先进控制策略在单元机组协调控制系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单元机组系统简单,具有蒸汽管道比较短,阀门和管道附件比较少,发电机母线短,从而使得单元机组投资少、操作简单、系统事故发生机会减少,同时也使得单元机组可以较好地进行滑参数运行和滑参数启、停。另外,单元机组也便于锅炉、汽轮机、发电机的集中控制和运行,因此,单元机组在我国火电机组中占有较大的比重。随着电力需求的不断增长,科学技术的不断进步和对机组经济性能要求的不断提高,大容量、高参数、高自动化技术的大单元机组已经成为我国电力工业发展的主要特点。目前,单元机组协调控制系统中其控制策略均采用常规PID加前馈补偿方式。因火电机组控制对象的复杂性,其设备和工作原理涉及多个领域,多个变量,动态特性具有非线性、大滞后和时变等特点,这种基于单回路固定模型的传统控制策略限制了控制品质的提高,因此开发出适合火电过程控制的先进控制策略具有重要意义。
     在这种传统的方式下,锅炉和汽轮机已结合成一个联合的调节对象,以其内部的协调配合来最大限度地满足电网的负荷要求。协调机组的内部关系,也就成为单元机组主控系统所要解决的问题.单元机组主控系统是协调控制系统的核心,是整个单元机组自动调节系统的指令系统,它把外部对单元机组的负荷要求信号进行处理,使它转化为适合于机、炉运行状态和变动负荷能力,并发出使机、炉配合动作的指令协调控制系统是单元制发电机组的控制中枢,是现代电站自动化系统中最为核心的组成单元。本文应用线性多变量控制及非线性控制的相关原理和方法研究了单元机组协调控制系统的设计、整定、工程实现等问题,致力于推动先进控制策略的工程应用,提高协调控制系统对过程非线性的适应能力。
     本文深入研究了非线性、多变量热工对象的先进控制策略问题,主要内容归纳为如下:
     针对非线性多变量对象,本文首先应用常规的模糊控制方法和模糊自适应非线性控制策略应用于单元机组负荷控制中,使单元机组非线性引发的解耦模型无法实现和线性控制器品质差的问题,得到有效解决。文中就常规模糊控制应用于单机组控制中,设计了规则少的模糊非线性在线新型控制器,为模糊控制理论在负荷控制中的工程实际作了新的尝试。在研究中发现,对于高阶系统,参数估计的高阶导数将会出现在控制率中,所以,自适应反馈线性化不能被用到通过反馈线性化的所有系统。为了解决单元机组协调控制中的此类问题,在常规的Backstepping方法基础上,提出了一种新的方法,自适应模糊控制的Backstepping设计方法,并将应用到机组协调控制中,收到了良好的效果。
     单元机组协调控制系统中的锅炉主蒸汽温度是电厂生产运行中的一个非常重要的监测和控制参数,过高或过低都会影响到机组的安全性和经济性,一般要求主蒸汽温度基本上维持在额定值(即给定值)附近。主蒸汽温度的控制多年来一直是电厂过程控制中的一个难点,这主要是因为:首先,主蒸汽温度被控对象总是存在一定的迟延,而且机组容量越大迟延就越严重,常常使得反馈控制作用来不及进行调节;其次,主蒸汽温度被控对象的动态特性随着工况的变化会发生变化,即其数学模型在不同的工况下是不同的,这会导致参数固定不变的控制器在变工况情况下的实际控制效果恶化;另外,主蒸汽温度被控对象的动态特性是非线性的,也增加了控制的难度。针对电厂过程控制中主蒸汽温度的大迟延性、非线性和时变性,本文在充分分析主蒸汽温度被控对象动态特性和现场实际情况的基础上,对主蒸汽温度被控对象采用了工程上可实现的模糊自适应控制方案。
     提出了将自适应逆控制作为一种新的方法,应用于复杂、未知的和不确定的单元机组协调控制中,通过逆系统方法和模糊自适应逆控制两种方法对单元机组典型负荷下的控制进行系统设计和仿真试验。证明方法的可行性。
     针对多输入多输出非线性的单元机组协调控制系统,提出了一种非常易于工程实现的控制方法,即采用静态神经网络和若干积分器组成的动态神经网络逆系统方法,对被控对象进行“线性化”并解耦,然后对线性化解耦后的各线性子系统设计了闭环控制器,从而获得优良的静、动态特性与抗干扰能力。本文中对该方法的工程实现进行了详细阐述。
     最后对全文作出总结,并提出了下一步研究的方向。
Unit plant has some advantages, such as simple system, short steam pipe, few valve and pipe accessory, and short generator bus, which makes less investment, simpler operation, less accident and unit sliding-parameter running and startup or shutdown better. In addition, the unit also facilitates the centralized operation for the boiler, turbine and generator. Therefore, the unit account for high proportion in power plant in china. With the continuous demand of electricity, the progress of science and technology and high requirement of unit economical performance, main characteristics of power industry is focused on the large capacity and high parameters good automation technology for the unit plant. In present, the control strategies of the unit coordinated control system still depend on PID and feed-forward compensation theory. Because of complex control objects, unit plant involves several domains and multivariable in its equipment and principle, and has some features of time-delay and time-varying nonlinear dynamic property. Furthermore, traditional control strategy based on single loop model limits the quality of the control system. So it is significant to explore advanced control strategy to enhance power process.
