阳光辐射变化对经济蓝藻螺旋藻形态、光合作用及生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋藻,作为重要经济蓝藻,其形态特征及代谢机理与环境变化的关系一直是该藻研究的热点。螺旋藻的螺旋丝状结构,受环境因子变化的调控,但有关阳光辐射变化对其影响的机制尚不清楚;同时,阳光紫外辐射(UVR)如何影响其光合作用与生长的问题也有待于进一步探讨。为此,本文研究了可见光(PAR)和紫外辐射对螺旋藻形态、生长以及光合作用的影响,并探讨了其它关键环境因子(如温度、ROS、无机碳等)变化与阳光辐射变化的耦合效应。主要研究结果如下:
     螺旋藻的螺旋结构,受PAR和UVR的影响,而该影响又受温度变化的调控。在较低温度(20 oC以下)条件下,PAR和UVR耦合效应导致藻丝螺距明显变小(螺旋变紧);而在适合其生长的温度范围(25-35 oC)内,仅仅PAR就能使得其螺旋变紧,UVR的存在虽然会加速藻丝螺旋变紧,但是在没有PAR存在的情况下UVR却不能引起藻丝螺旋结构的变化。通过对螺旋结构变化前后及不同辐射处理条件下的蛋白分析,发现分子量为52.0 kDa的胞膜蛋白与螺旋结构变化有关。对螺旋结构变化与生理过程关系的研究显示,螺旋结构变紧,细胞彼此遮挡程度增加,使得藻丝具有较高耐受强光(PAR和UVR)的能力,降低了PSII的损伤,也有效地阻止了藻丝的断裂,起到了明显的光保护作用。对可见光作用光谱的分析显示,可见光的任何波段均可以引起螺旋变紧,蓝光(波长400-500 nm)和红光(610-700 nm)对形态的诱导作用最强,而波长大于700 nm的红外光对藻丝形态没有任何影响。不同波段的可见光对细胞的生长和光合作用也产生了不同影响,也是蓝光和红色光对生长最有效。光照对藻丝形态的效应,可能与其驱动光合作用能力有关,引起与形态变紧相关的蛋白量增加,导致螺距变小。
     较高水平的PAR和UVR条件下,螺旋藻藻丝发生断裂,该断裂与细胞内活性氧自由基(ROS)的积累有关。高PAR和UVR处理,使得消除ROS的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性下降,导致细胞内ROS量升高,损伤叶绿素、藻胆体和PSII并降低了光合电子传递速率。ROS的积累加速了细胞质膜的氧化(生成氧化产物丙二醛,MDA),同时引起了藻丝的断裂和解体。
     水体中,溶解无机碳(DIC)不足也会引起藻丝形态变化。将培养溶液的DIC浓度降低至0.3~4.0 mM范围内,培养螺旋藻时,其螺旋结构崩溃并出现变小的个体,藻蓝蛋白(PC)和别藻蓝蛋白(APC)的含量降低了,类胡萝卜素(Car)的含量却有所上升,最大光合作用速率下调了25%,其对无机碳的表观亲和力(K0.5DIC)增加了近14倍。
     另外,螺旋藻的浮性,受光合作用的调控,并非是逃避强光或获取营养的一种机制。藻丝的浮性,随着PAR的增强,与光合作用速率成负相关,光合作用速率越高,浮性越小。把强光下下沉的藻丝转到暗处或者低光下后,其浮性能够得到恢复。阳光UVR抑制藻丝的光合作用,增加其浮性,其作用与PAR相反。结果分析表明,螺旋藻没有主动逃避有害辐射的能力,其下沉与上浮受光合生产量的调控,在碳水化物累积较多时下沉,反之上浮;在自然界或养殖池中,早晨或傍晚阳光辐射光合生产量较低时上浮,而中午时下沉,被动性的逃避了有害UVR的影响。
The relationship of morphological characteristics and metabolisms of filamentous Arthrospira (Spirulina) platensis with environmental changes has been the focus of this economically important cyanobacterium. Spiral structure of A. platensis is known to alter according to environmental changes, however, little has been documented on the mechanisms about the effects of solar radiation changes on its morphology. In addition, effects of solar ultraviolet radiation (UVR) on its photosynthesis and growth also need to be further studied. Therefore, impacts of photosynthetic active (PAR) and UV radiations as well as their combined effects with temperature and DIC on its morphology, growth and photosynthesis were investigated in this study. The main results are as following:
     The spiral structure was affected by PAR and UVR, but such effects of PAR and UVR were dependant on temperature. At temperature levels lower than 20 oC, the helix pitch of A. platensis (D-0083) became smaller due to the interactive effect of PAR and UVR, however, at temperature levels (25-35 oC) suitable for its growth, irradiation with PAR alone resulted compressed spirals. Although change of the compressed helix pitch happened faster in existence of UVR, UVR alone did not tighten the helix. With the technique of SDS-PAGE for separation of the proteins washed off from the cellular membrane, it was found that a protein of 52.0 kDa was responsible for the compression of the spirals. The tightened spiral structure played a protective role against high levels of UVR or PAR by increasing shelf-shading among the cells, alleviating the photo-damage of PSII and reducing the breakage of trichomes. The compression of the helix pitch did not depend on specific wavebands of PAR, nevertheless, the