四倍体鲫鲤BAC文库构建及其演化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异源四倍体鲫鲤(Allotetraploid crucian-carp,简称AT)是通过红鱼即(Carassius auratus red var.,(?))与鲤鱼(Cyprinus carpio L.,(?))远缘杂交首次在脊椎动物中人工培育的两性可育、遗传性状稳定的四倍体鱼。目前该四倍体鲫鲤品系目前已繁殖到第18代,形成了一个庞大的新型四倍体鲫鲤鱼群体,该群体的形成在鱼类演化和鱼类遗传育种具有重要意义。研究表明,四倍体鲫鲤与其二倍体父母本在基因型和表现型均发生了改变。因此,有必要从基因组和转录组水平对其生物学特征进行较为系统的研究,并深入分析功能基因的筛选、遗传标志的发现定位及经济形状与基因功能关联连锁确定。并可为鱼类多倍化形成机制提供新的信息,最终为鱼类分子设计育种提供一个技术服务指导性平台。
     本研究对F18异源四倍体鲫鲤新品系进行了BAC文库构建及鉴定,对F18四倍体鲫鲤、红鲫鱼和鲤鱼的肝脏转录组进行高通量测序研究、并对转录组序列进行生物信息学分析,获得的主要研究结果如下:
     1、首次构建新品系异源四倍体鲫鲤的BAC文库,该文库包含43200个克隆。构建BAC文库采用全血细胞包埋琼脂糖法制备HMWDNA,经HindⅢ限制性酶切,脉冲场电泳(PFGE)分离选择获得150-300kb的DNA片段,通过电洗脱和透析纯化HMW DNA,连接到线性磷酸化的克隆载体p CC1BAC上,转化到大肠杆菌中。对构建的BAC文库进行质量鉴定评估,插入DNA片段大小在110-310kb之间,平均插入片段大小为190kb左右,具有约2.6倍左右的基因组覆盖率。获得的BAC文库克隆,保存在450块96孔板中,存放在-80℃冰柜备用。所建立的BAC文库基本能满足功能基因筛选、基因定位、进化机制、数量形状连锁分析及转基因等研究的需要。
     2、异源四倍体鲫鲤、红鲫和鲤鱼的肝脏转录组测序共得到异源四倍体鲫鲤原始数据1.2GB,红鲫原始数据934MB,鲤鱼原始数据为1.1GB,用CLC BIO软件对F18异源四倍体鲫鲤转录组数据经基本处理后产生Unigene数为9554条。
     3、使用EDEGR对F18与红鲫拼接好的contigs进行基因差异表达分析(阈值设定为logFC>2),结果显示:F18与红鲫相比,在肝脏转录组中6192个contigs表达上调(logFC>2,P<05),有217个contigs表达下调(logFC>2,P<0.05)。F18与鲤鱼相比,在肝脏转录组中4867个contigs表达上调(logFC>2, P<0.05),有578个contigs表达下调(logFC>2, P<0.05).
     4、F18与红鲫和鲤鱼肝脏相比有差异contigs通过KEGG代谢途径分析其功能差异。发现上调的基因主要在碳水化合物代谢、氨基酸代谢、脂代谢和能量代谢作用途径中。GO分析表明,在分子生物学功能层次中binding和catalytic activity的差异基因占主要部分。在细胞组成水平层次中cytoplasm和organelle占主要部分。在生物过程层次中,metabolic process和regulation of biological process的差异表达基因最多。
     5、与红鲫的转录组及鲤鱼转录组进行SV (structure variation)分析,结果表明:在异源四倍体鲫鲤的Unigenes中有185条Unigenes与红鲫转录组的contig有基因融合,有192条Unigenes与鲤鱼转录组的contig有基因融合。有24条Unigenes包含有红鲫、鲤鱼的基因片段。
     6、对F18与红鲫和鲤鱼肝脏转录组进行SNP分析,首次发现:对比F18和红鲫,共发现有SNP位点46449个;而与鲤鱼相比其SNP位点共发现有59436个。相比较于红鲫,F18与父本鲤鱼的遗传变异位点更多,证明了F18偏母性遗传的特征。其中A型转铁蛋白transferrin variantA和MHC class I antigen的变异位点较多,提示这两个基因在F18中发生的变化较大,这可能对其抗逆能力的增加有作用。
     7、Transferrin variant A和MHC class I antigen的演化分析;从transferrin variant A构建的进化树可以看出,该基因F18更偏向红鲫,与红鲫聚为一支,而与鲤鱼相差较大;从MHC class I antigen构建的进化树可以看出,F18的MHC class I antigen从序列上看更偏向鲤鱼,而与红鲫差异较大。从分子水平说明多倍体化过程中,基因偏向性选择,每个基因面对被演化选择的压力。
     通过对异源四倍体鲫鲤BAC文库构建,为今后的分子育种研究及功能基因的筛选提供新的技术平台。另外利用高通量测序技术,对异源四倍体鲫鲤及其父母本肝脏转录组进行测序并运用生物信息学研究分析其结构及表达差异,并对其所测到的序列进行功能注释比较,为多倍体鱼演化研究和分子育种提供新的信息。
A bisexual fertile and stable inheritabl the allotetraploid (AT) crucian-carp population was obtained originally by crossing red crucian carp(Carassius auratus red var., ,2n=100) with common carp (Cyprinus carpio L., S,2n=100). Up to date,18th generation of the allotetraploid crucian-carp was produced and became a new large allotetraploid folk. The formation of these folk has a great significance in understanding of fish evolution and genetic breeding. Studies indicated that there are lot of changes in genotype and phenotype between Allotetraploid crucian-carp and their diploid parents. Thus, it is essential to make deep systematic studies on its characterization in genome and transcriptome. For futher study of the Allotetraploid crucian-carp genomics, it is important to identify functional genes and biomarker relative to genetic traits and genetic mapping. It is benefical for us to establish a platform for molecular breeding.
