性与种子含油量和脂肪酸含量存在的相关性发现标记FAD7-ics11170(3/4)与种子中亚麻酸的积累相关,等位多态型FAD7-ics11170(3/4)-c与高亚麻酸含量相关,说明这个标记可以作为筛选高亚麻酸育种材料的有效手段。
     综上所述,本项研究描述了EMS诱导的M2群体和部分油菜地方品种中调控脂肪酸组成的基因位点的等位变异,以及这些等位变异与种子品质性状的关系。这些研究结论丰富了人们对于油菜种子油脂代谢分子机制的理解,并且为高不饱和脂肪酸含量分子标记辅助育种奠定了良好的基础。
Brassica oilseeds are important sources of edible oil in many parts of the world. Molecular Marker-Assisted Plant Breeding (MMAPB) is highly efficient in improving crop agronomic and seed quality traits. The availability of various kinds of DNA molecular markers and the sequence data of genomes and ESTs facilitate genetic research and MMAPB programs. Knowledge about the genes implicated in lipid biosynthesis acquired from the model plant Arabidopsis is useful in understanding the formation of seed oil in Brassicas.
     Nevertheless, little is known about allelic variations of the genes regulating lipid biosynthesis and their association with a certain kind of fatty acid accumulation in Brassica oilseeds. The current study was envisaged to identify the DNA polymorphisms of functional genes that are preferably expressed in seeds and are putatively important to the fatty acid composition among EMS-induced M2 individual plants as well as a collection of 54 local Brassica oilseed cultivars. The process of our research and the results are as followed:
     1. The ethyl methan sulfonate (EMS) was applied to treat the pure seeds of the 'double low'cultivar "Zhe-Shuang 72" (Brassca napus L.). The mutants with abnormal appearance of leaf color, branch number, plant height, stem or flower color, floral fertility and life cycle were observed in M1 population, screened in the M2 population and partly verified in the M3 population. In general, the mutants accounts for 8.46% of the total population in the M2 generation. Correlation analysis among the fatty acids and between the fatty acids and total oil content has been conducted in the M3 seeds. The variation degrees of the fatty acid components and oil content of the M3 seeds are described. A DNA pool from 2558 individual M2 plants were constructed for the analysis of allelic variations of the major genetic loci regulating grain quality traits. Materials with particular mutated traits are available for breeding projects targeting genetic improvement of oilseed rape.
     2. The comparison of the transcription level of the FATTY ACID DESATURATION genes as FAD2, FAD6, FAD7 and FAD8 between leaf and seed tissues revealed that FAD2 and FAD8 transcribed with similar level in seeds and leaves, whereas FAD7 and FAD8 preferably expressed in leaves to seeds. Alignment among sequences of the FAD genes indicated a higher similarity among FAD3, FAD7 and FAD8 genes. On the other hand, the sequences of FAD2, FAD5 and FAD6 were more different from each other and also diverged significantly from the group including the FAD3, FAD7 and FAD8 genes. Three primer pairs covering the coding region of FAD2 were used for High Resolution Melting (HRM) PCR and SNP detection.
     3. A total of 12 SNPs that gave rise to non-synonymous amino acid changes were identified on the basis of one-thousand M2 individual plants. Six of the corresponding mutants were characterized with lower oleic acid content, and three of the mutants demonstrated higher oleic acid content, whereas the other three mutants was not significantly different from the control in terms of oleic acid content.
     4. Polymorphic markers at the loci putative for the seed oil formation between two geographically different genotypes:the Chinese cultivar Ningyou-7 and the European cultivar Tapidor were systemically screened. These primer pairs (150) were designed based on 75 Brassica genes that were Arabidopsis orthologues implicated in the oil formation. A total of 52 out of the 150 primer pairs associated with 47 of the 75 genes showed polymorphisms between the two genotypes. The type of polymorphisms that could be detected on capillary electrophoresis images and their respective visual futures are described. Further,34 polymorphic markers were selected to scan allelic variations and rich DNA polymorphisms among the 54 Brassica oilseed cultivars were found. On the average, each primer pair resulted in 5.6 alleles at the region that was covered. The correlation between the alleles and seed quality traits revealed that the alleles of BnFAD7 were related to the variation of linolenic acid (C18:3) contents among the cultivars. The allele FAD7-ics11170 (3/4)-b that was significantly correlated with high linolenic acid content can be used as an efficient marker for the selection of breeding materials with high linolenic acid content.
     Taken together, we described the allelic variation of some loci that regulate seed fatty acid composition among an EMS-induced M2 population as well as a collection of Brassica oilseeds germplasm. Our results could be an enriching addition to the body of work that attempts to understand the accumulation of fatty acids in Brassica oilseeds. The start-up work to screen for alleles correlating with high content unsaturated fatty acids laid a solid foundation for MMAPB project towards the improvement of the seed quality of Brassica crops.
