数学归纳推理和双手运动协作的fMRI研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
认知的研究在很长的一段时间内都是基于纯粹心理学的,随着实验方法的进步和影像技术的发展,我们已经能获得关于大脑结构与功能的重要信息,从而对认知现象错综复杂的神经生理机制有了更深的了解。本文就利用功能磁共振成像(functional Magnetic Resonance Image, fMRI)在数学归纳推理和双手运动协作任务中的应用,来探讨各自脑认知功能的潜在神经机制。
     数学归纳推理是重要的逻辑认知过程,为了探究其神经基础及实验任务难度与认知强度间的关系,我们设计了包含简单数学归纳推理、复杂数学归纳推理的任务组实验和数学计算的对照组实验,并对被试进行了fMRI数据的采集。成像结果表明简单数学归纳推理主要激活左侧角回,复杂数学归纳推理主要激活左侧额叶上回和双侧的角回。此外简单推理中左侧角回的激活强度与任务的难度系数有正相关性,复杂推理中左侧额上回的激活强度与任务的难度系数有正相关性。这些结果表明角回和额叶上回在不同难度的数学归纳推理任务中有着重要的作用:简单推理中的任务难度主要调节左侧角回所主管的认知成分,复杂推理中的任务难度主要调节额上回所主管的认知成分。
     在双手运动协作研究中,我们设计了包含交替运动协作和同步运动协作两个条件的手指敲击实验,并对被试进行了fMRI数据的采集。从脑功能激活和脑网络两个方面比较了两种运动协作任务的神经机制的异同,并分析了其产生的原因。根据结果我们有以下结论:两种任务的认知控制都需要额叶的计划和颞叶的节律性调节及运动区的执行来完成,但两种任务具有不同的认知控制机制。同步运动协作任务较交替协作任务需要更多的内在的运动感觉、描述和提取,更多更强的双手间信息交互,更多的实时的节律调节。也就是说,交替运动协作较同步运动协作简单且只需要计划好后执行,而同步运动协作在计划好后执行时,还需要更多的实时的调整。
Cognition has been studied on the basis of psychology for a long time. With the progress of experimental method and the development of imaging technology, we have been able to learn much more about the complicated neural mechanism beyond the cognitive phenomenon by achieving anatomical and functional information of brain. In this thesis, we explored the neural basis of mathematical inductive reasoning and bimanual coordination by utilizing functional magnetic resonance imaging (fMRI).
     Mathematical inductive reasoning is an important logical cognition process. To clarify the neural mechanism of mathematical inductive reasoning and how the underlying neurobiological response varies with the difficulty in the reasoning tasks, we designed a fMRI experiment including simple and complex mathematical inductive reasoning as task and mental arithmetic as the baseline. The results demonstrated that simple mathematical inductive reasoning primarily activated the left angular gyrus of the brain, while complex mathematical inductive reasoning evoked both the left superior frontal gyrus and the bilateral angular gyrus. Furthermore, there was a significantly positive correlation between the difficulty of mathematical inductive reasoning tasks and active brain intensity of left angular gyrus for the simple mathematical inductive reasoning and the left superior frontal gyrus for the complex mathematical inductive reasoning. These findings indicate that the angular gyrus and left superior frontal gyrus play an important role in mathematical inductive reasoning with different difficulty: left angular gyrus modulates the cognition components related to the difficulty of simple mathematical inductive reasoning while the left superior frontal gyrus modulates the cognition components related to the difficulty of complex mathematical inductive reasoning.
     In the study of bimanual cooperation, we designed a fMRI experiment including alternate finger-tapping movement and synchronous finger-tapping movement. We compared the neural basis of the two bimanual coordination tasks from two aspects: functional brain activation and functional neural network, and we analyzed the reasons for the similarities and differences. The results suggested conclusion that both tasks were accomplished by the frontal plan and temporal modulation of rhythm but they owned different control way of movement cognition. Compared to alternate task, synchronous task need more inner motion perception, representation and retrieval, more and stronger interaction between the two hands, more on-line modulation of rhythm. That’s to say, alternate task could be performed as prior plan, synchronous task should be accomplished by combining prior plan and on-line modulation.