     Here we constructed BAC (Bacterial artificial chromosome) library of Fig Allotetraploid crucian-carp, sequenced transcriptome of the allotetraploid crucian-carp liver, red crucian carp liver and common carp liver using 454 GS FLX,analyzed bioinformaticaly the data produced by 454 GS FLX. The major results were presented as following:
     1、For the first time we constructed a highly redundant genomic BAC library using high molecular weight(HMW) DNA from the allotetraploid crucian-carp produced in our fish development bioloy Lab by crossing red crucian carp(Carassius auratus red var.,9,2n=100) with common carp(Cyprinus carpio L.,,2n=100). the BAC library we constructed consists of 43200 clones in total. High quality genomic HMW DNA extracted from blood cells embedded in low-melting-point agarose plug was partially digested with Hind III,150-300kb fragments were isolated by pulsed field gel electrophoresis (PFGE), then 150-300kb fragment were purified with dialysis.ligated to linearized and phosphorylased vector pCClBAC, transformed into E.coli.the constructed BAC library with the insert fragments size about 110-310kb,the average size around 190kb as estimated by PFGE. The representation of the constructed BAC library is about 2.6 equivalents to the Fig Allotetraploid crucian-carp genome. All these BAC clones arepreserved in 450 pieces of 96-well plates in-80℃refrigerator. The se reusts show that the BAC library will be usefull for identifying functional genes, genetic mapping, sequencing of the Allotetraploid crucian-carp genome, evolutional molecular machnism and trangenetic study.
     2、The transcriptomic raw data of the Allotetraploid crucian-carp liver, red crucian carp liver and common carp liver produced by 454 GS FLX are respectively about 1.2Gb,934Mb and 1.1Gb. After basical analysis,9554 Unigene were obtained.
     3、By using EDEGR, differential expression was analysized between Fi8 and red crucian carp. The result showed that 6192 contigs were upregulated and 217 contigs were downgulated (cutoff:logFC> 2, P< 0.05). Compared with common carp,4867 contigs were upregulated and 578 contigs were downregulated (cutoff:logFC> 2, P<0.05)
     4、Based on KEGG pathway analysis, the differential expression genes were identified. The result showed that the upregulated genes in F18 were mainly in Carbohydrate Metabolism, Amino Acid Metabolism, Lipid Metabolism and Energy Metabolism. Go analysis indicated that in molecular function level differential genes are mainly in binding and catalytic activity. Cytoplasm and organelle are the most of celluar component, while metabolic process and regulation of biological process contribut the most part of biological process.