     Boiler and turbine are combined into a control object in traditional method, which is adjusted by internal coordination to satisfy the requirement of power network load to the greatest extent. Then, coordinating the internal relationship becomes the major problem of main control system of unit plant. In addition, the main control system is the core of coordinated control system, and is the instruction system of the whole unit plant in automatic regulation. Signal from external requirements for the load of the unit plant is processed and transformed by main control system for better operation states of plant and boiler. The main control system is the key part of the unit generator with instructions which is used to coordinate the boiler and turbine better, is an indispensable core of modern automatic power plant. In this paper, the design and realization of the unit coordinated control system are studied based on the linear multiple-variable control and nonlinear control theory and methods in order to enhance the application of advanced control strategy and improve the adaptability of coordinated control system for the nonlinear process.
     In this paper, we concern with the nonlinear and multivariable thermal object with advanced control strategy, the main research is as follows:
     For the nonlinear multivariable problem, fuzzy control method and fuzzy adaptive nonlinear control strategy are applied in the load control of unit plant, which solved decoupling model realization and quality of linear controller due to the nonlinear characteristic in unit plant. The nonlinear fuzzy controller of unit plant with fewer rules is designed in a new way for the engineering. For the high order system, the higher derivative of parameter estimation appeared in the control rate. So the adaptive feedback linearization can not be applied in all feedback linearization systems. In order to solve this problem in unit plant, a new method, fuzzy adaptive control based on back-stepping, is proposed, and it has got a good result in coordinated control of unit plant.
     Main steam temperature of boiler in the unit coordinated control system is a important monitoring and control parameter, and much higher or lower temperature will both have negative influence in safety and economy. Generally, it is required to maintain the main steam temperature at the constant value, which is a difficult problem in the process control of power plant. The reasons are as follows:firstly, there exists time-delaying in the object of main steam temperature. The larger the capacity is, the worse the time-delaying is. So it can not be adjusted in time with the feedback control method; secondly, the dynamic characteristic of main steam temperature is changed with the variant working conditions. It is that the mathematic model is changed with the variant working conditions, which cause bad adjustment with the fixed controller. Furthermore, the dynamic and nonlinear object of main steam temperature can also increase the difficulty of adjustment. For the large time-delaying, nonlinear and time-varying characteristic in process control, fuzzy adaptive method is applied in main steam temperature based on the analysis of practical situation.
     The adaptive inverse control method is proposed in the application on the complex, unknown and uncertain coordinated control of unit plant. Two methods, inverse system method and fuzzy adaptive inverse control method, are designed for the typical load of unit plant. Finally the simulative results prove the feasibility of these methods.