引文
[1]唐孝威.脑功能成像.中国科学技术大学出版社.1999:60-8.
    [2]何立岩,伍建林.磁共振功能成像的原理及研究进展.中国临床医学影像杂志.2002;13(3):210-2.
    [3]王君,刘嘉.功能性磁共振成像的应用和发展前景.现代仪器.2008;14(1):6-9.
    [4]邸新饶.人脑功能连通性研究进展.生物化学与生物物理进展.2007;34(1):5-12.
    [5] Milham. fMRI study of Stroop tasks reveal unique roles of anterior and osterior brain systems in attentional selection. J Cogn Neumsci. 2000;12(6):988-1000.
    [6] Jiang Y. Resolving dual-task interference: an fMRI study. NeuroImage 2004;22748-54.
    [7] Ayana C ZE. Neural basis for sentence comhension,grammatical and short-term memory components. Human Brain Mapping. 2001;15:80-94.
    [8] Jonathan E, Moorep L. Dissociable patterns of brain activity during comprehension of rapid and syntactically complex speech :Evidence from fMRI. Brain Language. 2004;91:315-25.
    [9] Kanwisher PDJLN. Testing cognitivemodels of visual attention with fMRI and MEG Neuropsychologia 2001;39:1329-42.
    [10]张仲伟,缪飞,陈克敏.正常人简体汉字词组短时记忆刺激的脑fMRI实验研究.上海医学影像.2004;13(3):170-2.
    [11]谢晟,肖江喜,白静,蒋学祥.正常老年人无意义图形记忆任务的fMRI研究.中国医学影像技术.2004;20(4):571-4.
    [12]余毅震,史俊霞,吴汉荣.功能性磁共振成像在高级认知功能研究中的应用.中国社会医学杂志.2006;23(3):153-6.
    [13] Mechelli A PCJ, Friston K J. Where bottom-up meets top-down: neuronal interactions during perception and imagery. Cereb Cortex. 2004;14(11):1256-65.
    [14] He A G TLH, Tang Y Y. Modulation of neural connectivity during tongue movement and reading. Hum Brain Mapping. 2003;18 (3):222-32.
    [15] Zhuang J-C LS, Peltier S,. Connectivity exploration with structural equation modeling: an fMRI study of bimanual motor coordination. NeuroImage. 2005;25 (2):462-70.
    [16]张洪英.不同阶段阿尔茨海默病静息功能磁共振脑功能连接性的研究.东南大学影像医学与核医学博士论文.2008:5-10.
    [17]刘岘,刘波.静息状态下帕金森病患者脑部功能连接的MR研究.中华放射学杂志. 2009;43(3):253-7.
    [18]任华.偏执型精神分裂症患者N-back任务和静息状态脑功能连接差异的fMRI研究.天津医科大学影像医学与核医学博士论文.2007;40-2.
    [19]陈静.脑梗死运动性失语患者静息态fMRI功能连接研究.天津医科大学影像医学与核医学硕士论文.2009;4-9.
    [20]邓小湘,蒋雯,王君.利用静息态功能磁共振成像研究缺血性脑卒中患者康复治疗后运动功能网络连接的变化.磁共振成像.2010;1(1):11-4.
    [21] Granger CWJ. Investigating causal relations by econometric models and crossspectral methods. Econometrica 1969;37:424-38.
    [22] Geweke J. Measures of conditional linear dependence and feedback between time series. J Am Stat Assoc. 1984;79:709-15.
    [23] Chen Y BS, DingM. Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data. J Neurosci Methods 2006;150:228-37.