     5、F18 contigs were mapped with red crucian carp and common carp reads. The results showed that 185 Unigenes of F18 contains fragments of red crucian carp, while 192 Unigenes of F18 contains fragments of common carp.24 Unigenes contains fragments from both red crucian carp and common carp.
     6、Between F18 and red crucian carp,46449 SNP sites were found, while 59436 SNP sites were found between F18 and common carp. Compared with red crucian carp, more SNP sites observed in common carp. This result proved that partial maternal inheritance of F18 in genetic characteristics. Transferrin variant A and MHC class I antigen had the most SNP sites, which potentially due to its increased resilience.
     7、Evolution analyis of transferrin variant A and MHC class I antigen:Phylogenetic tree of transferrin variant A showed, the sequence of F18 was more similar to red crucian carp compared with common carp While, MHC class I antigen of F18 showed high similarity with, common carp. This result suggestted that in F18 was in inherit both genetic information from parents and different genes show different deflection. From molecular level to decipher ploidy evolution process, all the genes face selection pressure of evolution
     For further study of molecular breeding and identifying functional genes, F18 BAC library was constructed。In addition, using 454 high throughout sequence technology, F18 and its parents liver transcripton were sequenced and then analysized using bioimformatics tools. The structure and differential expression of genes were studied. With the genes functional annotation, we offered more information for understanding ploidy evolution of fishes and molecular breeding
引文
[1]Grant V. Plant Speciation [M].2nd ed. New York: Columbia University Press,1971
    [2]Masterson J. Stomatal size in fossil plant:evidence for polyploidy in majority of angiosperms [J]. Science,1994, 264:421-424
    [3]杨继.植物多倍体基因组的形成与进化[J].植物分类学报,2001,39(4):357-371
    [4]Baatout S. Molecular basis to understand polyploidy [J]. Hematol Cell Ther,1999,41(4):4169-4170
    [5]Becak M, Becak W. Evolution by polyploidy in Amphibia: New insights [J]. Cytogen Cell Genet,1998,80 (1-4):28-33
    [6]Soltis D E, Soltis P E. Polyploidy:Recurrent formation and genome evolution [J]. TREE,1999,14 (9):348-352
    [7]Cronn R C, Small R L, Wendel J F. Duplicated genes evolve independently after polyploid formation in cotton [J]. Proc Natl Acad Sci USA,1999,96 (25):14406-14411
    [8]耿德贵,王景明,江山,等.鱼类染色体显带的研究进展[J].动物学杂志,1999,34(1):40-43
    [9]范兆廷,沈俊宝.鱼类中的多倍体[J].动物学杂志,1985,20(3):52-57
    [10]Muramoto J. On the diploid state of the fish order Osdariophisi [J]. Chromorsoma,1968,24 (1):59-66
    [11]Ohno S. "Animal Cytogenetics" Vol.4, Chordata 1 [M]. Gerbruder Borntraeger, Berlin,1974
    [12]Wolf U. Polyploidization in the fishes, family Cyprinidae, order Cypriniformes [J]. Human- genetik,1969, 7(2):240-244