引文
Ekharde, Ziegler J, Filer J R,闻芝梅,陈君石主译.现代营养学.北京:人民卫生出版社,1998,7:44-56
    陈苇,李劲峰,董云松,李根泽,寸守铣,王敬乔.甘蓝型油菜FAD2基因的RNA干扰及无筛选标记高油酸含量转基因油菜新种质的获得.植物生理与分子生物学报,2006,32(6):665-671
    戴晓峰,肖玲,武玉花,吴刚,卢长明.植物脂肪酸去饱和酶及其编码基因研究进展.植物学通报,2007,24(1):105-113
    董媛媛,俞咪娜,李小白,徐攀峰,崔海瑞,张明龙.EST-SSR和RAPD标记检测甘蓝型油菜遗传多样性.核农学报,2008,22(5):611-616
    邓婧.甘蓝型油菜FAD2基因差异表达与脂肪酸合成的相关性分析.湖南农业大学硕士学位论文.2008,47-48
    傅寿仲.中国油菜品质育种进展.江苏农业学报.1999,15(4):214-246
    傅廷栋,刘后利.科学论文选集.北京:北京农业大学出版社,1994
    葛正龙.长链脂肪酸醇氧化酶基因在油菜不同组织中的表达.遵义医学院学报,2003,26(3): 213-215
    官春云.油菜品质改良和分析方法.长沙:湖南科学技术出版社,1985
    官春云.油菜高油酸遗传育种研究进展.作物研究,2006,1:1-8
    韩继祥.甘蓝型油菜含油量的遗传研究.中国油料,1990,2:1-6
    贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10
    瞿礼嘉,顾红稚,胡苹等.现代生物技术导论.北京:高等教育出版社;德国:施普林格出版社,1999
    黎裕,贾继增,王天宇.分子标记的种类及其发展.生物技术通报.1999,4:19-2
    李云昌,胡琼,梅德圣,李英德,徐育松.选育高含油量双低油菜品种的理论与实践,中国油料作物学报,2006,28:92-9
    刘定富,刘后利.甘蓝型油菜脂肪酸成份的基因作用形式和效应.作物学报,1990,16(3):193-199
    刘后利.甘蓝型油菜的粒色遗传和高油分育种的研究.傅廷栋,刘后利,科学论文选集.北京:北京农业大学出版社,1994
    刘后利.油菜的遗传和育种.上海科学技术出版社,1985
    刘勋甲,郑用琏,尹艳.遗传标记的发展及分子标记在农作物遗传育种中的应用遗传标记的发展及分子标记的检测技术.湖北农业科学,1998,1:33-5
    卢善发.植物脂肪酸的生物合成与基因工程.植物学通报,2000,17(6):481-491
    彭学贤.植物分子生物技术应用手册.北京,化学工业出版社,2006,2:284-291
    戚存扣,浦惠明,傅寿仲.甘蓝型油菜F2群体主要脂肪酸含量间的相关与回归分析.江苏农业学报,1993,9(4):11-15
    石东乔,周奕华,陈正华.植物脂肪酸调控基因工程研究.生命科学,2002,14(5):291-295
    石东乔,周奕华,张丽华,刘桂珍,陈正华.农杆菌介导的油菜脂肪酸调控基因工程研究.技术通讯,2001,2:1-7
    宋伟,杨慧萍,沈崇钰,曹玉华,李学臣.食品中的反式脂肪酸及其危害.食品科学,2005,26(8):500-504
    孙加焱,涂进东,范叔味,吴建国,石春海.甘蓝型油菜理化诱变和突变体库的构建.遗传,2007,29(4):475-482
    刘泽,赵仁渠.空间条件对油菜诱变效果的研究及突变类型的观察与筛选.中国油料作物学报,2000,22(4):6-8
    覃文,朱水芳.转基因油料作物.中国油脂,2003,28(5):48-52
    王贵春,杨光圣.油菜高含油量育种研究进展.安徽农业科学,2007,35(18):5373-5375
    王汉中.发展油菜生物柴油的潜力、问题与对策.中国油料作物学报,2005,27(2):74-7
    王幼平,曾宇,罗鹏.植物脂肪酸代谢工程研究进展.中国油料作物学报,1998,20(4):88-92
    邬贤梦,官春云,李枸.油菜脂肪酸品质改良的研究进展.作物研究,2003,17(3):152-158
    武玉花,卢长明,吴刚.植物芥酸合成代谢与遗传调控研究进展.中国油料作物学报,2005,2(2):82-86
    肖能遑.世界油料及制品产销动态.中国油料,1997,19(3):77-81
    熊兴华,官春云,李枸.甘蓝型油fad2基因片段的克隆和反义表达载体的构建.中国油料作物学报.2002,24(2):1-4
    熊兴华,官春云,李家洋.甘蓝型油菜FAD2基因cDNA片段的克隆和序列分析.湖南农业大学学报.2002,28(2):97-99
    余叔文,汤章城主编.植物生理与分子生物散(第二版),北京:科学出版社,1999,721-738
    张垚,李云昌,梅德圣,胡琼.油菜油脂研究进展.植物学通报,2007,24(4):435-443
    张宇航,鲍时翔等.脂肪酸脱饱和的应用进展.生物工程进展,2001,21(2):46-49
    周伟军,徐光华,沈惠聪.油菜高油分育种的前景与问题探讨,科技通报,1995,6(11):361-364
    周永明,刘后利.甘蓝型油菜种子中几种主要脂肪酸含量的遗传.作物学报,1987,13(1):1-10
    周延清.遗传标记的发展.生物学通报,2000,35(5):17-18
    赵向前,吴为人.水稻ILP标记遗传图谱的构建.遗传,2008,30(2):225-230
    张书芬,傅廷栋,马朝芝.3种分子标记分析油菜品种间的多态性效率比较. 中国油料作物学报,2005,27(2):20-2
    种康,瞿礼嘉译.C.W.迪芬巴赫,G.S.德弗克斯勒编.PCR技术实验指南.北京,化学工业出版社,2006,3:133-174
    吴建国,石春海,张海珍,樊龙江.应用近红外反射光谱法整粒测定小样品油菜籽含油 量的研究.作物学报,2002,28(3):421-425
    周奕华,陈正华.植物种子中脂肪酸代谢途径的遗传调控与基因工程.植物学通报,1998,15(5),16-23
    Arondel V, Lemleux B, Hwang I, Gibson S, Goodman HM, Somewille CR. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science,1992,258: 1353-1355
    Bachem CWB, Oomen RJF, Visser RGF. Transcript imaging with cDNA-AFLP:A step-by-step protocol. Plant Molecular Biology Reporter,1998,16:157-173
    Barret P, Delourme R, Renard M, Domergue F, Lessire R, Delseny M, Roscoe TJ. A rapeseed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid. Theoretical and Applied Genetics,1998,96:177-186
    Barret P, Delourme R, Brunel D, Jourdren C, Horvais R, Renard M. Low linolenic acid level in rapeseed can be easily assessed through the detection of two single base substitutions in FAD3 genes. Proceeding of the 10th international rapeseed congress, Canberra, Australia,1999,46:132-142
    Barret P, Delourme R, Foisset N, Renard M. Development of a SCAR marker for molecular tagging of the dwarf Brezh(Bzh) gene in Brassica napus L, Theoretical and Applied Genetics,1998,97:828-833
    Bartkowiar, Broda I. Inheritance of fat content and fatty acid com position in seed of zero erucic acid winter rape.In:GCIRC. Proceedings of 5th International Rapeseed Congress. GCIRC.1978,119-123