    [24] Zhou Z, Chen, Y, Ding, M, Wright, P, Lu, Z, Liu, Y. Analyzing brain networks with PCA and conditional Granger causality. Human Brain Mapping. 2009;30:2197-206.
    [25] Byrnea. Précis of Deduction. Behavioral and Brain Sciences. 1993;16:323-33.
    [26] Luisa Girelli CS, Margarete Delazer. Inductive reasoning and implicit memory: evidence from intact and impaired memory systems. Neuropsychologia. 2004;42 926-38.
    [27] Goel V DRJ. Different involvement of left prefrontal cortex in inductive and deductive reasoning. Cognition. 2004(3):B109-B21.
    [28] Christoff K PV. Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage. 2001;14(5):1136-49.
    [29] Tenenbaum. Structured statistical models of inductive reasoning. Psychological Review. 2009.
    [30] Constantinos Christou. A framework of mathematics inductive reasoning Learning and Instruction. 2007;17:55-66.
    [31] Po′lya G. Le de′couverte des mathe′matiques. Par?′s: DUNOD. 1967.
    [32] Liang P LS, Liu J, Yao Y, Li K, Yang Y. The Neural Mechanism of Human Numerical Inductive Reasoning Process: A Combined ERP and fMRI Study. Springer-Verlag Berlin Heidelberg LNAI 2007;4845:223-43.
    [33] Holzman TG, Pellegrino, J.W., Glaser, R. Cognitive variables in series completion. Journal of Educational Psychology. 1983(75):603-18.
    [34] Christoff K, Prabhakaran V, Dorfman J, Zhao Z, Kroger JK, Holyoak KJ, et al. Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage. 2001;14(5):1136-49.
    [35] Newman SD, Carpenter PA, Varma S, Just MA. Frontal and parietal participation in problem solving in the Tower of London: fMRI and computational modeling of planning and high-level perception. Neuropsychologia. 2003;41(12):1668-82.
    [36] Reverberi C, D'Agostini S, Skrap M, Shallice T. Generation and recognition of abstract rules in different frontal lobe subgroups. Neuropsychologia. 2005;43(13):1924-37.
    [37] Christoff K, Ream JM, Geddes LP, Gabrieli JD. Evaluating self-generated information: anterior prefrontal contributions to human cognition. Behavioral neuroscience. 2003 ;117(6):1161-8.
    [38] Myeong-Ho Sohn AG, V. Andrew Stenger, Cameron S. Carter, and John R. Anderson. Competition and representation during memory retrieval: Roles of the prefrontal cortex and the posterior parietal cortex. PNAS 2003;100(12):7412-7.
    [39] Pinel P, Dehaene S, Riviere D, LeBihan D. Modulation of parietal activation by semantic distance in a number comparison task. NeuroImage. 2001;14(5):1013-26.
    [40] Baker SC, Rogers RD, Owen AM, Frith CD, Dolan RJ, Frackowiak RS, et al. Neural systems engaged by planning: a PET study of the Tower of London task. Neuropsychologia. 1996;34(6):515-26.
    [41] Dagher A, Owen AM, Boecker H, Brooks DJ. Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain. 1999;122 ( Pt 10):1973-87.
    [42] Owen AM, Doyon J, Petrides M, Evans AC. Planning and spatial working memory: a positron emission tomography study in humans. The European journal of neuroscience. 1996;8(2):353-64.
    [43] Prabhakaran V, Smith JA, Desmond JE, Glover GH, Gabrieli JD. Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cognitive psychology. 1997;33(1):43-63.
    [44] Lisa AH KR, David K, Martha WA. Solving Inductive Reasoning Problems in Mathematics: Not-so-Trivial Pursuit. Cognitive Science 2000;24:249-98.
    [45] Donald J. Hagler Jr APS. Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. NeuroImage 2006;33:1093-103.
    [46] Yulin Qin CSC. The change of the brain activation patterns as children learn algebra equationsolving. PNAS. 2004;101(15):5686-91.