    [13]李树深.脊椎动物中的多倍体[J].动物学杂志,1980,2:52-54
    [14]沈俊宝,范兆廷.黑龙江主要水域鲫鱼倍性及其地理分布[J].水产学报,1983,7(2):87-94
    [15]周嘉申,沈俊宝,刘明华.黑龙江一种银鲫(方正银鲫)雌核发育的细胞学初步探讨[J].动物学报,1983,29(1):11-16
    [16]Kobayasi H. Comparative study of karayotypes in the small and large races of spinous loaches (Cobitus biwae) [J]. Zool. Mag.,1976,85:316-322
    [17]Sezaki K. Comparision of erthrocytes size between diploid and tetraploid in spinous loach. Cobitis biwae [J]. Bull. Jap. SO. Sci. Fish,1978,44(8):851-854
    [18]Engel W. Genduplikation durch polypoide evolution, die isoenzyme der sorbitdehydrogenese bei herings-und lacksartigen fischen(Isospondyli) [J]. Humangenetik,1970,9: 157-163
    [19]Digerkus G. Karyotypes analysis and evidence of tetraploidy in the North American paddle fish, Polyodon spathula [J]. Science,1976,194:842-844
    [20]Moyle PB, Cech JJ Jr.1996. Fishes:An Introduction to Ichthyology [M]. Prentice2Hall:Upper Saddle River, NJ.612
    [21]Schultz R J. Polyploidy [M],1980, p713-740
    [22]Ramsey J, Schemske D W. Pathways, mechanisms, and rates of polyploid formation in flowering plants [J]. Annu Rev Ecol Syst,1998,29:467-501
    [23]李树深.脊椎动物中的多倍体[J].动物学杂志,1980,2:52-54
    [24]单仕新,蒋一珪.银鲫染色体组型研究[J].水生生物学报,1988,12(4):381-384
    [25]陈敏容,杨兴棋,等.两性型天然雌核发育彭泽鲫染色体组型的研究[J].水生生物学报,1996,20(1):25-31
    [26]昝瑞光.滇池两种类型鲫鱼的性染色体和C-带核型研究[J].遗传学报,1982,9(1):32-39
    [27]Song K M, Lu P, Tang K L. Rapid genome change in synthetic polyloids of B rassica and its implications for evolution [J]. Proc Natl Acad Sci USA,1995,92:7719-7723
    [28]昝瑞光.鱼类中的多倍性及其在鱼类演化中的作用[J].云南大学学报,1985,7(3):331-337
    [29]White M J D. Animal Cytology and evolution [M], Combridge University Press.1977
    [30]Kenton A, Parokonny A S, Gleba Y,et al. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics [J]. Mol Gen Genet,1993,240:159-169
    [31]Jellen E N, Gill B S, Cox T S, Genomic in situ hybridization differentiates between A/D and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena) [J]. Genome,1994,37:613-618
    [32]Chen Q, Armstrong K C, Genomic in situ hybridization in Avena sativa [J]. Genome,1994,37:607-612
    [33]Kobayasi H, Ochi H, Takeuchi N. Chromosome studies in the geous Carassius:comparison of C. auratus grandoculis, C. auratus buergeri, C. auratus langsdorfii [J]. Jpn. J. Ichthyoi, 1973,20(1):7-12
    [34]Leitch I J, Bennett M D, Polyploidy in angiosperms [J]. Trends Plant Sci,1997,2:470-476
    [35]刘筠.中国养殖鱼类繁殖生物学[M].北京:农业出版社,1993,117
    [36]闵乃吉.鲤鲫杂交种的培育[J].生物学通报,1959,9:395-399
    [37]Wendel J F. Genome evolution in polyploids [J]. Plant Mol Biol,2000,42:225-249
    [38]Song K M, Lu P, Tang K L. Rapid genome change in synthetic polyloids of B rassica and its implications for evolution [J]. Proc Natl Acad Sci USA,1995,92:7719-7723
    [39]Feldman M, Liu B, Segal G, et al. Rapid elimination of low-copy DNA sequences in polyploid wheat:A possible mechanism for differentiation of homoeolegous chromosomes [J]. Genetics,1997,147(4):1381-1387