    Bleibaum JL, Genez A, Fayet-Faber J. In abstracts national plant lipid symposium. Minneapolis, MN,1993,164-171
    Bouchez D, Hofte H. Functional Genomics in Plants. Plant Physiology,1998,118:725-732
    Broun P, Boddupaili S, Somerville C. A bifunctional oleate 12-hydroxylase:desatuarase from Lesqueralla fendlei.Plant Journal,1998,13:210-210
    Browse J, McCourt PJ, Somerville CR. A mutant of Arabidopsis lacking a chloroplast-specific lipid. Science,1985,227:763-765
    Browse J, McCourt PJ, Somerville CR. A mutant of Arabidopsis deficient in C18:3 and C16:3 leaf lipids. Plant physiology,1986,81:859-864
    Browse J, Somerville CR. Plant Lipids:Metabolism, Mutants and Membranes.Science,1991, 252:80-87
    Brunel D, Froger N, Pelletier G. Development of amplified consensus genetic marker (ACGM) in Brassica napus from Arabidopsis thaliana Sequences of known biological function. Genome,1999,42:387-402
    Buhr T, Sato S, Ebrahim F, Xing A, Zhou Y, Mathiesen M, Sehweiger B, Kinney A, Staswick P, Clemente T. Ribozyme termination of RNA transcripts down regulates seed fatty acid genes in transgenic soybean. Plant Journal,2002,30:155-163
    Cahoon EB, Becker CK, Shanklin J, Ohlrogge JB. cDNAs for isoforms of the delta 9-stearoyl-cayl carrier protein desaturase from Thunbergia alata endosperm. Plant Physiology,1994,106:807-808
    Chapman KD, Austin-Brown S, Sparace SA, Kinney AJ, Ripp KG, Pirtle IL, Pritle RM. Transgenic cotton plants with inereased seed oleic acid content. Journal of the American Oil Chemists Society,2001,78:941-947
    Chen J, Dellaportas. Urea based plant DNA minipreparation. In:Freeling M, Walbot V.The maize hand book. Springer Berlin Heidelberg, New York,1993,526-527
    Cheung WY, Landry BS, Raney P, Pakow GFW. Molecular mapping of seed quality traits in Brassica juncea (L.)Czern and Coss. Acta Horticulture,1998,459,139-147
    Cohen Z, Shiran D, KhozinI Heimer Y. Fatty acid unsaturation in the red algaporphyridium ruentum Biochimica et Biochimbiophys acta,1997,1344(1):59-64
    Colbert T, Till BJ, Rachel T, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S. High-throughput screening for induced point mutation. Plant Physiology, 2001,126:480-484
    Collados R, Andreu V, Picorel R, Alfonso M. A light-sensitive mechanism differently regulates transcription and transcript stability of x3 fatty-acid desaturases (FAD3, FAD7 and FAD8) in soybean photosynthetic cell suspensions. FEBS Letters,2006,580: 4934-4940
    Davies HM, Anderson L, Fan C, Hawkins DJ. Developmental induction, purification and further characterization of C12:0-ACP thioesterase from immature cotyledons of Umbellularia california. Arch Biochemistry Biophysical,1991,290(1):37-45
    Dehesh K, Jones A, Knutzon DS, Voelker TA. Production of high levels of C8:0 and C10:0 fatty acids in transgenic canola by over expression of ChFatB2, a thioesterase cDNA from Cuphea hooker iana Katayoon. Plant Journal,1996,9(2):167-172
    Dorrell DC, Downey RK. The inheritance of erucic acid content in rapeseed(Brassica campestris). Canada Jounal of Plant,1964,44:499-504
    Downey RK, Craig BM. Genetic control of fatty acid biosynthesis in rapeseed(Brassica napus L.). Journal of the American Oil Chemists Society,1964,475-478
    Dreyer F, Frauen M, Leckband G, Milkowski C, Jung C. An EMS population of Brassica napus L. for TILLING. The 12th international rapeseed congress, Wuhan,2007, 2:134-137
    Dyer JM, Mullen RT. Immunocytological localization of two plant fatty acid desaturase in the endoplasimic reticulum. FEBS Letters,2001,494:44-47
    Ecke W, Uzunova M, Weissleder K. Mapping the genome of rapeseed(Brassica napus L.) 2. Localization of genes controlling erucic acid synthesis and seed oil content. Theoretical and Applied Genetics,1995,91:972-977
