平流层飞艇定点控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平流层飞艇具有很高的民用和军用价值,目前已成为各国新兴的研究热点。本论文主要研究了平流层飞艇的动力学模型和定点保持的相关问题,对飞艇的定点保持采用了滑模变结构和Backstepping两种不同的控制方法。所进行的研究与设计工作主要包括以下几个方面:
     1.对飞艇进行受力分析,着重分析了附加质量力、空气动力和力矩,分别给出了它们的一种近似的计算模型。推导了飞艇六自由度运动的动力学模型,然后结合运动学方程组,建立了飞艇完整的数学模型。
     2.针对平流层飞艇定点控制的特点,将飞艇模型按水平面和垂直面分别进行简化。因而,定点控制可以划分为水平面内的定位控制和垂直面内的定高控制。同时为了设计控制器的需要,采用反馈线性化的方法,将这两个非线性模型分别进行输入输出线性化。
     3.采用滑模变结构方法分别对飞艇水平面模型设计了定位控制器和对垂直面模型设计了定高控制器。考虑平流层风向和风速相对比较稳定,建立了水平风的扰动模型,在飞艇存在水平风干扰和不确定性模型参数干扰的情况下,设计了一种具有鲁棒性的滑模变结构的定位控制器和定高控制器来实现定点功能。
     4.采用Backstepping方法分别对飞艇水平面模型设计了定位控制器和对垂直面模型设计了定高控制器。在飞艇存在水平风干扰和不确定性模型参数干扰的情况下设计了一种基于Backstepping的定位控制器和定高控制器来实现定点功能。
     5.给出了两种控制方法的仿真结果并进行了比较分析。通过比较发现两种方法都可以实现控制目标。在水平面定位控制时滑模控制方法具有稳定时间短,消耗能量较少的优点,而Backstepping方法具有较好的动态性;在垂直面定高控制时,Backstepping方法则具有较短的稳定时间,能量消耗较少。
     6.结合Backstepping方法对飞艇的航迹跟踪作了初步研究。
Presently, there is a strong interest in developing stratospheric airships. Stratospheric airships which are High-altitude long-range have wide applications in the fields of transportation, observation, and telecommunication services, etc. This paper researches some questions about dynamic model and station-keeping control. Variable structure control and Backstepping control method are applied to control of airship in stationkeeping mode. The works of study and design are as follow:
     1. Based on analysing the forces acting on the stratospheric airship, particularly, the added mass force, air force and buoyancy are studied and three computing models are presented. A nonlinear model which is a six degree-of-freedom dynamic equations together with motion equations compose the whole airship mathematical model.
     2. Considering characteristic of stratospheric airship station-keeping control, the airship model is simplified to horizontal and vertical model. Thus, station-keeping control could be divided into horizontal position control and vertical high control. Use feedback linearization to linearize both nonlinear models.
     3. Applying variable structure control to design position controller in horizontal model and high controller in vertical model. Considering stratospheric wind speed is both relative stable, horizontal wind disturbance model is established. In the existence of parameters uncertainty and wind disturbance, a sliding mode controller is designed to achieve position control and high control.
     4. Applying Backstepping control to design position controller in horizontal model and high controller in vertical model. In the existence of parameters uncertainty of the model and wind disturbance, a Backstepping controller is designed to achieve position control and high control.
     5. The simulation results of both control methods are given and compared. By comparing both methods can be found to achieve respective control goal. In the horizontal position control, sliding mode control method has a relative short stable time and less control energy, while Backstepping control has dynamic effect. In the vertical high control, Backstepping control method has a relative short stable time and less control energy.
     6. Utilize Backstepping method to design airship trajectory tracking controller.
引文
[1] Masahiko Onda, Masaki Misawa, and Toshio Kojima. A Stratospheric LTA Stationary Platform for Telecommunication and Environmental Protection. SICE, 1999, 1(3):1227~1232.
    [2]曲东才,何宝民.飞艇的研制现状、技术水平及其发展前景.飞艇导弹,2000,11: 23~27.
    [3]梁平,曹兴武,熊申辉.近地空间的“新宠”--高高空飞艇.兵器大观,2005,9: 50~51.
    [4] Colozza, A. Initial Feasibility Assessment of a High Altitude Long Endurance Airship, NASA CA-2003-212724, Dec.2003: 23~29.