    [40]Liu B, Vega M J, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticum and A egilops. II. Changes in low-copy non-coding DNA sequences [J]. Genome,1998, 41 (4):535-54
    [41]Ozkan H, Levy A A, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat(Aegilops-Triticum) group [J]. Plant Cell,2001,13(8):1735-1747
    [42]Soltis D E, Soltis P S. Molecular data and the dynamic nature of polyploidy [J]. Crit Rev Plant Sci,1993,12:243-273
    [43]Dover G A. Concerted evolution, molecular drive and natural selection [J]. Curr Biol,1994,4:1165
    [44]Wendel J F, Schnabel A, Seelanan T. Bidirectional interlocus concerted evolution following alloplyploid speciation in cotton(Gossypium) [J]. Proc Natl Acad Sci USA, 1995,92:280-284
    [45]Hillis D M, Moritz C, Porter C A, et al. Evidence for biased gene conversion in concerted evolution of ribosomal DNA [J]. Science,1991,251:308-310
    [46]Amold M L, Contreras N, Shaw D D. Biased gene conversion and asymmetrical introgression between subspecies [J]. Chromosoma,1988,96:368-371
    [47]Elder F, Tumer B J. Concerted evolution of repetitive DNA sequence in eukaryotes [J]. Quart Rev Biol,1995,70: 279-319
    [48]Cooke J, Nowak M A, Boerlijst M, et al. Evolutionary origins and maintenance of redundant gene expression during metazoan development [J]. Trends Genet,1997,13:360-364
    [49]Larhammer D, Risinger C. Why so few pseudogenes in tetraploid species? [J]. Trends Genet,1994,10:418-419
    [50]Pickett F B, Meeks-Wagner D R. Seeing double: appreciating genetic redundancy [J]. Plant Cell,1995,7: 1347-1356
    [51]Madlung A, Masuelli R W, Watson B, et al. Remolding of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids [J]. PlantPhysiol, 2002,129:733-746
    [52]Craig S P. Genomic change and gene silencing in polyploids [J]. Trends in Genetics,2001,17(12):675-677
    [53]Stephens S G. Possible significance of duplication in evolution [J]. Adv Genet,1951,4:247-265
    [54]Hughes M K, Hughes A L. Evolution of duplicate genes in a tetraploid animal Xenopus laevis [J]. Mol Biol Evol,1993, 10:1360-1369
    [55]Ohta T. Further examples of evolution by gene duplication revealed through DNA sequence comparisons [J]. Genetics,1994,138:1331-1337
    [56]Ohta T. Multigene families and the evolution of complexity [J]. J Mol Evol,1991,33:34-41
    [57]Li W H. Accelerated evolution following gene duplication and its implications for the neutralist-selectionist controversy [M]. In:Ohta T, Aoki K eds. Population Genetics and Molecular Evolution. Berlin: Spinger-Verlag,1985,333-353
    [58]Rasch E M, et al. Cytophotometric evidence for triploidy in hybrids of the gynogenetic fish. Poecilia formoesa, J. Exp. Zool,1965,160(2):155
    [59]Marian T. et al. Aquaclture Hungarica,1978, I:44-50
    [60]Vasil' ev V P, Makeeva A P, Ryabov I N. Triploidy of hybrids of carp with other respectives of the family Cyprinidae [J]. Soviet Genetics,1975,11(8):980-985
