不确定非线性系统的Backstepping控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不确定非线性系统控制是近年来的研究热点之一,特别是带有执行器故障或时滞的非线性系统控制理论越来越受到人们的关注。控制系统在运行过程中不可避免地会发生执行器故障。不仅如此,时滞现象也普遍存在。到目前为止,线性系统自适应执行器故障补偿控制理论已有充分的研究,而非线性系统执行器故障补偿问题的研究并不深入。另一方面,线性时滞系统的研究也有非常丰富的成果,而非线性时滞系统的研究相对较少。本文在国内外已有研究成果的基础上,以Backstepping方法为基本工具,分别研究不确定非线性系统的自适应执行器故障补偿和不确定非线性时滞系统的控制问题。本文的主要工作如下。
     1.针对一类带有未知定常执行器故障的输出反馈形式的多输入单输出非线性系统,提出一种修正的自适应执行器故障补偿方案。在该方案的设计过程中,首先建立一种新的带有未知系统参数和执行器故障参数的参数化模型,然后应用Backstepping技术设计自适应补偿控制器。所提出的控制方案保证了所有闭环信号的有界性,证明了输出跟踪误差渐近收敛于零。值得指出的是,在这种新的模型框架下,自适应控制设计简单,闭环系统的稳定性分析得到了很大的简化,并可使用较低阶的滤波器估计系统状态,从而更易于在工程实际中应用。以简化的双执行器球棒系统作为仿真对象,仿真结果表明了所提出的设计方法的有效性。
     2.研究一类带有未知时变执行器故障的非线性系统的鲁棒自适应输出反馈控制问题。考虑执行器故障模型中的未建模项,提出一种新的线性参数化模型,该模型把所有未知系统参数和执行器故障参数集中起来,并与已知信号分离。基于此模型,递归地构造自适应控制器。为保证闭环系统的稳定性和鲁棒性,在自适应律中引入修正的切换σ信号。证明了所有闭环信号的有界性,通过适当选取设计参数保证了闭环系统的期望控制性能。最后,以带有依赖状态的非线性扰动的双执行器球棒系统为例,验证所提出的控制算法的有效性。
     3.针对一类带有未知高频增益符号的非线性系统,考虑可参数化的时变执行器故障模型,基于Backstepping技术,提出一种自适应输出反馈故障补偿方案。引入Nuss-baum增益方法,去掉对高频增益符号的局限性假设。由于高频增益符号未知,一些新的常数变量需要重新定义,带有执行器故障信息的参数化模型需要重新建立,稳定性分析需要重新处理.所设计的补偿控制器在未知执行器故障存在的情况下保证了所有闭环信号的有界性和渐近的输出跟踪。最后,把所提出的控制方案应用于带有冗余执行器的两轴定位平台系统,仿真研究表明了控制算法的有效性。
     4.研究一类单输入单输出严格反馈形式的非线性时滞系统的输出反馈跟踪控制问题。所考虑的系统不仅含有依赖于时滞的不确定函数,还包括外在的干扰项。为估计不可测量的系统状态,首先提出一种降阶观测器设计。使用降阶观测器的优势一方面可使形成的闭环系统更易于实现,另一方面还可降低求解设计参数的线性矩阵不等式的复杂度。然后,基于Backstepping方法递归地设计输出反馈控制器,并构造合适的Lyapunov-Krasovskii泛函补偿所有滞后的状态摄动函数。证明了所有闭环信号的有界性,通过适当选取设计参数保证了期望的跟踪性能。最后,给出一个仿真例子验证所提出的控制算法的有效性。
     5.基于Backstepping方法解决了一类具有三角形结构的非线性时滞系统的自适应镇定问题。不仅被控系统参数而且时滞及其导数的上界都假设是未知的,它们通过设计自适应律而被在线估计。进一步放松了与时滞有关的非线性项的假设条件。为在这种弱化的条件下取得控制目标,首先引入一个函数分解引理,然后通过构造合适的Lyapunov-Krasovskii泛函递归地设计控制器。为消除参数估计对闭环稳定性带来的不利影响,从Backstepping设计的第二步开始,每一步的虚拟控制中都增加两个附加函数。值得指出的是,这些附加项应仔细选取以使递推设计顺利进行。设计方案不仅保证了所有闭环信号的有界性,而且使得系统状态渐近收敛于零。仿真研究进一步表明了所提出的控制策略的有效性。
     6.针对一类带有状态时变时滞、不确定参数和外在干扰的非线性系统,提出了一种自适应Backstepping的跟踪控制方案。把调节函数方法引入到非线性时滞系统中,递归地构造自适应律和控制律。这种方法有效地避免了上一章中虚拟控制函数附加项选取的困难,而且自适应控制设计更加程序化。采用适当的Lyapunov-Krasovskii泛函补偿含有时滞状态的非线性函数.时滞及其导数的上界也假设是未知的,通过设计两套调节函数保证闭环系统所有信号的有界性,通过选取适当的设计参数保证闭环系统的跟踪性能。仿真结果验证了所提出的控制方案的有效性。
In recent years, the control problem of uncertain nonlinear systems becomes one of the research focuses. Particularly, the control theory for nonlinear systems with actuator failures or time delays has attracted increasing attention. It is well known that actuator failures are frequently encountered during operation of control systems. Also, time delay phenomenon widely exists. Up to now, many results have been achieved on adaptive control of linear systems with actuator failures. However, for nonlinear systems, adaptive actuator failure compensation has not been deeply investigated. On the other hand, despite the huge literature for linear time-delay systems, the control problem of nonlinear time-delay systems has been receiving relatively little attention until recently. Based on the current research findings, this dissertation uses the backstepping approach as a basic tool to address the problem of adaptive actuator failure compensation of uncertain nonlinear systems and uncertain nonlinear time-delay system control, respectively. The main contributions of the dissertation are as follows.