    Erali M, Voelkerding KV, Wittwer, Carl T. High resolution melting applications for clinical laboratory medicine. Experimental and Molecular Pathology,2008,85:50-58
    Four M, Barrett P, Rennard M. The two genes homologous to Arobidopsis FAE1 co-segregate with the two loci governing erucic acid content in Brassica napus. Theoretical and Applied Genetics,1998,96:852-858
    Fox BG, Shanklin J, Somerville C, Miinck E. Stearoyl-acyl carrier protein △9 desaturase from Ricium communis is a dirronoxo protein. Proceedings of theNational Academy of Science, USA.1993,90:2486-2490
    Garcia-Diaz MT, Martinez-Rivas JM, Mancha M. Temperature and oxygen regulation of oleate desaturation in developing sunflower(Helianthus annuus) seeds. Physiological plantarum,2002,114(l):344-349
    Garces R, Sarmiento C, Mancha M. Temperature regulation of oleate desaturase in sunflower (Helianthus annuus L.) seeds. Planta,1992,186:461-465
    Gibson S, Arondel V, Iba K, Somerville CR. Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant physiology, 1994,106:1615-1621
    Gibson UEM, Heid CA, William PM.A Novel Method for Real Time Quantitative RT-PCR. Genome Research,1996,6:995-1001
    Graham R, Liew M, Meadows C, Lyon E, Wittwer CT. Distinguishing different DNA heterozygotes by high-resolution melting. Clinical Chemistry,2005,51(7):1295-1298.
    Grayburn WS, Collins CG. Hildebrand DF. Fatty acid alteration by a delta-9 desaturase in transgenic tobacco tissue. Biotechnology,1992,10(6):675-678
    Grechkin AN, Tarchevsky LA. The lipoxygenase signaling system. Russian Journal of Plant Physiology,1999,46(1):114-123
    Guan CY, Chen SY, Li X. Preliminary report of breeding for high oleic acid content in Brassica napus. In:Procedings of international symposium on rapeseed science. New York:Science Press,2001.47:175-179
    Gundry CN, Dobrowolski SF, Martin YR, Robbins TC, Nay LM, Boyd N, Coyne T, Wall MD, Wittwer CT, Teng DH. Base-pair neutral homozygotes can be discriminated by calibrated high-resolution melting of small amplicons, Nucleic Acids Research,2008, 36(10):3401-3408
    Gutierrez BFH, Lavado RS, Porcelli CA. Note on the effects of winter and spring water logging on growth, chemical composition and yield of rapeseed. Field Crops Research, 1996,47,2-3:175-179
    Haberer G, Mader MT, Kosarev P, Spannagl M, Li Y, Mayer KFX. Large-scale cis-element detection by analysis of correlated expression and sequence conservation between Arabidopsis and Brassica oleracea, Plant Physiology,2006,142:1589-1602
    Heinz E. Biosynthesis of polyunsaturated fatty acids in Lipid metabolism in plants. T.S.Moore (Boca Raton, FL:CRC Press),1993,33-90
    Henikoff S, Comai L. Single nucleotide mutations for plant functional genomics. Annual Review PlantBiology,2003,54:375-401
    Heppard EP, Kinney AJ, Stecca KL, Miao GH. Developmental and growth temperature regulation of two different microsomal ω-6 desaturase genes in soybeans. Plant Physiology,1996,110:311-319
    Hitz WD, Carlson TJ, Booth R, Kinney AJ, Stecca KL, Yadav NS. Cloning of a higher plant plastidω-6 fatty acid desaturase cDNA and its expression in cyanobacterium. Plant Physiolgy,1994,105:635-64
    Hitz WD, Yadaw NS, Rciter RS. Reducing polyunsaturation in oils of transgenic canola and soybean.Kader J C, Mazliak P. Plant Lipid Metabolism. Wilmington:Kluwer Academic Publishers,1995,506-508
    Hofte H, Dwsprez T, Amselem J, Chiapello H, Caboche M. An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana. Plant journal,1993,4(6):1051-1061
    Horiguchi G, Iwakawa H, Kodama H. Expression of gene for plastid omega-3 fatty acid desaturase and changes in lipid and fatty acid composition sin light and dark-grown wheat leaves. Plant Physiology,1996,96:275-283