    [47] Zamarian L IA, Delazer M. Neuroscience of learning arithmetic--evidence from brain imaging studies. Neuroscience and biobehavioral reviews 2009;33:909-25.
    [48] Bueti D, Walsh V. The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical transactions of the Royal Society of London. 2009;364(1525):1831-40.
    [49] Ruth Stavy VG, Hugo Critchley, Ray Dolan, Cantlon, J. F. Intuitive interference in quantitative reasoning. Brain Research. 2006(1074):383-8
    [50] James K. Kroger LEN, Jonathan D. Cohen, Philip N. Johnson-Laird. Distinct neural substrates for deductive and mathematical processing. Brain Research. 2008;1243:86 -103.
    [51] Narender Ramnani AMO. Anterior prefrontal cortex insights into function from anatomy and neuroimaging Nat Rev Neurosci. 2004;5:184-94.
    [52] Goel V, Vartanian O. Dissociating the roles of right ventral lateral and dorsal lateral prefrontal cortex in generation and maintenance of hypotheses in set-shift problems. Cereb Cortex. 2005;15(8):1170-7.
    [53] Goel VD, R. J. Differential involvement of left prefrontal cortex in inductive and deductive reasoning. Cognition. 2004;93(3):B109-21.
    [54] Geake JG HP. Neural correlates of intelligence as revealed by fMRI of fluid analogies. NeuroImage. 2005;26:555-64.
    [55] Wu SS, Chang TT, Majid A, Caspers S, Eickhoff SB, Menon V. Functional heterogeneity of inferior parietal cortex during mathematical cognition assessed with cytoarchitectonic probability maps. Cereb Cortex. 2009;19(12):2930-45.
    [56] Menon V, Rivera SM, White CD, Glover GH, Reiss AL. Dissociating prefrontal and parietal cortex activation during arithmetic processing. NeuroImage. 2000;12(4):357-65.
    [57] Onoe H, Komori M, Onoe K, Takechi H, Tsukada H, Watanabe Y. Cortical networks recruited for time perception: a monkey positron emission tomography (PET) study. NeuroImage. 2001;13(1):37-45.
    [58] Peers PV LC, Rorden C, Cusack R, Bonfiglioli C, Bundesen C, Driver J, Antoun N, Duncan J Attentional functions of parietal and frontal cortex. Cereb Cortex. 2005;15:1469-84.
    [59] Olivier Simon, Guillaume Flandin, Stanislas Dehaene. Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number. NeuroImage. 2004;23:1192– 202.
    [60] Parsons LM, Osherson D. New Evidence for Distinct Right and Left Brain Systems for Deductive versus Probabilistic Reasoning. Cereb Cortex. 2001 Oct;11(10):954-65.
    [61] Roland H.Grabnera DA, Karl Koschutnigc,Gernot Reishoferd,Franz Ebnerc,Christa Neupere. To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia. 2009; 47 604-8.
    [62] Robin N, and Holyoak, K. J. . Relational complexity and the functions of prefrontal cortex. The cognitive neurosciences. 1995;1st (M. S.Gazzaniga):987-97.
    [63] Sadato N IV. Frequency—dependent changes of regional cerebral blood flow during finger movements:unctional MRI compared to PET. J Cereb Blood Flow Metab. 1997;17(6):670-9.
    [64] Papke K RP. Optimized activation of the primary sensorimotor cortex for clinical functional MR imaging. AJNR. 2000;21(2):395-401.
    [65]张权.手运动及感觉BOLD-fMRI的研究进展.国外医学临床放射学分册.2004;279(5):291-4.
    [66] Andres FG MT, Schulman AE, Dichgans J, Hallett M, Gerloff C. Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain. 1999;122(5):855-70.
    [67] Veerle Puttemans NW, and Stephan P. Swinnen Changes in Brain Activation during the Acquisition of a Multifrequency Bimanual Coordination Task: From the Cognitive Stage to Advanced Levels of Automaticity. The Journal of Neuroscience 2005;25(17):4270-8.