     1. A modified adaptive actuator failure compensation scheme is proposed for a class of multi-input and single-output nonlinear systems in the output-feedback form. A con-stant actuator failure model is considered. In the control design, a new parametric model with unknown plant parameters and actuator failure parameters is firstly established. Then, an adaptive compensation controller is constructed by utilizing the backstepping technique. The boundedness of all the closed-loop signals is guaranteed. The output tracking error is proved to converge to zero asymptotically. It is worth pointing out that, within the new model framework, the adaptive control design is programmed, and the stability analysis can be sim-plified greatly. Moreover, the lower-order filters can be exploited to estimate the unmeasured plant states. Thus, the resulting control scheme is easier to be implemented. Finally, the presented scheme is applied to a simplified dual-actuator ball-beam system for the actuator failure compensation study. Simulation results demonstrate the effectiveness of the proposed design method.
     2. The robust adaptive output-feedback control problem is addressed for a class of non-linear systems with unknown time-varying actuator failures. Additional un-modelled term in the actuator failure model is considered. A linearly parameterized model is proposed, where unknown plant parameters and actuator failure parameters are lumped up together and separated form known signals. Based on the new model, adaptive controller is recursively designed. The modified switching-σsignals are incorporated in the adaptive laws to ensure stability and robustness. The boundedness of all the closed-loop signals is established. The desired control performance of the closed-loop system is guaranteed by appropriately choos- ing the design parameters. Finally, a dual-actuator ball-beam system with state-dependent nonlinearities is used to illustrate the effectiveness of the proposed scheme.
     3. For a class of nonlinear systems with unknown high-frequency gain signs and param-eterizable time-varying actuator failures, an adaptive output-feedback failure compensation scheme is proposed based on the backstepping technique. The Nussbaum gain approach is introduced to remove the restrictive assumption on the high-frequency gain signs. In view of unknown high-frequency gain signs, some constant variables are redefined, the para-metric model with actuator failure information is reestablished, and the stability analysis is retreated. The boundedness of all the closed-loop signals and the asymptotic output track-ing are guaranteed in spite of the unknown actuator failures. Finally, the proposed control scheme is applied to a two-axis positioning stage system with redundant actuators. The effectiveness of the control algorithm is verified by the simulation studies.
     4. The problem of output-feedback tracking control is addressed for a class of single-input and single-output nonlinear systems in the strict-feedback form, which are subjected to both uncertain delay-related functions and external disturbances. A reduced-order observer is firstly introduced to provide the estimates of the unmeasured states. The advantage of exploiting the lower-dimension observer is two-fold. On the one hand, the resulting closed-loop system is easier to be implemented. On the other hand, since the design parameters are determined by a linear matrix inequality (LMI), the cost involved by the computation of the LMI may be much less. Then, an output-feedback controller is recursively designed based on the backstepping method. An appropriate Lyapunov-Krasovskii functional is constructed to compensate for all delayed state perturbation functions. All the signals in the closed-loop system are proved to be bounded. The desired tracking performance is guaranteed by suitably choosing the design parameters. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed control algorithm.