    Hu J, Struss D, Quiros CF. SCAR and RAPD marker associated with 18-carbon fatty acid in rapeseed (Brassica napus).Plant Breeding,1999,118:145-150
    Hu XY, Gillbert MS, GuPta M. Mapping of the loci controlling oleic and linoleic acid contents and development of a fad2 and fad3 allele speeific markers in canola (Brassica napus L.). Theoretical and Applied Genetics,2006,113:497-507
    Iba K, Glbson S, Nishiuchi T, Fuse T, Nishimurs M, Arondel V, Hugly S, Somerville C.A gene encoding a chloroplast omega-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. Journal of Biology Chemistry,1993,268(32),24099-24105
    Ibolya H, Torok Z, Vigh L, Kates M. Lipid hydrogenation induces elevated 18:1-CoA desaturase activity in Candida lipolytica microsomes. Biochimical et Biophysical Acta, 1991,1085(1):126-130
    Jako C, Kumar A, Wei YD, Zou JT, Barton DL, Giblin ME, Covello PS, Taylor DC. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiology,2001, 126:861-874
    Javidfar F, RipleyVL, Roslinsky V, Zeinali H, Abdmishani C. Identification of molecular markers associated with oleic and linolenic acid in spring oilseed rape(Brassica napus). Plant Breeding,2006,125:65-71
    Jensen CR, Mogensen VO, Mortensen G, Fieldsend JK, Milford GFJ, Andersen MN, Thage JH. Seed glusosinolate, oil and protein contents of field-grown rape(Brassica napus L.) affected by soil drying and evaporative demand. Field Crops Research,1996,47:93-105
    Jiang L, Becker HC. Inheritance of apetalous flowers in a mutant of oilseed rape. Crop Science, 2003,43:508-510
    Jourdren C, Barret P. Specific molecular marker of the genes controlling linolenic acid content in rapeseed. Theoretical and Applied Genetics,1996,93:521-518
    Jourdren C, Barret P, Horvais R, Delourme R Renard M. Identification of RAPD markers linked to linolenic acid genes in rapeseed. Euthytica,1996,90:351-357
    Jourdren C, Barret P, Horvais R, Foisset N, Delourme R,Renard M. Identification of RAPD markers linked to the loci controlling erucic acid level in rapeseed. Molecular Breeding, 1996,2:61-71
    Kearns EV, Hugly S, Somerville CR. The role of cytochrome b, in a 12 desaturation of oleic acid by microsomes of safflower (Carthamus tinctorius L.). Archives of Biochemistry Biophysics,1991,284:431-436
    Kim CS, Lee CH, Shin JS.Simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP.Nucleic Acids Research,1997,5:14-21
    Kinney AJ.Development of genetically engineered soybean oils for food applications. Journal of food lipids,1996,3:273-292
    Kinney AJ. Genetic modification of the storage lipids of plants. Current Opinion Biotechnology,1994,5(2):144-151
    Kirk JTO, Hurlstone CJ. Variation and inheritance of erucic acid content in Brassica juncea. Zeitschrift fur Pflanzenzuchtung,1983,90(4):331-338
    Knutzon DS, Hayes TR, Wyrich A, Xiong H, Davies HM, Voelker TA. Lysophosphaticlic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2 position of triacylglycerols in lauric rapeseed oil and can increase total laurate levels. Plant Physiology,1999,120(3):739-746
    Knutzon DS, Thompson GA, Radke SE, Johnson WB, Knauf VC, Krid IJC. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proceedings of the National Academy of Science, USA,1992,89 (7):2624-2628
    Krzymanski J, Downey RK. Inheritance of fatty acid corn position in winter forms of rapeseed (Brassica napus). Canada Journal of Plant Science,1969,49:313-319
    Kubis SE, Pike MJ, Everett CJ, Hill LM, Rawsthome S. The import of phosphoenolpyruvate by plastids from developing embryos of oilseed rape(Brassica napus L.) and its potential as a substrate for fatty acid synthesis. Journal of Experimental Botany,2004, 55:1455-1462.