    [5] Elfes A, Bueno S, Bergerman M, and Ramos J. G. A Semi-autonomous Robotics Airship for Environmental Monitoring Missions. IEEE International Conference on Robotics and Automation, Leuven, Belgium, May1998,pp.3449~3455.
    [6] Lindstr, per.ESA-Hale.飞艇研究及开发项目,第二届平流层平台系统国际会议,2000,9: 15~21.
    [7]张乐平,兰俊杰,马妍.军用飞艇的发展现状与趋势.飞航导弹,2007,12: 35~37.
    [8]李利良,郭伟民,何家芳.国外近空间飞艇的现状和发展.武器装备自动化,2008,27(2): 32~35.
    [9]刘玉伏,龚荣兴.美军浮空器的发展.装备新锐,2007,7: 39~42.
    [10] Andreas Jakobi, Peter Funk, Thorsten Lutz and Siegfried Wagner. Modelling of Airship Wakes Applying Higher Order Panel Elements. 14th AIAA Lighter-Than-Air Technical Committee Convention and Exhibition, July 15~19, 2001: 1~15.
    [11]徐文.日本高空无人驾驶飞艇技术的突破.国际航空杂志,2005,6: 32~33.
    [12] Sangjong Lee, Hyochoong Bang. Three-Dimensional Ascent Trajectory Optimization for Stratospheric Airship Platforms in the Jet Stream. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1341~1352.
    [13]欧阳晋,屈卫东,席裕庚.平流层平台的发展及其自主控制关键技术.工业仪表与自动化装置,2004年第一期.
    [14]王海峰,宋笔锋,王海平.高空飞艇定点控制关键技术及解决途径.飞行力学,2005.23(4): 5~8.
    [15] Masahiko Onda. Design and Applications of a Stratospheric Long Endurance LTA Platform. AIAA 2001: 52~66.
    [16]田荣湘.大气环流变化时南北半球、东西半球对流层与平流层研究.浙江大学学报(理学版),2000,1(1): 84~91.
    [17]王明建,黄新生.平流层飞艇平台的发展及关键技术分析.自动测量与控制,2007,26 (8): 58~60.
    [18]欧阳晋.空中无人飞艇的建模与控制方法研究.上海:上海交通大学博士论文,2003.
    [19]刘丹,王晓亮,单雪雄.平流层飞艇的附加质量及其对飞艇运动的影响.计算机仿真,2006,23 (6): 52~56.
    [20]施生达.潜艇操纵性.北京:国防工业出版社,1995: 23~30,149~190.
    [21] Khoury, G.A., and Gillet, J.D. Airship Technology. Cambridge Univ. Press, New York,1999.
    [22] L. B. Tuckerman. Notes On Aerodynamic Forces On Airship Hulls. NACA, NACA-TN-129, 1923.
    [23] Tuckerman. L. B. Inertia Factors of Ellipsoids for use in Airship Design. NACA Report, no. 210,1926.
    [24] Jones, S. P, DeLaurier, J. D. Aerodynamic Estimation Techniques for Aerostats and Airships. AIAA Lighter-than-Air Systems Conference, AIAA, Annapolis, MD, 1981:21~28.
    [25]丁洪波.超高空、长航时飞艇动力学模型与航迹优化.长沙:国防科学技术大学硕士论文,2006: 5~25.
    [26] Michael T. Frye, Stephen M. Gammon, and Chunjiang Qian. The 6-DOF Dynamic Model and Simulation of the Tri-Turbofan Remote-Controlled Airship. Proceedings of the 2007 American Control Conference Marriott Marquis Hotel at Times Square New York City, July11-13,2007: 813~821.
    [27] S. B. V. Gomes , J. G. Ramos. Airship Dynamic Modeling for Autonomous Operation. Proceeding of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Beligium, May 1998: 3462~3467.
    [28] J. B. Mueller, M. A. Paluszek, Y. Zhao. Development of an Aerodynamic Model and Control Law Design for a High Altitude Airship. Proceeding of the AIAA 3rd Unmanned Unlimited Technical Conference. Workshop, and Exhibit,Chicago,IL, September 2004: 1~17.
    [29]张明廉.飞行控制系统.北京:航空工业出版社,1994: 44~45.