     5. Based on the backstepping approach, the problem of adaptive stabilization for a class of nonlinear time-delay systems in triangular structure is addressed. Both the parameters of the system to be controlled and the upper bounds of the time delays and their deriva-tives are assumed to be unknown, which are estimated online by designing adaptive laws. The assumption on the delay-related nonlinearities is further relaxed. To achieve the con-trol objective under such weakened condition, a lemma on function factorization is firstly introduced. Then, an appropriate Lyapunov-Krasovskii functional is constructed and adap-tive controller is designed recursively. To counteract the influence of the parameter estimates on stability of the closed-loop system, from the second step of the backstepping procedure on, two terms are added in each virtual control function. It is worth pointing out that these additional functions should be selected carefully such that the backstepping design can be performed smoothly. It is shown that all the closed-loop signals are bounded, while the plant states converge to zero asymptotically. Simulation studies are provided to demonstrate the effectiveness of the proposed control strategy.
     6. An adaptive backstepping tracking control scheme is proposed for a class of non-linear state time-varying delay systems, which are subject to parametric uncertainties and external disturbances. Tuning function method is exploited to construct the control law and adaptive laws recursively. This method not only effectively overcome the difficulty in the choice of additional terms in virtual control functions in the last chapter, but also make adap-tive control design more programmed. Unknown time-varying delays are compensated for by using appropriate Lyapunov-Krasovskii functional. The bounds of the time delays and their derivatives are also assumed to be unknown. Two set of tuning functions are designed to guarantee the boundedness of all the closed-loop signals. The tracking performance is ad-justed by choosing suitable design parameters. Simulation results illustrate the effectiveness of the proposed design procedure.
引文
[1]Slotine JJ, Li W. Applied Nonlinear Control. New Jersey:Prentice Hall,1991.
    [2]Khalil HK. Nonlinear Systems (3rd Edition). New Jersey:Prentice Hall,2002.
    [3]Isidori A. Nonlinear Control Systems. Berlin:Springer-Verlag,1995.
    [4]Krstic M, Modestino JW, Deng H. Stabilization of Nonlinear Uncertain Systems. New York:Springer-Verlag,1998.
    [5]Edwards C, Spurgeon SK. Sliding Mode Control:Theory and Applications. London: Taylor & Francis,1998.
    [6]Wang LX. Adaptive Fuzzy Systems and Control:Design and Stability Analysis. New Jersey:Prentice Hall,1994.
    [7]Krstic M, Kanellakopoulos I, Kokotovic PV. Nonlinear and Adaptive Control Design. New York:Wiley,1995.
    [8]Ioannou PA, Sun J. Robust Adaptive Control. New Jersey:Prentice Hall,1996.
    [9]Kanellakopoulos I, Kokotovic PV, Morse AS. Systematic design of adaptive controllers for feedback linearizable systems. IEEE Transactions on Automatic Control,1991, 36(11):1241-1253.
    [10]Zhang YP, Ioannou PA. Robustness and performance of a modified adaptive backstep-ping controller. International Journal of Adaptive Control and Signal Processing,1998, 12(3):247-265.
    [11]Xu L, Yao B. Adaptive robust precision motion control of linear motors with negligible electrical dynamics:theory and experiments. IEEE/ASME Transactions On Mecha-tronics,2001,6(4):444-452.
    [12]Yao B, Xu L. Output feedback adaptive robust control of uncertain linear systems with disturbances. Journal of Dynamic Systems, Measurement, and Control,2006, 128(4):938-945.
    [13]Yao B, Palmer A. Indirect adaptive robust control of siso nonlinear systems in semi-strict feedback forms. Proceedings of the 15th IFAC World Congress, Barcelona, Spain, 2002, vol. T-Tu-A03-2,1-6.
    [14]Yao B. Integrated direct/indirect adaptive robust control of siso nonlinear systems in semi-strict feedback form. Proceedings of the 2003 American Control Conference, Denver, Colorado,2003,3020-3025.
    [15]Jiang ZP, Praly L. Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties. Automatica,1998,34(7):825-840.
    [16]Zhang YP, Ioannou PA. Robustness of nonlinear control systems with respect to un-modeled dynamics. IEEE Transactions on Automatic Control,1999,44(1):119-124.
    [17]Ye X, Jiang J. Adaptive nonlinear design without a priori knowledge of control direc-tions. IEEE Transactions on Automatic Control,1998,43(11):1617-1621.