    Lassner MW, Lardizabal K, Metz JG. A Jojoba β-Ketoacyl-COA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell,1996; 8:281-292
    Liang P, Averboukh L, Keyomarsi K, Sager R and Pardee A B.Differential display and cloning of messenger RNAs from human breast cancer versus mammary epithelial cells. Cancer Research,1992,52:6966-6968
    Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clinical Chemistry,2004,50 (7):1156-1164.
    Lindqvist Y, Huang WJ, Schneider G, Shanklin J. Crystal structure of a △9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other diiron proteins. EMBO Journal,1996,15:4080-4092
    Lionneton E, Ravera S, Sanchez L, Aubert G, Deloume R, Qchatt S. Development of an AFLP-based linkage map and localization of QTLs for seed fatty acid content in condiment mustard (Brassica juncea). Genome,2002,45:1203-1215
    Liu Q, Singh SP, Green AG. High-stearic and high-oleic cottonseed oils produced by hp RNA-mediated post transcriptional gene silencing. Plant Physiology,2002,129:1732-1743
    Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park BS, Choi SR, Lim YP, Meng J.Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics,2007, 177:2433-2444
    Los DA, Murata N. Structure and expression of fatty acid desaturases. Biochimica et Biophysics Acta (BBA),1998,1394(1):3-15
    Matsuda O, Sakamoto H, Hashimoto T and Iba K. A Temperature-sensitive mechanism that regulates post-translational stability of a plastidial omega-3 fatty acid desaturase (FAD8) in Arabidopsis leaf tissues. The Journal of Biological Chemistry,2005, 280(5):3597-3604
    McCallum CM, Comai L, Greene EA, Henikoff S. Targeting induced local lesions in genomes (TILLING) for plant functional genomics, Plant Physiology,2000,123:439-442
    McCartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, McNew JA, Mullen RT. Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxyl termini. Planta,2004,37:156-173
    McConn M, Hugly S, Somerville C, Browse J. A mutation at the fad8 locus of Arabidopsis identifies a second chloroplast omega-3 desaturase. Plant Physiology,1994, 106:1609-1614
    Mikkilineni V, Rocheford TR. Sequence variation and genomic organization of fatty acid desaturase-2(FAD2)and fatty acid desaturase-6(FAD6) cDNAs in maize. Theoretical and Applied Genetics,2003,106:1326-1332
    Montgomery J, Wittwer CT, Palais R, Zhou L. Simultaneous mutation scanning and geno-typing by high-resolution DNA melting analysis. Nature Protocols,2007,2(1):59-66.
    Muruta N, Wada H. Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochemistry Journal,1995,308:1-8
    Newman T, Bruijn FJ, Green P, Keegstra K, Kende H, McIntosh L, Ohlrogge J, Raikhel N, Somerville S, Thomashow M, Retzel E, and Somerville C. Genes Galore:A Summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiology,1994,106(4):1241-1255
    Nishida I, Beppu T, Matsuo T, and Murata N. Nucleotide sequence of a cDNA clone encoding a precursor to stearoyl-(acyl-carrier-protein) desaturase from spinach, Spinacia oleracea. Plant Molecular Biology,1992,19:711-713
    Nishiuchi T, Nishimura M, Arondel V, and Iba K. Genomic nucleotide sequence of a gene encoding a microsomal omega-3 fatty acid desaturase from Arabidopsis thaliana.Plant Physiology,1994,105(2):767-768
    Nishiuchi T, Nakamura T, Abe T. Tissue-specific and light responsive regulation of the promoter region of the Arabidopsis thaliana chloroplast omega-3 fatty acid desaturase gene. Plant Molecular Biology,1995,29:599-609
    Nishizawa OI, Fujii T, Azuma M, Sekiguchi K, Murata N, Ohtani T and Toguri T. Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nature Biotechnology,1996,14(10):1003-1006
    Osborn TC, Kole C, Parkin IA, Sharpe AG, Kuiper M, LydiateDJ, Trick M.Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics, 1997,146:1123-1129
    O'Neill CM, Gill S, Hobbs D, Morgan C, Bancroft I. Natural variation for seed oil composition in Arabidopsis thaliana. Phytochemistry,2003,64:1077-1090
    Ohlrogge JB, Browse J. Lipid Biosynthesis. Plant Cell,1995,7:957-970
    Ohlrogge JB. Design of new plant products:engineering of fatty acid metabolism. Plant Physiology,1994,104:821-826
    Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J. Arabidopsis fad2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell,1994, 6:147-158
    Oleykowski CA, Bronson Mullins CR, Godwin AK, Yeung AT. Mutation detection using a novel plant endonuclease. Nucleic Acids Research,1998,26:4597-4602
    Panpoom S, Los DA, Murata N. Biochemical characterization of a △12 Acyl-lipid desaturase after over expression of the enzyme in Eseheriehia coli. Biochemical et Biophysica Acta,1998,1390:323-33
    Piazza GJ, Foglia TA. Rapeseed oil for oleochemical uses. European journal of Lipid Science Technology,2001,103:405-454
    Polashock JJ, Chin CK, Martin CE. Expression of the yeast △9 fatty acid desaturase in Nicotiana tabacum. Plant Physiology,1992,100:894-901.