    [68] Serrien. Interactions between new and pre-existing dynamics in bimanual movement control. Experimental Brain Research. 2009;197(3):269-78.
    [69] R.R. Walsh SLS, E.E. Chen, A. Solodkin. Network activation during bimanual movements in humans. NeuroImage. 2008;43:540-53.
    [70] Mechsner F KD, Knoblich G & Prinz W. Perceptual basis of bimanual coordination. Nature. 2001; 414:69-73.
    [71] Katharina Muller RK, Franz Mechsner and Ru diger J. Seitz. Perceptual in?uence on bimanual coordination: an fMRI study. European Journal of Neuroscience. 2009;30:116-24.
    [72] Spencer RM IR. The temporal representation of in-phase and anti-phase movements. Hum Mov Sci. 2007;26(2):226-34.
    [73] Wannier T BC, Colombo G, Dietz V. Arm to leg coodination in human during walking, ceeping and swimming. Exp Brain Res. 2001;105:375-9.
    [74] Tallet J BJ, James C, Hauert CA. Stability-dependent behavioural and electro-cortical reorganizations during intentional switching between bimanual tapping modes. Neurosci Lett ;2010;483(2):118-22.
    [75] Matthews AJ MF, Garry M, Summers JJ. The behavioural and electrophysiological effects of visual task difficulty and bimanual coordination mode during dual-task performance. Exp Brain Res. 2009;198(4):477-87.
    [76] Aramaki Y HM, Okada T, Sadato N. Neural correlates of the spontaneous phase transition during bimanual coordination. . CerebCortex 2006;16:1338-48.
    [77] Aramaki Y HM, Sadato N. Suppression of the non-dominant motor cortex during bimanual symmetric finger movement: A functional magnetic resonance imaging study. Neuroscience. 2006;141(4):2147-53.
    [78] Summers JJ DA, Byblow WD. The acquisition of bimanual coordination is mediated by anisotropic coupling between the hands. Hum Mov Sci. 2002;21(5-6):699-721.
    [79] J?ncke L PM, Himmelbach M, N?sselt T, Shah J, Steinmetz H. fMRI study of bimanual coordination. Neuropsychologia. 2000;38(2):164-74.
    [80] Buchanan. One-to-one and polyrhythmic temporal coordination in bimanual circle tracing. J Mot Behav 2006;38(3):163-84.
    [81] Pollok B GJ, Schnitzler A. How the brain controls repetitive finger movements. J Physiol Paris 2006;99(1):8-13.
    [82] Bingham GP HK, Mon-Williams M. The coordination patterns observed when two hands reach-to-grasp separate objects. Exp Brain Res. 2008;184(3):283-93.
    [83] Duque J DM, Delaunay L, Jacob B, Saur R, Hummel F, Hermoye L, Rossion B, Olivier E. Monitoring coordination during bimanual movements: where is the mastermind? J Cogn Neurosci 2010;22(3):526-42.
    [84] Frank G. Andres,Tatsuya Mima,Andrew E,Schulman JD, Mark Hallett and Christian Gerloff. Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain. 1998;122(5):855-70.
    [85] Wenderoth N DF, Sunaert S, Swinnen SP. The role of anterior cingulate cortex and precuneus in the coordination of motor behaviour. Eur J Neurosci. 2005;22(1):235-46.
    [86] Winstein CJ MA, Sullivan KJ. Motor learning after unilateral brain damage. Neuropsychologia. 1999;37(8):975-87.
    [87] Goble DJ CJ, Van Impe A, De Vos J, Wenderoth N, Swinnen SP. The neural control of bimanual movements in the elderly: Brain regions exhibiting age-related increases in activity, frequency-induced neural modulation, and task-specific compensatory recruitment. Hum BrainMapping. 2010;31(8):1281-95.