    [61]刘思阳.三倍体草鲂杂种及其双亲的红细胞(核)大小和DNA含量[J].遗传学报,1987,14(2):142-148
    [62]吴维新,林临安,徐大义.一个四倍体杂种-兴国红鲤×草鱼[J].水生生物学集刊.1981,7(3):433-436
    [63]陈敏容,杨兴棋,俞小牧,等.人工诱导异源四倍体、新四倍体及异源三倍体的细胞学研究[J].水生生物学报,1998,22(3):209-216
    [64]王军等.大黄鱼三倍体诱导的初步研究.厦门大学学报(自然科学版),2004,40(4):927
    [65]蔡国雄.真鲷三倍体诱导初步研究.热带海洋,1997,16(4):95
    [66]吴玉萍等.热休克诱导斑马鱼异源三倍体的研究.海洋与湖沼,2000,31(5):466
    [67]Zou S M, et al. Establishment of fertile tetraploid population of blunt snout bream (Megalobrama amblycephala). 2004,238:155
    [68]容寿柏等.用热休克诱导罗非鱼四倍体.中国实验动物学杂志,1994,4(2):97
    [69]楼允东.鱼类育种学[M].北京:中国农业出版社,1999,117-147
    [70]桂建芳,孙建民,梁绍昌,等.鱼类染色体组操作的研究Ⅰ.静水压休克诱导三倍体水晶彩鲫[J].水生生物学报,1990,14(4):336-344
    [71]桂建芳,梁绍昌,孙建民,等.鱼类染色体组操作的研究Ⅱ.静水压处理和静水压与冷休克结合处理诱导水晶彩鲫四倍体[J].水生生物学报,1991,15(4):333-342
    [72]刘少军,曹运长,何晓晓,等.异源四倍体鲫鲤群体的形成及四倍体化在脊椎动物进化中的作用[J].中国工程科学,2001,3(12):33-40
    [73]Liu S J, Liu Y, Zhou G J, et al. The formation of tetraploid stocks of red crucian carp X common carp hybrids as an effect of interspecific hybridization [J]. Aquaculture, 2001,192:171-186
    [74]孙远东,刘少军,张纯,等.异源四倍体鲫鲤F9-F11染色体和性腺观察[J].遗传学报,2003,5:414-418
    [75]刘少军,赵如榕,刘锦辉,等.不同倍性鱼的血细胞和精子DNA含量比较[J].动物学报,2005,51(2):360-364
    [76]刘少军,冯浩,刘筠,等.四倍体鲫鲤F3-F4、三倍体湘云鲫、湘云鲤及有关二倍体的DNA含量[J].湖南师范大学自然科学学报,1999,22(4):61-68
    [77]刘少军,孙远东,周工建,等.异源四倍体鲫鲤成熟性腺和红细胞超微结构观察[J].自然科学进展,2003,13(2):194-197
    [78]李建中,张轩杰,刘少军,等.异源四倍体鲫鲤的性腺发育研究[J].水生生物学报,2002,26(2):116-122
    [79]刘少军,黎双飞,刘筠.异源四倍体鱼早期胚胎发育观察. 湖南师范大学自然科学学报,2001,24(1):55-57
    [80]李建中,张轩杰,刘少军,等.异源四倍体鲫鲤的受精细胞学[J].动物学报,2002,48(2):233-239
    [81]Liu S J, Duan W, Tao M, et al. Establishment of the diploid gynogenetic hybrid clonal line of red crucian carp X common carp[J]. Sci China Ser C:Life Sci,2007,50(2):186-193
    [82]张纯,孙远东,刘少军,等.二倍体雌核发育鱼产生二倍体卵子的证据[J].遗传学报,2005,32(2):136-144
    [83]刘少军,段巍,陶敏,等.雌核发育二倍体鲫鲤杂交克隆品系建立[J].中国科学C辑:生命科学,2007,50(2):186-193
    [84]Sun Y D, Zhang C, Liu S J, et al. Induced interspecific androgenesis using diploid sperm from allotetraploid common carp X red crucian carp hybrids [J]. Aquaculture,2007,264: 47-53
    [85]段巍,覃钦博,陈松,等.用雄核发育方法制备改良异源四倍体鲫鲤群体[J].中国科学C辑:生命科学,2007,37(5)530-539
    [86]李建中,鲁双庆,刘少军,等.异源四倍体鲫鲤及其原始亲本遗传变异的RAPD分析[J].水产学报,2003,27(5):403-408
    [87]李建中,刘少军,张轩杰,等.异源四倍体鲫鲤群体遗传多样性的RAPD分析[J].水生生物学报,29(1):97-100
    [88]Xinhong Guo, Shaojun Liu, Chun Zhang, et al. Comparative and evolutionary analysis of the cytochrome b sequences in cyprinids with different ploidy levels derived from crosses [J]. Genetica,2004,121:295-301
    [89]Xinhong Guo, Shaojun Liu, Yun Liu. Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level [J]. Aquaculture,2003,24(1-4): 25-38
    [90]郭新红,刘少军,颜金鹏,等.异源四倍体鲫鲤、三倍体湘云鲫和它们父母本线粒体DNA 12S rRNA基因遗传变异的分析[J].遗传,2004,26(6):875-880
    [91]刘万,周工建.转基因三倍体湘云鲫养殖实验[J].内陆水产,2001,2:3-4
    [92]王静,覃钦博,陈松,等.新型高背型鲫鱼的形成及其生物学特征研究[J].中国科学C辑:生命科学,2008,38(7):635-642
    [93]张惠展.基因工程概论[M].上海:华东理工大学出版社,1999.