    [18]Ge SS, Wang J. Robust adaptive tracking for time varying uncertain nonlinear systems with unknown control coefficients. IEEE Transactions on Automatic Control,2003, 48(8):1463-1469.
    [19]Ding Z. Global adaptive output feedback stabilization of nonlinear systems of any rela-tive degree with unknown high-frequency gains. IEEE Transactions on Automatic Con-trol,1998,43(10):1442-1446.
    [20]Ye X. Adaptive nonlinear output-feedback control with unknown high-frequency gain sign. IEEE Transactions on Automatic Control,2001,46(1):112-115.
    [21]Zhang TP, Ge SS. Adaptive neural control of MIMO nonlinear state time-varying de-lay systems with unknown dead-zones and gain signs. Automatica,2007,43(6):1021-1033.
    [22]Yang C, Ge SS, Lee TH. Output feedback adaptive control of a class of nonlinear discrete-time systems with unknown control directions. Automatica,2009,45(1):270-276.
    [23]Ding Z. Adaptive control of triangular systems with nonlinear parameterization. IEEE Transactions on Automatic Control,2001,46(12):1963-1968.
    [24]Xie X, Tian J. Adaptive state-feedback stabilization of high-order stochastic systems with nonlinear parameterization. Automatica,2009,45(1):126-133.
    [25]Liu Y, Zhang J. Reduced-order observer-based control design for nonlinear stochastic systems. System and Control Letters,2004,52(2):123-135.
    [26]Yu X, Xie X. Output feedback regulation of stochastic nonlinear systems with stochas-tic iiss inverse dynamics. IEEE Transactions on Automatic Control,2010,55(2):304-320.
    [27]Jiang ZP. Robust exponential regulation of nonholonomic systems with uncertainties. Automatica,2000,36(2):189-209.
    [28]Zheng X, Wu Y. Adaptive output feedback stabilization for nonholonomic systems with strong nonlinear drifts. Nonlinear Analysis:Theory, Methods & Applications,2009, 70(2):904-920.
    [29]Hua C, Guan X, Shi P. Robust backstepping control for a class of time delayed systems. IEEE Transactions on Automatic Control,2005,50(6):894-899.
    [30]Jiao X, Shen T. Adaptive feedback control of nonlinear time-delay systems:The Lasalle-Razumikhin-based approach. IEEE Transactions on Automatic Control,2005, 50(11):1909-1913.
    [31]Lin W, Qian C. Adding one power integrator:a tool for global stabilization of high-order lower-triangular systems. System and Control Letters,2000,39(5):339-351.
    [32]Sun Z, Liu Y. Adaptive state-feedback stabilization for a class of high-order nonlinear uncertain systems. Automatica,2007,43(10):1772-1783.
    [33]Zhang Y, Wen C, Soh YC. Robust adaptive control of uncertain discrete-time systems. Automatica,1999,35(2):321-329.
    [34]Ferrara A, Giacomini L. On modular backstepping design with second order sliding modes. Automatica,2001,37(1):129-135.
    [35]Wang C, Pai N, Yau H. Chaos control in AFM system using sliding mode control by backstepping design. Communications in Nonlinear Science and Numerical Simula-tion,2010,15(3):741-751.
    [36]Wen C, Zhou J, Wang W. Decentralized adaptive backstepping stabilization of in-terconnected systems with dynamic input and output interactions. Automatica,2009, 45(1):55-67.
    [37]Liu L, Xie X. Decentralized adaptive stabilization for interconnected systems with dy-namic input-output and nonlinear interactions. Automatica,2010,46(6):1060-1067.
    [38]Jiang ZP, Repperger DW, Hill DJ. Decentralized nonlinear output-feedback stabiliza-tion with disturbance attenuation. IEEE Transactions on Automatic Control,2001, 46(10):1623-1629.
    [39]Ding Z. Almost disturbance decoupling of uncertain nonlinear output feedback sys-tems. IEE Proceedings-Control Theory and Applications,1999,146(2):220-226.
    [40]Ding Z. Adaptive estimation and rejection of unknown sinusoidal disturbances in a class of non-minimum-phase nonlinear systems. IEE Proceedings-Control Theory and Applications,2006,153(4):379-386.
    [41]Hua C, Wang Q, Guan X. Adaptvie fuzzy output-feedback controller design for nonlin-ear time-delay systems with unknown control direction. IEEE Transactions on Systmes, Man, and Cybernetics-Part B:Cybernetics,2009,39(2):363-374.