     For the MIMO nonlinear unit coordinated control system, a new method is presented based on static neural network, dynamic neural network with some integrators and inverse system method, and it is simple and easy to be realized. After linearization and decoupling for the objects, a closed-loop controller of subsystem is designed with better static, dynamic and anti-interference ability. Of course, the realization process of the method is deeply expatiated.
     In the end, summary and future research prospect are given.
引文
1.王淼婺.火电机组协调控制对AGC的适应性分析[J].中国电力,1999,32(6):45-47.
    2.刘吉臻,陈彦桥,曾德良,等.500MW机组模糊多模型协调控制系统[J].动力工程,2003,23(6):2790-2794.
    3.李益国,沈炯,吕震中.火电单元机组负荷模糊内模控制及其仿真研究[J].中国电机工程学报,2002,22(4):90-93.
    4.唯刚,韦红旗,陈绍炳,等.单元机组负荷多变量模型预测控制[J].中国电机工程学报.2002,22(4):144-148.
    5.沈炯,金林,陈来九.火电单元机组负荷预见控制系统仿真研究[J].中国电机工程学报.1999,19(3):14-17.
    6.李益国,沈炯,吕震中.基于LMI的鲁棒负荷预见控制方法[J].中国电机工程学报.2003,23(12):213-217.
    7.曾德良,刘吉臻.单元机组智能协调控制系统的发展和应用[J].电力情报,1998,(3):6-10.
    8.张贻琛,李遵基.对协调控制系统中几种锅炉主控前馈信号的分析[J],电力技术,1986,(9):31-33.
    9.张贻琛.200MW供热单元机组协调控制系统[J].华北电力学院学报,1987,(3):1-8.
    10.李遵基.单元机组数字式协调控制系统[J].电力系统自动化,1989,(3):53-57.
    11.牛玉广.SPEC200Micro自整定功能的应用[J].自动化仪表,1989,(5):31-33.
    12.陈彦桥,牛玉广,何同祥.200MW直流单元机组协调控制系统设计与应用[J].华北电力技术,2000,(1):6-8.
    13.李希武.直接能量平衡法(DEB)控制系统分析[J].中国电力,2000,33(6):65-69.
    14.于达仁.DEB的新认识—增益调度控制[J].热能动力工程,1999,(9):379-381.
    15. Tan W. Robust Control for a Non-linear Boiler-Turbine System [J]. Control Theory and Applications,1999, (6):863-867.
    16.郑犯,曹在基.DEB协调控制系统[J].动力工程,1989,9(4):1-8.
    17.翁一武,于达仁,徐基豫.锅炉跟随控制的构成—兼论直接能量平衡控制的动态特性[J].动力工程,2001,21(1):1050-1053.
    18. Liu H B, Li S Y, Chai T Y. Intelligent decoupling control of power plant main steam pressure and power output [J]. Electrical Power and Energy System,2003,25:809-819.
    19. Tan W, Liu J Z, Fang F, Chen Y Q. Tuning of PID controllers for boiler-turbine units [J]. ISA Transactions,2004,43(4):71-583.
    20. Fang F, Tan W, Liu J Z. Tuning of coordinated controllers for boiler-turbine units [J]. Acta Automatica Sinica,2005,31(2):291-296.
    21. Chen K W, Asok R. Robust Wide-Range Control of Steam-Electric Power Plants [J]. IEEE Transactions on Control Systems Technology,1997,5(1):74-88.
    22. Tan W, Marquez H J, Chen T W. Multivariable Robust Controller Design for a Boiler System [J]. IEEE Transactions on Control Systems Technology,2002,10(5):735-742.
    23. Frederic L M, Gilles D. Design of a Controller for a Steam Generator of a Power Plant Using Robust Control and Genetic Algorithm [C]. Proceedings of IEEE International Conference on Control Applications, Glasgow, Scotland, U. K,2002,1050-1055.
    24. Hogg B W, El-Rabaie N M. Generalized predictive control of steam pressure in a drum boiler [J]. IEEE Transactions on Energy Conversion,1990,5(3):485-492.
    25. Hogg B W, El-Rabaie N M. Multivariable generalized predictive control of a boiler system [J]. IEEE Transactions on Energy Conversion,1991,6(2):282-288.