    Pollard MR, Anderson L, Fan C, Hawkins DJ. A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia California. Archives of Biochemistry Biophysics,1991,284(2):306-312
    Quiroz D, Mithen R. Molecular markers for low-glucosinolate alleles in oilseed rape (Brassica napus L.). Molecular Breeding,1996,2:277-281
    Rajcan I, Kasha J, Kott LS, and Beversdorf WD. Detection of molecular marker associated with linolenic and erucic acid levels in spring rapeseed(Brassica napus L.). Euphytica, 1999,105:173-181
    Raquel C, Vanesa A, Rafael P, Miguel A. A light-sensitive mechanism differently regulates transcription and transcript stability of ω3 fatty-acid desaturases (FAD3, FAD7 and FAD8) in soybean photosynthetic cell suspensions. FEBS Letters,2006,580: 4934.4940
    Reddy AS, Muccio MI, Gross LM. Isolation of △6 desaturase gene from the cyanobacterium synechocystis sp.stra in PCC6803 by gain of function expression in Anabaenasp strain. Plant Molecular Biology,1993,27:293-300
    Reddy AS, Thomas TL. Expresion of a cyanobacterial △6-desaturase gene results in y-linolenic acid production in transgenic plants. Nature Biotechnology,1996,14:639-642
    Reed GH, Kent JO, Wittwer CT. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics,2007,8(6):597-608.
    Reed GH, Wittwer CT. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clinical Chemistry,2004,50 (10):1748-1754.
    Robbelen G. Selection for oil quality in rapeseed In:Lupton FGH. Further experiments on photosynthesis and translocation in wheat. The way ahead in plant breeding,1972, 207-214
    Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J. Targeting of the Arabidopsis homomeric acetyl-coenzyme a carboxylase to plastids of rapeseeds. Plant Physiology, 1997,113:75-81
    Roughan G, Slack R. Glycerolipid synthesis in leaves. Trends in Biochemical Sciences,1984, 9(9):383-386
    Sayanova D, Smith MA, Lapinskas P, Stobart AK, Dobson G, Christie WW, Shewry PR, Napier JA. Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of △6 desaturated fatty acids in transgenic tobacco. Proceeding of the National Academy of Science, USA, 1997,94:4211-4216
    Scheffler JA, Sharpe AG. Desaturase mutagen families of Brassica napus arose through genome duplication. Theoretical and Applied Genetics,1997,94:583-591
    Schierholt A, Becker HC, Ecke W. Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). Theoretical and Applied Genetics,2000,101:897-901
    Schierholt A, Rucker B, Becker HC. Inheritance of high oleic acid mutations in winter oilseed rape (Brassica napus L.). Crop Science,2001,41:1444-1449
    Schwartzbeck JL, Jung SK, Abbott AG, Mosley E, Lewis S, Pries GL, Powell GI. Endoplasmic oleoyl-PC desaturase references the second double bond. Phytochemistry,2001, 57:643-652
    Shah SA, Ali I, Rahman K.'Abasin-95', a new oilseed rape cultivar developed through induced mutations. Mutation Breeding Newsletter,2001,45:3-4
    Shanklin J, Somerville C. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proceedings of the National Academy of Science, USA,1991,88(6):2510-2514
    Shenk JS, Westerhaus MO. New standardization and calibration procedures for NIRS analytical systems. Crop Science,1991,31:1694-1696
    Si P, Rodney JM, Nick G, David WT. Influence of genotype and environment on oil and protein concentrations of canola (Brassica napus L.) grown across southern Australia. Australia Journal of Agriculture Research,2003,54:397-407
    Skriver L, Thompson JGA. Temperature-induced changes in fatty acid unsaturation of Tetrahymena membranes do not require induced fatty acid desaturase synthesis. Biochemica et Biophysica Acta,1979,572:376-381
    Slocombe SP, Piffanelli P, Fairbairn D, Bowra S, Hatzopoulos P,Tsiantis M, Murphy DJ. Temporal and tissue-specific regulation of a Brassica napus stearoyl-acyl carrier protein desaturase gene. Plant Physiology,1994,104 (4):1167-1176
    Smith MA, Cross AR, Jones OTG, Griffiths WT, Stymne S, Stobart K. Electron-transport components of the 1-acyl-2oleoyl-glycero-3-phosphocholine A-desaturase in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons. Biochemistry Journal,1990,272:-23-29
    Stoutjesdijk P, Hurlstone C, Singh SP, Green A. High oleic Australian Brassica napus and B.juncea varieties produced by co-suppression of endogenous delta-12 desaturase. Biochemical Society Transactions,2000,28:938-940
    Stukey JE, Medonough VM, Martin. CE. The OLE1 gene of Saccharomyces cerevisiae encoding the △9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. Journal of Biology Chemistry,1990, 265(33):20144-20149