    [94]吴乃虎.基因工程原理(下册)北京:科学出版社,2002
    [95]覃瑞.BAC-FISH一种新的原位杂交技术在植物基因组研究中的应用.云南大学学报(自然科学版),2000,21:128-129
    [96]A. Cenci, S. Somma, N. Chantret, et al. PCR identification of durum wheat BAC clones containing genes coding for carotenoid biosynthesis enzymes and their chromosome localization. Genome,2004,47:911-917
    [97]Pierce J C, Sauer B and Sternberg N. A positive selection vector for cloning high molecular weight DNA by the bacteriophage P1 system:Improved colong efficacy. Proc Natl Acad Sci USA,1992,89:2056-2060
    [98]Wu Y, Tulsieram L, Tao Q, et al. A binary vector-based large insert library for Brassica napus and identification of clones linked to a fertility restorer locus for Ogura cytoplasmic male sterility (CMS).Genome,2000,43:102-109
    [99]樊颖伦,赵开军.大片段克隆载体研究进展.中国生物工程杂志.24(3):12-16
    [100]Shizuya H, Birren B, Kim U-J, et al. Cloning and stable maintenance of300-kilobase-pair fragments of human DNA in Escherichia coli using F-factor-based vector.Proc Natl Acad Sci USA,1992,89:8794-8797
    [101]Willetts N, Skurray R. Structure and function of the F factor and mechanism of conjugation. "Escherichia coli and Salmonella typhimurium:Cellular and molecular biology" American Society for Microbiology,1987,2:1110-1133
    [102]Mejia JE, Moanco AP. Retrofitting vectors for Escherichia coli-based artificial chromosomes (PACs and BACs) with markers for transfection studies. Genome Research,1997, 7(2):179-186
    [103]Fu Huihua, Dooner H. K. A gene-enriched BAC library for cloning large allele-specific fragments from maize:isolation of a 240-kb contig of the bronze region. Genome research,2000, 10:866-873
    [104]Choi S, Creelman RA, Mullet JE, et al. Construction and characterization of bacterial artificial chromosome library of Arabidopsis thaliana. Weeds World,1995,2:17-20
    [105]Zeng C, Kouprina N, Zhu B, et al. Large-insert BAC/YAC libraries for selective re-isolation of genomic regions by homologous recombination in yeast. Genomics 2001,77(1-2): 27-34
    [106]Mozo T, Dewar K, Dunn P, Ecker JR, Fischer S, Kloska S, Lehrach H, Marra M, Martienssen R, Meier-Ewert S, Altmann T. A complete BAC-based physical map of the Arabidopsis thaliana genome [J].Nat Genet,1999,22:271-275.
    [107]Marra MA, Kucaba TA, Dietrich NL, Green ED, Brownstein B, Wilson RK, McDonald KM, Hillier LW, McPherson JD, Waterston RH. High throughput fingerprint analysis of large-insert clones [J]. Genome Res,1997,7:1072-1084.
    [108]王泽立,戴景瑞,王斌.植物基因的图位克隆[J].生物技术通报,2000,4:21-27.
    [109]Yamaguchi K, Wu L, Cabal lero OL, Hibi K, Trink B, Resto V, Cairns P, Okami K, Koch WM, Sidransky D, Jen J. Frequent gain of the p40/p51/p63 gene locus in primary head and neck squamouscell carcinoma [J]. Int J Cancer,2000,86:684-689.
    [110]Miller JT, Jackson SA, Nasuda S, Gill BS, Wing RA, Jiang J. Cloning and characterization of acentromere-specific repetitive DNA element from Sorghum bicolor [J].Theor Appl Genet,1998,96:832-839
    [111]Dong F, Miller JT, Jackson SA, Wang GL, Ronald PC, Jiang J. Rice(Oryza sativa)centromeric regions consist of complex DNA [J]. Proc Natl Acad Sci USA,1998,95:8135-8140.
    [112]覃瑞,魏文辉,金危危,何光存,宁顺斌,余舜武,宋运淳.与Gm-6和Pi-5(t)连锁的栽培稻BAC克隆在药用野生稻中的FISH定位[J],科学通报,2000,45:2427-2430.
    [113]鄢慧民,宋运淳,李立家,李霞,付彬英.水稻Xa21基因在水稻和玉米中的比较物理定位[J].植物学报,1999,41:249-254.
    [114]Epstein J, Cai J, Glaser T, Jepeal L, Maas R Identification of a Pax paired domain recognitionsequence and evidence for DNA-dependent conformational changes [J]. J Biol Chem,1994,269:8355-8361
    [115]Xu W, Rould MA, Jun S, Desplan C, Pabo CO. Crystal structure of a paired domain-DNA complexat 2.5 A resolution reveals structural basis for Pax developmental mutations [J]. Cell,1995,80:639-650.
    [116]Cvekl A, Kashanchi F, Brady JN, Piatigorsky J. Pax-6 interactions with TATA-box-binding protein and retinnoblastoma protein [J]. Invest. Ophthalmal. Vis. Sci, 1999,40:1343-1350.