    [42]Wang M, Chen B, Liu K, et al. Adaptive fuzzy tracking control of time-delay systems with unknown virtual control coefficients. Information Sciences,2008,178(22):4326-4340.
    [43]Hua C, Guan X, Shi P. Robust output feedback tracking control for time-delay non-linear systems using neural network. IEEE Transactions on Neural Networks,2007, 18(2):495-505.
    [44]Hua C, Guan X. Robust output feedback stabilization for time-delay nonlinear intercon-nected systems using neural network. IEEE Transactions on Neural Networks,2008, 19(4):673-688.
    [45]Blanke M, Kinnaert M, Lunze J, et al. Diagnosis and Fault-Tolerant Control (2nd Edi-tion). Berlin:Springer-Verlag,2006.
    [46]Patton RJ, Frand PM, Clark RN. Fault Diagnosis in Dynamic Systems:Theory and Application. New Jersey:Prentice Hall,1989.
    [47]Tao G, Chen SH, Tang XD, et al. Adaptive Control of Systems with Actuator Failures. London:Springer-Verlag,2004.
    [48]Tao G. Adaptive Control Design and Analysis. New York:Wiley,2003.
    [49]Hale JK. Theory of Functional Differential Equations. New York:Springer-Verlag, 1977.
    [50]Dugard L, Verriest El. Stability and Control of Time Delay Systems. London:Springer-Verlag,1998.
    [51]Gu K, Kharionov VL, Chen J. Stability of Time-Delay Systems. Berlin:Birkhauser, 2003.
    [52]Richard J-P. Time-delay systems:an overview of some recent advances and open prob-lems. Automatica,2003,39(10):1667-1694.
    [53]Patton RJ. Fault-tolerant control:the 1997 situation. Proceedings of IFAC Symp. Fault Detection, Supervision, and Safety for Technical Processes, Hull, UK,1997,1033-1055.
    [54]Chen SH, Tao G, Joshi SM. Adaptive actuator failure compensation designs for linear systems. International Journal of Control, Automation, and Systems,2004,2(1):1-14.
    [55]Wang H, Daley S. Actuator fault diagnosis:An adaptive observed-based technique. IEEE Transactions on Automatic Control,1996,41(7):1073-1078.
    [56]Demetriou MA, Polycarpou MM. Incipient fault diagnosis of dynamical systems using online approximations. IEEE Transactions on Automatic Control,1998,43(11):1612-1617.
    [57]Wu NE, Zhang Y, Zhou K. Detection, estimation, and accommodation of loss of control effectiveness. International Journal of Adaptive Control and Signal Processing,2000, 17(7):775-795.
    [58]Zhang X, Parisini T, Polycarpou MM. Adaptive fault-tolerant control of nonlinear un-certain systems:A diagnostic information-based approach. IEEE Transactions on Au-tomatic Control,2004,49(8):1259-1274.
    [59]Boskovic JD, Mehra RK. A multiple model-based reconfigurable flight control system design. Proceedings of the 37th IEEE Conference on Decision and Control, Florida, USA,1998,4503-4508.
    [60]Boskovic JD, Yu S-H, Mehra RK. Stable adaptive fault-tolerant control of overactuated aircraft using multiple models, switching and tuning. Proceedings of the 1998 AIAA Guidance, Navigation and Control Conference, Boston, MA,1998, vol.1,739-749.
    [61]Boskovic JD, Mehra RK. Stable multiple model adaptive flight control for accommo-dation of a large class of control effector failures. Proceedings of the 1999 American Control Conference, San Diego, CA,1999,1920-1924.
    [62]Mayback PS. Multiple model adaptive algorithms for detecting and compensating sen-sor and actuator/surface failures in aircraft flight control systems. International Journal of Robust and Nonlinear Control,1999,9(14):1051-1070.
    [63]Guo YY, Jiang B, Zhang YM. Actuator fault compensation via multiple model based adaptive control. Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China,2008,4246-4250.
    [64]Zhao Q, Cheng C. Robust state feedback for actuator failure accommodation. Proceed-ings of the 2003 American Control Conference, Denver, Colorado,2003,4225-4230.
    [65]Cheng C, Zhao Q, Tao F. Stability and performance of the stochastic fault tolerant control systems. Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii,2003,2484-2489.
    [66]Zhao Q, Cheng C. State feedback control for time-delayed systems with actuator fail-ures. Proceedings of the 2003 American Control Conference, Denver, Colorado,2003, 827-832.