    Thomashow MF, Browse J. Plant cold tolerance.In:Shinozaki K, Yamaguchi SK (Eds).Molecular responses to cold, drought, heat and salt stress in higher plants. London:RG Landes Company,1999,61-80
    Thompson GA, Scherer DE, Foxall S, Kenny JW, Young HL, Shintani DK, Kridl JC, Knauf VC.Primary structures of the precursor and mature forms of stearoylacyl carrier protein desaturase from safflower embryos and requirement of ferredoxin for enzyme activity. Proceedings of the National Academy of Science, USA,1991,88:2578-2582
    Topfer R, Martini N. Engineering of crop plants for industrial traits. Plant Physiology,1994, 143:416-425
    Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ,Vigouroux M, Trick M, Bancroftb L. Comparative genoomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell,2006,18:1348-1359
    U N. Genome-analysis in Bassica with special reference to the experimental formation of B. napus and its peculiar mode of fertilization. Japanese Journal of Botany,1935,7: 389-452
    Udall JA, Wendel JF.Polyploidy and crop improvement. Crop Science,2006,46:3-13
    Uzunova M, Ecke W, WeiBleder K, Ro"bbelen G. Mapping the genome of rapeseed (Brassica napus L.). In:Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theoretical and Applied Genetics,1995,90:194-204
    Vandersteen JG, Bayrak-Toydemir P, Palais RA, Wittwer CT. Identifying common genetic variants by high-resolution melting. Clinical Chemistry,2007,53(7):1191-1198
    Wada H, Combos Z, Muruta N. Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature,1990,347:200-203
    Wallis JG, Browse J. Mutants of Arabidopsis reveal many roles of membrane lipids. Journal of Lipid Research,2002,41:254-278
    Wang N, Wang YJ, Tian F, King GJ, Zhang CY, Long Y, Shi L, Meng J L. A functional genomics resource for Brassica napus:development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytologist,2008,180 (4):751-765
    Wang X, ZhaoX, Zhu J, Wu W. Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in Rice (Oryza sativa L.). DNA Research,2006, 12:1-11
    Williams JP, Imperal V, Khan MU, Hodhon JN. The role of phosphatidylcholine in fatty acid exchange and desaturation in Brassica napus L. leaves. Biochemistry,2000, 349:127-133
    Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-resolution genotyping by amplicon melting analysis using LCGreen. Clinical Chemitry,2003,49:853-860
    Woyke T. Changes in fatty acid composition of seed oil of rape hybrid due to decreasing proportional of erucic acid. Pro First rapeseed congress, Giessen, West Germany,1974, 4:93-98
    Wu JG, Shi CH, Zhang HZ. Partitioning genetic effects due to embryo, cytoplasm and maternal parent for oil content in oilseed rape (Brassica napus L.). Genetic Molecular Biology, 2006,29:533-538
    Yadav NS, Wierzbicki A, Aegerter M, Caster CS, Perez-Grau L, Kinney AJ, Hitz WD, Booth JR, Schweiger B, Stecca KL, Allen SM, Blackwell M, Reiter RS, Carlson TJ, Russell SH, Feldmann KA, Pierce J, Browse J. Cloning of higher plant omega-3 fatty acid desaturases, Plant Physiology,103(2):467-476
    Yin H, Li S, Zhao X. cDNA microarray analysis of gene expression in Brassica napus treated with oligochitosan elicitor. Plant Physiology and Biochemitry,2006,44(11-12):910-916
    Zhao JY, Heiko CB, Zhang DQ. Oil content in a European×Chinese rapeseed population:QTL with additive and epistatic effects and their genotype-environment interactions. Crop Science,2005,45:51-59
    Zhao Y, Wang ML, Zhang YZ, Du LF, Pan T. A chlorophyll-reduced mutant in oilseed rape, Brassica napus, or utilization in F1 hybrid production. Plant Breeding,2000, 119:131-135
    Zhou L, Myers AN, Vandersteen JG, Wang L, Wittwer CT. Closed-tube genotyping with unlabeled oligonucleotide probes and a saturating DNA dye. Clinical Chemistry,2004, 50(8):1328-1335.
    Zhou L, Wang L, Palais R, Pryor R, Wittwer CT. High-resolution DNA melting analysis for simultaneous mutation scanning and genotyping in solution. Clinical Chemistry,2005, 51 (10):1770-1777.
    Zhuang H, Hamliton-Kemp TR, Andersen RA, Hildebrand DF. The impact of alteration of polyunsaturated fatty acid levels on C6-aldehyde formation of Arabidopsis thaliana leaves. Plant Physiology,1996,111:805-812
    Zou J, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC. Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2acyl-transferase gene. Plant Cell,1997,9:909-923

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700