    26. Lu S, Hogg B W. Predictive coordinated control for power-plant steam pressure and power output [J]. Control Engineering Practice,1997,5(1):79-84.
    27. Prasad G, Irwin G W, Swidenbank E, Hogg B W. Plant-wide predictive control for a thermal power plant based on physical plant model [J]. IEE Proceedings Control Theory and Applications, 2000,147(5):523-537.
    28. Prasad G, IwrinG W, Swidenbnak E, Hogg BW. Plant wide predictive control for a thermal Power Plant based on Physical Plant model. IEE Proceedings Control Theory and Applications,2000, 147(5):523-537.
    29.沈炯.火电单元机组负荷预见控制系统仿真研究[J].中国电机工程学报,1999 19(3):14-17.
    30.于达仁,翁一武,王仲奇.火电单元机组的柔性控制[J].中国电机工程学报,2002,22(7):129-133.
    31. Mortensen J H, Moelbak T, Andersen P, Pedersen T S. Optimization of boiler control to improve the load-following capability of power-plant units [J]. Control Engineering Practice,1998,6: 1531-1539.
    32. Raul Garduno-Ramirez. Overall intelligent hybrid control system for a fossil-fuel power unit [D]. Doctoral thesis of The Pennsylvania State University,2000.
    33. Isidori A. Nonlinear Control Systems (Second Edition) [M]. New York, Springer-ver lag,1989.
    34. Bolek W, Sasiadek, Wisniewski T. Linearization of non-linear MIMO model of large power plant station [C]. Proceedings of American Control Conference,2000,6:4435-4436.
    35.葛友,李春文.反馈线性化方法在锅炉—汽轮机系统控制中的应用[J].清华大学学报(自然科学版),2001,41(7):125-128.
    36.房方,刘吉臻,谭文.单元机组协调系统的非线性内模控制[J].中国电机工程学报,2004,24(4):195-199.
    37.王东风.锅炉—汽轮机系统的逆系统控制方法[J].自动化与仪器仪表,2001,27(1):12-13.
    38. Bolek W, Sasiadek J, Wisniewski T. Adaptive back-stepping control of a power plant station model [C]. IFAC 15th Triennial World Congress,2002,1650-1655.
    39.陈彦桥,刘吉臻,谭文.模糊多模型控制及其对500MW单元机组协调控制系统的仿真研究[J].中国电机工程学报,2003,23(10):199-203.
    40.黄祖毅,李东海,姜学志.机炉协调的增益调度伺服系统[J].中国电机工程学报,2003,23(10):191-198.
    41. Astrom K J, Bell R D. Dynamic Models for Boiler-turbine-alternator Units:Data Logs and Parameter Estimation for a 160MW Unit [J]. Automatic Control Lured Institute Tech. Lured, Sweden, Rep. LUTFD2/(TFRT-3192),1987:1-137.
    42. Kai-Pong Cheung, etc. Comparison of Fuzzy and PI Controllers for a Benchmark Drum-boiler Model [C]. Proceedings of the 1998 IEEE International Conference on Control Applications, Trieste, Italy, September 1998:958-962.
    43.朱予东.基于专家规则的模糊控制器的仿真研究[J],华北电力大学学报,2000,(4):29-31.
    44. Raul Garduno Ramirez, etc. Wide Range Operation of a Power Unit via Feed forward Fuzzy Control [J]. IEEE Transactions on Energy Conversion, December 2000,15(4):421-426.
    45.刘向杰.动力锅炉燃烧系统的模糊控制策略[J].自动化学报,1998(4):534-538.
    46.柴天佑.基于模糊推理和自适应控制的单元机组协调控制系统设计新方法及其应用[J].中国电机工程学报,2000,(4):14-18.
    47.葛红.变结构神经网络模糊控制器的研究[J].控制理论与应用,1999,16(2):184-189.
    48.彭小奇.多变量系统的模糊神经网络控制模型与其应用[J].控制理论与应用,1995,12(3):351-359.
    49.王殿辉.自适应模糊神经网络控制器设计的线性化方法[J].控制与决策,1995,10(1):21-27.