    [67]Yang GH, Ye D. Reliable H∞ control for linear systems with adaptive mechanism. IEEE Transactions on Automatic Control,2010,55(1):242-247.
    [68]Ye D, Yang GH. Adaptive fault-tolerant tracking control against actuator faults with application to flight control. IEEE Transactions on Control Systems Technology,2006, 14(6):1088-1096.
    [69]Ye D, Yang GH. Adaptive reliable guaranteed cost control of state-delayed systems via dynamic output feedback against actuator faults. Proceedings of the 46th IEEE Confer-ence on Decision and Control, New Orleans, LA,2007,2651-2656.
    [70]Ye D, Yang GH. Adaptive reliable H∞ control for linear time-delay systems via mem-ory state feedback. IET Control Theory and Applications,2007,1(3):713-721.
    [71]Ye D, Yang GH. Delay-dependent adaptive reliable H∞ control of linear time-varying delay systems. International Journal of Robust and Nonlinear Control,2009, 19(4):462-479.
    [72]Ahmed-Zaid F, Ioannou PA, Gousman K, et al. Accommodation of failures in the F-16 aircraft using adaptive control. IEEE Control Systems Magazine,1991,11(1):73-78.
    [73]Bodson M, Groszkiewicz JE. Multivariable adaptive algorithms for reconfigurable flight control. IEEE Transactions on Control Systems Technology,1997,5(2):217-229.
    [74]Boskovic JD, Yu S-H, Mehra RK. A stable scheme for automatic control reconfigu-ration in the presence of actuator failures. Proceedings of the 1998 American Control Conference, Philadelphia, PA,1998,2455-2459.
    [75]Mirkin B, Gutman PO. Model reference adaptive control of state delayed system with actuator failures. International Journal of Control,2005,78(3):186-195.
    [76]Mirkin B, Gutman PO. Adaptive coordinated decentralized control of state delayed systems with actuator failures. Asian Journal of Control,2006,8(4):441-448.
    [77]Liu Y, Tang XD, Tao G, et al. Adaptive compensation of aircraft actuator failures using an engine defferential model. IEEE Transactions on Control Systems Technology,2008, 16(5):971-982.
    [78]Wise K, Brinker JS, Calise AJ, et al. Direct adaptive reconfigurable flight control for a tailless advanced flighter aircraft. International Journal of Robust and Nonlinear Con-trol,1999,9(14):999-1012.
    [79]Calise AJ, Lee S, Sharma M. Development of a reconfigurable flight control law for tailless aircraft. AIAA Journal of Guidance, Control, and Dynamics,2001,25(5):896-902.
    [80]Li P, Yang GH. Fault tolerant control for unknown nonlinear systems with actuator failures:an adaptive fuzzy approach. Proceedings of the 2008 American Control Con-ference, Seattle, Washington,2008,4330-4335.
    [81]Zhang Y, Joe Qin S. Adaptive actuator fault compensation for linear systems with matching and unmatching uncertainties. Journal of Process Control,2009,19(6):985-990.
    [82]Tao G, Joshi SM, Ma XL. Adaptive state feedback and tracking control of systems with actuator failures. IEEE Transactions on Automatic Control,2001,46(1):78-95.
    [83]Chen SH, Tao G, Joshi SM. On matching conditions for adaptive state tracking con-trol of systems with actuator failures. IEEE Transactions on Automatic Control,2002, 47(3):473-478.
    [84]Tao G, Chen SH, Joshi SM.An adaptive control scheme for systems with unknown actuator failures. Automatica,2002,38(6):1027-1034.
    [85]Tao G, Chen SH, Joshi SM. An adaptive failure compensation controller using output feedback. IEEE Transactions on Automatic Control,2002,47(3):506-511.
    [86]Tao G, Joshi SM. Adaptive output feedback compensation of variant actuator failures. Proceedings of the 2005 American Control Conference, Portland, OR,2005,4862-4867.
    [87]Tang XD, Tao G, Joshi SM. Adaptive control of parametric-strict-feedback nonlinear systems with actuator failures. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida,2001,1613-1614.
    [88]Tang XD, Tao G, Joshi SM. Adaptive actuator failure compensation control of para-metric strict-feedback systems with zero dynamics. Proceedings of the 40th IEEE Con-ference on Decision and Control, Orlando, Florida,2001,2031-2036.
    [89]Tang XD, Tao G, Joshi SM. Adaptive actuator failure compensation for parametric strict feedback systems and aircraft application. Automatica,2003,39(11):1975-1982.