    [88] Song YG YK, Park KW, Park JH. Coordinative and limb-specific control of bimanual movements in patients with Parkinson's disease and cerebellar degeneration. Neurosci Lett. 2010;482(2):146-50.
    [89] Yekutieli Y. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics. 2001; 29(4):1165-88. .
    [90]刘舰龙.大脑前额叶与思维.自然杂志.1986;9(10):740-3.
    [91] Sakai K RN, Learning of sequences of finger movements and timing: frontal lobe and action-oriented representation. J Neurophysiol. 2002;88:2035-46.
    [92] Garraux G MC. Shared brain areas but not functional connections controlling movement timing and order. J Neurosci; 2005;25:5290-7.
    [93] Fletcher PC HR. Frontal lobes and human memory:insights from functional neuroimaging. Brain Lang. 2001;124(5):849-81.
    [94] Picard N SP. Imaging the premotor areas. Curr OpinNeurobiol 2001;11:663-72.
    [95] Sack AT HD, Prvulovic D, Formisano E, Jandl M, Zanella FE, Maurer K, Goebel R, Dierks T, Linden DE. The experimental combination of rTMS and fMRI reveals the functional relevance of parietal cortex for visuospatial functions. Brain Res Cogn Brain Res. 2002;13(1):85-93.
    [96] Vandenberghe R GD, Parrish TB. Functional speeicity of superior parietal mediation of spatial shifting. Neuroimage. 2001;14(3):661-73.
    [97]郑金龙.人脑顶叶在空间记忆认知功能中的作用..天津医药;2008;36(2).
    [98] Frings L WK, Quiske A. Precuneus is involved in allocentric spatial location encoding and recognition. Exp Brain Res. 2006;173(4):661-72.
    [99] Margulies DS VJ, Kelly C, Lohmann G. Precuneus shares intrinsic functional architecture in humans and monkeys. PNAS. 2009;106(47 ):20069-74.
    [100]陆勋林.大脑左侧角回的综合语言功能..科技文汇.2009;6月上旬刊:1672-7894.
    [101] Cohen YE AR. A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci. 2002;3:553-62.
    [102] Andersen RA BC. Intentional maps in posterior parietal cortex. Annu Rev Neurosci. 2002;25:189-220.
    [103] Fogassi L FP, Gesierich B, Rozzi S, Chersi F, Rizzolatti G. Parietal lobe: from action organization to intention understanding. Science. 2005;308:662-7.
    [104] Behrmann M GJ, Shomstein S. Parietal cortex and attention. Curr Opin Neurobiol2004;14:212-7.
    [105] Assad J. Neural coding of behavioral relevance in parietal cortex Curr Opin Neurobiol. 2003;13:194-7.
    [106] Blakemore SJ SA. Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res. 2003;153:239-45.
    [107] Fink GR MJ, Halligan PW, Dolan RJ. The neural consequences of conf lict between intention and the senses. Brain 1999;122:497-512.
    [108] Haaland, Knight. Neural representations of skilled movement. Brain. 2000;123(11):2306-13.
    [109] Shibata T SI, Ito T, Abla D, Iwasa H, Koseki K. The synchronization between brain areas under motor inhibition process in humans estimated by event-related EEG coherence. Neurosci Res. 1998;31:265-71.
    [110] Sirigu A DJ, Cohen L.The mental representation of hand movements after parietal cortex damage. Science. 1996;273:1564--8.
    [111] Crinion JT L-RM, Warburton EA, Howard D, Wise RJ. Temporal lobe regions engaged during normal speech comprehension. Brain. 2003;126:1193-201.
    [112] Frith U FC. Development and neurophysiology of mentalizing. PhilosTrans R Soc Lond. 2003;358:459-73.
    [113] Olson IR PA, Ezzyat Y. The Enigmatic temporal pole: a review of findings on social and emotional processing. Brain. 2007;130:1718–31.