    50.王晓哗.神经网络自学习模糊控制及其在合成氨生产中的应用[J].控制与决策,1999,14(增): 613-616.
    51.段培永.一种基于CMAC神经网络的自学习控制器[J].控制与决策,1999,14(1):77-80.
    52.张建明.火力单元机组的前馈模糊神经非模型单元机组协调控制[J].动力工程,2000,(3):664-668.
    53.陈彦桥.基于PID型模糊神经网络的火电站单元机组协调控制[J].动力工程,2003,(1):2219-2223.
    54.曾德良.基于速率优化的智能协调控制系统的研究和应用[D].华北电力大学博士学位论文,河北保定,2000.
    55.刘吉臻.330MW机组智能协调控制系统[J].武汉水利电力大学学报,1999,(6): 50-56.
    56.王东风.单元机组协调控制系统发展和现状[J].中国电力,2002(11):69-73.
    57.刘吉臻.协调控制与给水全程控制[M].北京:中国电力出版社,1993.
    58.李萌,沈炯.基于自适应遗传算法的过热汽温PID参数优化控制仿真研究[J].中国电机工程学报,2002,22(8):145-149.
    59.王东风,韩璞.基于免疫遗传算法优化的汽温系统变参数PID控制[J].中国电机工程学报,2003,23(9):212-217.
    60. McDonald J P, Spare J H. A nonlinear model for reheat boiler-turbine-generator system Parts Ⅰ and Ⅱ [C]. Proceedings. JACC, St. Louis, USA,1971,219-236.
    61. Astrom K J, Ekiund K A. Simplified nonlinear model of a drum boiler turbine unit [J].International Journal of Control,1972,16(1):145-169.
    62. De Mello F P. Boiler model for system performance studies [J]. IEEE Transaction on power Systems,1991,6(1):66-74.
    63. De Mello F P. Dynamic models for system fossil fueled steam units in power system studies [J]. IEEE Transaction on power system,1991,6(2):753-761.
    64. Cheres E. Small and medium size drum boiler models suitable for long term dynamic response [J]. IEEE Transaction on Energy Conversion,1990,5(4):686-692.
    65. Cheres E. Palmor Z J, Tuch J. Drum type boiler following control configuration [J]. IEEE Transaction on Energy Conversion,1994,9(1):199-205.
    66. Chawdry P K, Hogg B W. Identification of boiler models [J]. IEEE Proceeding Control Theory and Application,1989,136(5):261-271.
    67. Bell R D, Astrom K J. Drum-boiler dynamics [J]. Automatica,2000,36(3):363-378.
    68. Bell R D, Astrom K J. Simplified models of boiler-turbine unit [R]. Report TFRT-3191, Dept. of Automatic Control, Lund Institute of Technology, Sweden,1987.
    69. Prasad G Swidenbank E, Hogg B W. A novel performance monitoring strategy for economical thermal power plant operation [J]. IEEE Transactions on Energy Conversion,1999,14(3): 802-809.
    70.范永胜,徐治皋,陈来九,等.超临界直流锅炉蒸汽发生器的建模与仿真研究(一)[J].中国电机土程学报,1998,18(4):246-253.
    71.范永胜,徐治皋,陈来九,等.超临界直流锅炉蒸汽发生器的建模与仿真研究(二)[J].中国电机工程学报,1998,18(5):350-356.
    72.曾德良,赵征,陈彦桥,刘吉臻.500MW机组锅炉模型及试验分析[J].中国电机工程学报,2003,23(5):149-152.
    73.刘吉臻,陈彦桥,曾德良,等.500MW机组模糊多模型协调控制系统[J].动力土程.2003,23(6):2790-2794.
    74.曾德良,刘吉臻.汽包锅炉的动态模型结构与负荷/压力增量预测模型[J].中国电机工程学报,2000,20(12):75-79.
    75.田亮,曾德良,刘吉臻,赵征.简化的330MW机组非线性动态模型[J].中国电机工程学报,2004,24(8):180-184.
    76.田亮,曾德良,刘鑫屏,刘吉臻.500MW机组简化的非线性动态模型[J].动力工程学报,2004,24(4):522-525.