    [90]Tang XD, Tao G, Joshi SM. Adaptive actuator failure compensation for nonlinear MIMO systems with an aircraft control application. Automatica,2007,43(11):1869-1883.
    [91]Tang XD, Tao G, Joshi SM. An adaptive control scheme for output feedback non-linear systems with actuator failures. Proceedings of the 15th IFAC World Congress, Barcelona, Spain, vol. T-Tu-A03,2002.
    [92]Tang XD, Tao G, Joshi SM. Adaptive output feedback actuator failure compensation for a class of state-dependent nonlinear systems. Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii,2003,1681-1686.
    [93]Tang XD, Tao G, Joshi SM. Adaptive output feedback actuator failure compensation for a class of non-linear systems. International Journal of Adaptive Control and Signal Processing,2005,19(6):419-444.
    [94]Tang XD, Tao G, Joshi SM. Adaptive output feedback actuator failure compensation using dynamic bounding:output regulation. Proceedings of the 2005 American Control Conference, Portland, OR,2005,3315-3320.
    [95]Tang XD, Tao G, Joshi SM. Adaptive output feedback actuator failure compensation using dynamic bounding:output tracking and an application. Proceedings of the 2005 American Control Conference, Portland, OR,2005,3186-3191.
    [96]Tang XD, Tao G. An adaptive nonlinear output feedback controller using dynamic bounding with an aircraft control application. International Journal of Adaptive Control and Signal Processing,2009,23(7):609-639.
    [97]Nussbaum RD. Some results on a conjecture in parameter adaptive control. System and Control Letters,1983,3:243-246.
    [98]Mudgett DR, Morse AS. Adaptive stabilization of linear systems with unknown high frequency gains. IEEE Transactions on Automatic Control,1985,30(2):549-554.
    [99]He Y, Wu M. Delay-dependent stability criteria for linear systems with multiple time delays. IEE Proceedings-Control Theory and Applications,2006,153(4):447-452.
    [100]Gao H, Chen T. New results on stability of discrete-time systems with time-varying state delay. IEEE Transactions on Automatic Control,2007,52(2):384-387.
    [101]Xu S, Lam J, Zhong M. New exponential estimates for time-delay systems. IEEE Transactions on Automatic Control,2006,51 (9):1501-1505.
    [102]Xu S, Lam J. On equivalence and efficiency of certain stability criteria for time-delay systems. IEEE Transactions on Automatic Control,2007,52(1):95-101.
    [103]Mahmoud MS. Decentralized stabilization of interconnected systems with time-varying delays. IEEE Transactions on Automatic Control,2009,54(11):2663-2668.
    [104]Mahmoud MS. Adaptive control of a class of time-delay systems with uncertain pa-rameters. International Journal of Control,1996,63(5):937-950.
    [105]Foda SG, Mahmoud MS. Adaptive stabilization of delay differential systems with unknown uncertainty bounds. International Journal of Control,1998,71(2):259-275.
    [106]Oucheriah S. Decentralized stabilization of large scale systems with multiple delays in the interconnections. International Journal of Control,2000,73(13):1213-1223.
    [107]Oucheriah S. Adaptive robust control of a class of dynamic delay systems with un-known uncertainty bounds. International Journal of Adaptive Control and Signal Pro-cessing,2001,15(1):53-63.
    [108]Wu H. Adaptive stabilizing state feedback controllers of uncertain dynamical systems with multiple time delays. IEEE Transactions on Automatic Control,2000,45(9):1697-1701.
    [109]Wu H. Robust adaptive control schemes for a class of uncertain dynamical sys-tems with multiple time delays. International Journal of Systems Sciemce,2002, 33(15):1241-1248.
    [110]Xu S, Feng G. Further results on adaptive robust control of uncertain time-delay sys-tems. IET Control Theory and Applications,2008,2(5):402-408.
    [111]Mirkin B, Gutman PO. Output feedback model reference adaptive control for multi-input-output plants with state delay. System and Control Letters,2005,54(10):961-972.
    [112]Mirkin B, Gutman PO. Adaptive output feedback tracking:The case of MIMO plants with unknown, time-varying state delay. System and Control Letters,2009(1),58:62-68.
    [113]Wu H. Memoryless adaptive robust asymptotic state observers for a class of nonlinear time-delay systems. IET Control Theory and Applications,2009,3(7):843-851.
    [114]Wu H. Adaptive robust state observers for a class of uncertain nonlinear dynamical systems with delayed state perturbations. IEEE Transactions on Automatic Control, 2009,54(6):1407-1412.