    [117]Krauss S, Johansen T, Korzh V, Moens U, Ericson JU, Fjose A. Zebrafish Pax:A paired box-containing gene expressed in the neural tube [J]. EMBO J,1991,10:3609-3619.
    [118]Glardon S, Callaerts P, Haider G, Gehring WJ. Conservation of Pax-6 in a lower chordate, the ascidian Phallusia mammillata [J]. Development,1997,124:817-825.
    [119]Magnaghi P, Roberts C, Lorain S, Lipinski M, Scambler PJ. HIRA, a mammalian homologue of Saccharomyces cerevisiae transcriptional co-repressors, interacts with Pax3 [J]. Nat. Genet,1998,20:74-77.
    [120]Hollenbach AD, Sublett JE, McPherson CJ, Grosveld G. The Pax3-FKHR oncoprotein is unresponsive to the Pax3-associated repressor hDaxx [J]. Embo. J,1999,18: 3702-3711.
    [121]鄢慧民,宋运淳,李家立,等.水稻Xa21基因在水稻和玉米中的比较物理定位.植物学报.1999,41(3):249-253
    [122]Hanson R E, Zwick M S, Choi S D, et al. Fluorescent in situ hybridization of a bacterial artificial chromosome. Genomics,1995,38:646-651
    [123]Jiang J, Gill BS, Wang G-L, et al. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA,1995,92:4487-4491
    [124]Peng Zhang, Wanglong Li, Bernd Fridbe, et al. Simultaneous painting of three genomes in hexaploid wheat by BAC—FISH. Genome,2004,47:979-987
    [125]覃瑞,魏文辉,金危危,等.与Gm-6,Pi-5(t)连锁的栽培稻BAC克隆在药用野生稻中的FISH定位.科学通报,2000,45(22):2427-2430
    [126]Jiang J, Gill BS, Wang G-L, et al. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA,1995,92:4487-4491
    [127]Miller JT, Jackson SA, Nasuda S, et al. Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor. Theor. Appl. Genet,1998,96: 832-839
    [128]Wheeler DA, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature.2008; 452(7189):872-876.
    [129]Ruiqiang Li, Yingrui Li, et al. SNP detection for massively parallel whole-genome resequencing. Genome Research, 2009,19:1124-1132.
    [130]DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature,2008,456,66-73.
    [131]Williamson A., Rink T, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature,2008,456(6):53-59
    [132]Nathalie J. van Orsouw, et al. Complexity reduction of polymorphic sequences (CRoPS):a novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE,2007, 2(11):172-176
    [133]Hillier L W, Marth G T, Quinlan A R, et al. Whole-genome sequencing and variant discovery in C. elegans. Nat Methods,2008,5(2):183-188
    [134]Morgante M, De Paoli E, Radovic S. Transposable elements and the plant pan-genomes. Curr Opin Plant Biol.2007; 10(2):149-155.
    [135]Sugarbaker D J, Richards W G, Gordon G J, et al. Transcriptome sequencing of malignant pleural mesothelioma tumors. Proc Natl Acad Sci USA,2008,105(9):3521-3526
    [136]Morin R D, O' Connor M D, Griffith M, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res,2008,18(4):610-621
    [137]Johnson D S, Mortazavi A, Myers R M, et al. Genome-wide mapping of in vivo protein-DNA interactions. Science,2007,316(5830):1497-1502.
    [138]http://www.clcbio.com/
    [139]Kanehisa, M., et al., From genomics to chemical genomics:new developments in KEGG. Nucleic Acids Res,2006. 34(Database issue):p. D354-7.
    [140]Tatusov, R. L., et al., The COG database:an updated version includes eukaryotes. BMC Bioinformatics,2003.4:p. 41.
    [141]Altschul, S. F., et al., Basic local alignment search tool. J. Mol Biol,1990.215(3):p.403-10.
    [142]Rice, P., I. Longden, and A. Bleasby, EMBOSS:the European Molecular Biology Open Software Suite. Trends Genet, 2000.16(6):p.276-7.
    [143]Haley J. Abel., et al., SLOPE:A quick and accurate method for locating non-SNP structural variation from targeted next-generation sequence data. Bioinformatics (2010) September 27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700