    [30]梁栋,李勇.平流层飞艇定点保持模式的建模与稳定性分析.航天器工程,2007,16(4) : 108~113.
    [31]夏小华,高为炳.非线性系统控制及解耦.北京:科学出版社,1997.
    [32]翁志黔,欧阳晋,李小贝.非线性反馈线性化方法在飞控系统中的应用.飞行力学,1999,17(4): 22~27.
    [33]罗凯,李俊,许汉珍.潜艇垂直面运动的非线性滑动控制.华中理工大学学报,1999,27(5): 94~96.
    [34]邓黎.平流层飞艇的环境控制.航天返回与遥感,2006,27 (3): 51~52.
    [35] C.P. Burgess. Forces On Airship In Gusts, National Advisory Committee For Aeronautics. Report No.204, 1924: 3~8.
    [36] Jose Raul Azinheira, and Ely Carneiro de Paiva. Influence of Wind Speed on Airship Dynamics. Journal of Guidance, Control, and Dynamics, 2002, 25(6): 1116~1124.
    [37]杨盐生.不确定系统的鲁棒控制及其在船舶运动控制中的应用.大连:大连海事大学博士论文,2000,161~165.
    [38] Sangjong Lee, and DongMin Kim. Feedback Linearization Controller for Semi Station Keeping of the Unmanned Airship. AIAA 5th Aviation, Technology, Integration, and operations Conference(ATIO) Arlington, Virginia, 26-28 September 2005: 137~141.
    [39]方存光,王伟.自主飞艇俯仰角姿态动力学建模及控制.控制理论与应用,2004,21(2): 231~238.
    [40]王丰尧.滑模变结构控制.北京:机械工业出版社,1995,1~205.
    [41] Kulczychki E. A., Joshi S. S., Hess R. A, and Elfes A. Towards Controller Design for Autonomous Airship Using SLC and LQR Method. AIAA Guidance, Navigation and Control Conference and Exhibit, Keystone, Colorado, August 21-24,2006: 73~78.
    [42]高为炳.变结构控制的理论及设计方法.北京:科学出版社,1996,124~187.
    [43]王晓亮,刘丹,单雪雄.飞艇三维航迹控制研究.上海交通大学学报,2006,40(12) : 2164~2168.
    [44] Haojian Xu, Maj D. Mirmirani, and Petros A. Ioannou. Adaptive Sliding Mode Control Design for a Hypersonic Flight Vehicle. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 829~838.
    [45] Li Y, and Nahon M. Simulation of Airship Dynamics, AIAA Guidance. Navigation and Control Conference and Exhibit, Keystone, Colorado, August 21-24, 2006: 37~42.
    [46]姜晓红,王兴成.基于非线性Backstepping的船舶航向控制器设计.大连:大连海事大学硕士论文,2003,160~165.
    [47]刘燕斌,陆宇平.基于反步法的高超音速飞机纵向逆飞行控制.控制与决策,2007,22(3): 313~316.
    [48] L. Sonneveldt, Q.P.Chu, and J.A.Mulder. Nonlinear Flight Control Design Using Constrained Adaptive Backstepping. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 322~336.
    [49] Lotfi BEJI, azgal ABICHOU, and Yasmina BESTAOUI. Stabilization of a Nonlinear Underactuated Autonomous Airship-A Combined Averaging and Backstepping Approach. 3th International Workshop on Robot Motion and Control, Nocember 9-11, 2002: 223~229.
    [50] Ki-Seok Kim, and Youdan Kim. Robust Backstepping Control for Slew Maneuver Using Nonlinear Tracking Function. IEEE Transaction on Control System Technology, 2003, 11(6): 822~829.
    [51]谢克明.现代控制理论基础.北京:北京工业大学出版社,2003,497~500.
    [52]廖晓昕.动力系统的稳定性理论和应用.北京:国防工业出版社,2000: 56~57.
    [53]杨俊华,吴捷等.反步方法原理及在非线性鲁棒控制中的应用.控制与决策,2002,17(Suppl): 641~645.
    [54] Amiryants G. A, Grigorive V. D, Ishmuratov F. Z, Franz A, d’Henin E, and kaempf B. Investigations of Airship Aeroelasticity. 23rd International Congress of Aerospace Sciences, Toronto, Canada, 2002: 72~79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700