    [115]Mirkin B, Mirkin EL, Gutman PO. State-feedback adaptive tracking of linear systems with input and state delays. International Journal of Adaptive Control and Signal Pro-cessing,2009,23(6):567-580.
    [116]Zhou J, Wen C, Wang W. Adaptive backstepping control of uncertain systems with unknown input time-delay. Automatica,2009,45(6):1415-1422.
    [117]Nguang SK. Robust stabilization of a class of time-delay nonlinear systems. IEEE Transactions on Automatic Control,2000,45(4):756-762.
    [118]Fu Y, Tian Z, Shi S. State feedback stabilization for a class of stochastic time-delay nonlinear systems. IEEE Transactions on Automatic Control,2003,48(2):282-286.
    [119]Zhou S, Feng G, Nguang SK. Comments on "Robust stabilization of a class of time-delay nonlinear systems". IEEE Transactions on Automatic Control,2002,47(9):1586-1586.
    [120]Guan X, Hua C, Duan G. Comments on "Robust stabilization of a class of time-delay nonlinear systems". IEEE Transactions on Automatic Control,2003,48(5):907-908.
    [121]Li G, Zang C, Liu X. Comments on "Robust stabilization of a class of time-delay nonlinear systems". IEEE Transactions on Automatic Control,2003,48(5):908-908.
    [122]Hua C, Guan X. Comments on "State feedback stabilization for a class of stochas-tic time-delay nonlinear systems". IEEE Transactions on Automatic Control,2004, 49(7):1216-1216.
    [123]Moog CH, Castro-Linares R, Velasco-Villa M, et al. The disturbance decoupling prob-lem for time delay nonlinear systems. IEEE Transactions on Automatic Control,2000, 45(2):305-309.
    [124]Marquez-Martinez LA, Moog CH. Input-output feedback linearization of time-delay systems. IEEE Transactions on Automatic Control,2004,49(5):781-786.
    [125]Hua C, Guan X, Feng G. Robust stabilization for a class of time-delay systems with triangular structure. IET Control Theory and Applications,2007, 1(4):875-879.
    [126]Ge SS, Hong F, Lee TH. Adaptive neural network control of nonlinear systems with unknown time delays. IEEE Transactions on Automatic Control,2003,48(11):2004-2010.
    [127]Ge SS, Hong F, Lee TH. Robust adaptive control of nonlinear systems with unknown time delays. Automatica,2005,41(7):1181-1190.
    [128]Ge SS, Tee KP. Approximation-based control of nonlinear mimo time-delay systems. Automatica,2007,43(1):31-43.
    [129]Chen B, Liu X, Liu K, et al. Novel adaptive neual control design for nonlinear mimo time-delay systems. Automatica,2009,45(6):1554-1560.
    [130]Hua C, Guan X, Feng G. Robust controller design of a class of nonlinear time delay systems via backstepping method. Automatica,2008,44(2):567-573.
    [131]Jankovic M. Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems. IEEE Transactions on Automatic Control,2001,46(7):1048-1060.
    [132]Jankovic M. Stabilization of nonlinear time delay systems with delay-independent feedback. Proceedings of the 2005 American Control Conference, Portland, OR,2005, 4253-4258.
    [133]Jiao X, Shen T, Sun Y. Further result on robust stabilization for uncertain nonlinear time-delay systems. Acta Automatica Sinica,2007,33(2):164-169.
    [134]Wu H. Adaptive robust control of uncertain nonlinear systems with nonlinear delayed state perturbations. Automatica,2009,45(8):1979-1984.
    [135]Jiang ZP. Global output feedback control with disturbance attenuation for minimum-phase nonlinear systems. System and Control Letters,2000,39(3):155-164.
    [136]Krstic M, Kanellakopoulos I, Kokotovic PV. Adaptive nonlinear control without over-parameterization. System and Control Letters,1992,19(3):177-185.
    [137]Kreisselmeier G. Adaptive observers with exponential rate of convergence. IEEE Transactions on Automatic Control,1977,22(1):2-8.
    [138]Marino R, Tomei P. Global adaptive observers for nonlinear systems via filtered trans-formations. IEEE Transactions on Automatic Control,1992,37(8):1239-1245.
    [139]Marino R, Tomei P. Global adaptive output feedback control of nonlinear systems, Part I:linear parameterization. IEEE Transactions on Automatic Control,1993,38(1):17-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700