    77.李益国,沈炯,吕震中.火电单元机组负荷模糊内模控制及其仿真研究[J].中国电机工程学报.2002,22(4):90-93.
    78.唯刚,韦红旗,陈绍炳,等.单元机组负荷多变量模型预测控制[J].中国电机工程学报.2002,22(4):144-148.
    79.张帅帅,周怀春,彭敏,等.基于炉膛辐射能信号的电站燃煤机组燃烧控制研究[J].中国电机土程学报.2002,22(11):156-160.
    80. De Mello F P. Boiler models for system performance studies [J]. IEEE Transaction on Power Systems,1991,6(1):66-74.
    81. De Mello F P. Dynamic models for fossil fueled steam units in power system studies [J]. IEEE Transaction on Power System,1991,6(2):753-761.
    82. Cheres E. Small and medium size drum boiler models suitable for long term dynamic response [J]. IEEE Transaction on Energy Conversion,1990,5(4):686-692.
    83. Chere S E, Palmor Z J, Tuch J. Drum type boiler following control configuration [J]. IEEE Transaction on Energy Conversion,1994,9(1):199-205.
    84. Hwang C S, Kim W A. Design of Robust Two "degree" of freedom Boiler turbine Control System Using Hoo Optimization Method [A]. Proc 34th SICE Annual Conf. Sapporo,1995:1263-1268.
    85. Mello F P, Fellow. Dynamic Models for Fossil Fueled Steam Units in Power System Studies [J]. IEEE Trans on Power System,1991,6 (2):753-761.
    86. Shinohara W, Kodttschek D E. A Simplified Model Based Supercritical Power Plant Controller [A]. Proc of 35th IEEE Conf on Decision and Control [C]. Kobe,1996:4486-4491.
    87.吕志来,张保会.基于ANN和模糊控制相结合的电力负荷短期预测方法[J].电力系统自动化,1999,23(22):37-39.
    88. Chen Y Q, Liu J Z, Zeng D L, et al. Design of a Self learning Fuzzy neural Networks and Application to a Boiler-turbing Coordinated Control System [A]. Int Conf on Electrical Engineering [C]. Jeju Island,2002:283-287.
    89. Wen T. Hoo Control for a Boiler-turbine Unit [A]. Proceedings of the 1999 IEEE, Int Conf on Control Applications [C]. Hawaii,1999:910-914.
    90.柳洪义,马现刚,朱树森.微波催化连续反应实验系统的温度控制[J].东北大学学报,2003,24(3):256-259.
    91. Wu Z Q, Mizumoto M. PID type Fuzzy Controller and Parameters Adaptive Method [J]. Fuzzy Set and System,1996,78(1):23-25.
    92.魏毅新,王新春.燃煤锅炉蒸汽压力的模糊控制[J].包头钢铁学院学报,2002,21(2):162-164.
    93.施海平,吴征,吴永海.模糊控制技术在国产200MW机组协调控制系统上的应用[J].中国电力,1999,32(3):47-53.
    94.陈彦桥,王印松,刘吉臻,等.基于PID型模糊神经网络的火电站单元机组协调控制[J].动力工程,2003,23(1):2219-2223.
    95. Wang L X and Mendel J. M. Fuzzy basis functions, universal approximation, and orthogonal least squares learning [J]. IEEE Transactions on Neural networks, September 1992,3(5):807-814.
    96. Wang L X. Stable adaptive fuzzy control of nonlinear systems [J]. IEEE Transactions on Fuzzy Systems, January 1993,1(1):146-155,
    97. Wang L X. Adaptive fuzzy systems and control:Design and stability [C]. Englewood Cliffs, NJ: Prence-Hall,1994.
    98. Y. C. Chang and B. S. Chen. Robust tracking designs for both holonomic and nonholonomic constrained mechanical system:adaptive fuzzy approach [J]. IEEE Transactions on fuzzy systems, 2000,8(1):46-65.