    [114] Schacter DL WA. Medial Temporal Lobe Activations in fMRI and PET Studies of Episodic Encoding and Retrieval. HIPPOCAMPUS. 1999;9:7–24
    [115] Howard MW FM, Datey AV, Hasselmo ME. The Temporal Context Model in Spatial Navigation and Relational Learning: Toward a Common Explanation of Medial Temporal Lobe Function Across Domains. Psychological Review. 2005;112(1):75-116.
    [116] Maier JX CC, Ghazanfar AA. Integration of Bimodal Looming Signals through Neuronal Coherence in the Temporal Lobe. Current Biology. 2008;18(13):963-8.
    [117] Cohen NJ PR, Eichenbaum H. . Memory for items and memory for relations in the procedural/declarative memory framework. Memory. 1997;5:131-78.
    [118] Jiang Y WL. What is learned in spatial contextual cuing—conguration or individual locations? . Percept Psychophys. 2004;66:454-63.
    [119] Eichenbaum H YA, Ranganath C. The Medial Temporal Lobe and Recognition Memory. Annu Rev Neurosci. 2007;30:123–52.
    [120] Rogalsky C PE, Hillis AE, Hickok G. Auditory word comprehension impairment in acute stroke: Relative contribution of phonemic versus semantic factors. Brain Lang. 2008;107(2):167-9.
    [121] L. J?ncke RL, K. Lutz. Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cognitive Brain Research. 2000;10(1-2):51-66.
    [122] Stewart L vKK, Warren JD, Griffiths TD. Music and the brain: disorders of musical listening. Brain. 2006;129(10):2533-53.
    [123] Middleton F A SPL. Anatominal evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266:458.
    [124] Katanda K YK, Sugishita M. A functional MRI study on the neural substrates for writing. Hum Brain Mapping. 2001;13(1):34-42.
    [125] Preibisch C BD, Hofmann E. Cerebral activation patterns in patients with writer's cramp: a functional magnetic resonance imaging study. J Neurol. 2001;248(1):10-7.
    [126] Malm J KB, Karlsson T. Cognitive impairment in young adults with infratentorial infarcts. Neurology. 1998 51(2):433-40.
    [127]任玉芳.小脑的功能.人人健康.1998;8-10.
    [128] Stephen M. The evolution of brain activation during temporal processing. Nature. 2001;4(3):317-23.
    [129] Bullock D. Adaptive neural models of queuing and timing in?uent action. Trends Cogn Sci. 2004;89:426-33.
    [130] Meck WH PT, Pouthas V. Cortico-striatal representation of time in animals and humans. Curr Opin Neurobiol. 2008;18:145-52.
    [131] Ullen F FH, Ehrsson HH. Neural networks for the coordination of the hands in time. J Neurophysiol. 2003;89:1126-35.
    [132] Spencer RM ZH, Diedrichsen J, Ivry RB. Disrupted Timing of Discontinuous But Not Continuous Movements by Cerebellar Lesions. Science.2003; 300(5624):1437-9.
    [133] Debaere F WN, Sunaert S, Van Hecke P, Swinnen SP. Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. NeuroImage. 2004;21:1416-27.
    [134] Dinesh G. Nair KLP. Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences: a functional MRI study. Cognitive Brain Research. 2003;15:252-60.
    [135] Stephen P. Swinnen NW. Two hands, one brain:cognitive neuroscience of bimanual skill. Trends Cogn Sci. 2004;8(1):18-24.
    [136] Swinnen SP. Intermanual coordination from behavioural principles to neural-network interactions. Nature. 2002;3:350-60.
    [137] Nico U.F. Dosenbach DAF. Distinct brain networks for adaptive and stable task control in humans. PNAS. 2007;104(26):11073-8.
    [138] Ullen F. Independent neural control of rythmic sequences-behavioral and fMRI evidence. physiology&behavior. 2007;92:193-8.
    [139] Carson RG. Neural pathways mediating bilateral interactions between the upper limbs. brain research reviews. 2005;49:641-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700