    99. Chen B S, Li C H, and Chang Y C. H∞ tracking design of uncertain SISO system:adaptive fuzzy approach [J]. IEEE Transactions on Fuzzy Systems,1996,4(1):32-43.
    100. Spooner J T and Passino K M. Stable adaptive control using fuzzy systems and neural networks. IEEE Transactions on Fuzzy Systems,1996,4:339-359.
    101. Tong S C and Li H H. Fuzzy adaptive sliding model control for MIMO nonlinear systems. IEEE Transactions on Fuzzy Systems, June 2003,11(3):354-360.
    102. Kanelakopoulos I, Kokotovic P V, and Morse A S. Systematic design of adaptive controller for feedback linearizable systems [J]. IEEE Transactions on Automatic Control,1991,36:1241-1253.
    103. M. Krstic, I. Kanelakopoulos, and P. V. Kokotovic. Nonlinear and adaptive control design [M]. Wiley, New York,1995.
    104. Freeman R A and Kokotovic P V. Robust nonlinear control design [M]. Birkhauser, Boston,1996.
    105. Seto D, Annaswamy A M, and Baillieul J. Adaptive control of nonlinear systems with a triangular structure [J]. IEEE Transactions on Automatic Control,1994,39:1411-1428.
    106. Hsu F Y and Fu L C. A novel adaptive fuzzy variable structure control for a class of nonlinear uncertain system via back stepping [J]. Fuzzy Set and System,2001,122(1):83-106.
    107. Wang W Y, Chan M L, Lee T T, and Liu C H. Adaptive fuzzy control for strict-feedback canonical nonlinear systems with Hoo tracking performance [J]. IEEE Transactions on Systems, Man, Cybernetics B,2000,30:858-878.
    108. Yang Y S, Feng G., and Ren. J S. A combined back-stepping and small-gain approach to robust adaptive fuzzy control for strict-feedback nonlinear systems [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:System and Humans, May 2004,34(3):406-420.
    109. Zhang T, Ge S S, and Huang C C. Adaptive neural network control for strict-feedback nonlinear systems using back-stepping design [J]. Automation,2000,36:1835-1846.
    110.Benaskeur A R, Desbiens A. Backstepping-based adaptive PID control [J]. PID Control,2002, 149(1):54-59.
    111.威德罗,瓦莱斯.自适应逆控制[M].西安:西安交通大学出版社,2000.
    112. Rugh W J. Nonlinear system theory:The Volterra/Wiener approach [M]. London:The John Hopkina University press,1981.
    113. Schetzen M. The Volterra and Wiener theories of nonlinear system [M]. New York:Wikey,1980.
    114.方洋旺,刘占辰,韩崇昭.非线性系统的鲁棒镇定:Volterra级数法.火力与指挥控制[J], 1999,24(3):8-44.
    115.方洋旺,韩崇昭.SISO非线性系统的H∞控制:Volterra级数法[J].控制理论与应用,2000,17(4):561-565.
    116. Chen S, Billings S A, Luo W. Orthogonal least squares methods and their application to non-linear system identification [J]. Int. J. Contr.1989,50(5):1873-1896.
    117. Wang L X, Mendel J M. Back-propagation fuzzy system as nonlinear dynamic system identifiers [A]. Proc. IEEE International Conf. on Fuzzy System, San Diego 1992:1409-1418.
    118. Wang L X. Design and stability analysis of fuzzy identifiers of nonlinear dynamic system [J]. Proceedings IEEE Conference on Decision and control,1992.
    119. Takagi H. Introduction to Japanese consumer products that apply neural networks and fuzzy system [M]. Personal communication,1992.
    120.戴先中.多变量非线性系统的神经网络逆控制方法[M].科学出版社,2005.
    121. Nielsen R H. Theory of the back propagation neural network [J]. IJCNN,1989,89:2593-2605.
    122. Kolmogorov. On the presentation of continuous function of many variables by superposition of continuous function of one variable and condition, Dokl. Nauk, USSR,1957,114,953-956.
    123.王庆利,王丹,井元伟,张嗣瀛.激励Stackelberg策略下的电价算法[J].东北大学学报(自然科学版),2006,27(1)1:1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700