blue (400-500 nm) and red light (610-700 nm) were the most effective components. The infrared radiation (>700 nm) had no effect on its morphology at all. Furthermore, different wavebands of PAR showed discrepant effects on the growth and photosynthesis, blue and red light was more effective for its growth too. The efficiency of blue and red light on the spiral compression might be due to its higher efficiency for driving higher rate of photosynthesis, which runs the biochemical machinery for generation of proteins.
     The spiral filaments of A. platensis broke when irradiated with high levels of PAR and/or UVR. This was proved to link to the accumulation of reactive oxygen species (ROS) in the cells. High PAR and UVR suppressed the activity of superoxide dismutase (SOD) and catalase (CAT), leading to an increase of ROS in the cells. The accumulated ROS damaged chlorophyll a, phycobilisome and PSII, decreased the photosynthetic electrode transfer rate (ETR) and accelerated the oxidation of cell membrane (with an increased production of malondialchehyche, MDA), which was thought to result the spiral breakage.
     The limitation of dissolved inorganic carbon (DIC) could change the filaments’morphology too. When the DIC concentration in the culture medium was reduced to 0.3-4.0 mmol/L, the spiral filaments broke even under moderate levels of PAR and the trichomes with much smaller size appeared. DIC limitation decreased the contents of phycocyanin (PC) and allophycocyanin (APC) in the cells, however, the contents of carotenoid (CAR) increased. Compared with filaments cultured with normal Zarrouk medium, the maximal photosynthetic rate of adapted cells in medium with much lower DIC concentration decreased by 25% and the apparent affinity for DIC (K1/2(DIC)) increased about 14 times.
     Buoyancy provided by gas vesicles has been suggested to play important roles in regulating vertical distribution and nutrient acquisition in cyanobacteria. However, little is known about how PAR (400-700 nm) as well as UV radiation (UVR, 280-400 nm) which change with day time and depth would affect the buoyancy. In this study, it was demonstrated that the floatation activity of A. platensis decreased with increased photosynthetic rates associated with increased PAR, but it decreased less in the presence of UVR that resulted inhibitory effects. When the cells were grown under isoenergetic levels of solar PAR or UVR alone, they migrated downward under the PAR but maintained buoyant under the UVR. The buoyancy regulation of A. platensis depended on the exposed levels of PAR as well as UVR, which affected photosynthesis and growth in an antagonistic way. The buoyancey of A. platensis in water columns is much likely to be dependant on diurnal photosynthetic performance regulated by solar radiation, and can hardly be considered as an active strategy to gain more energy during sunrise/sunset or to escape from harmful irradiations during noon period.
引文
陈善文、武宝玕 2000.藻类对UV-B增强的响应及其分子基础.暨南大学学报, 21(5): 88-9
    龚红梅,2006.盐胁迫对螺旋藻光合作用影响的研究,博士论文,中国科学院植物研究所,pp.1-19.
    韩博平、韩志国、付翔,2003.藻类光合作用机理与模型.北京:科学出版社pp. 79-92.
    胡鸿钧, 1997.国外螺旋藻生物技术的现状及发展趋势.武汉植物学研究,15(4):367-374.
    胡鸿钧,2003.螺旋藻生物学及生物技术原理。北京:科学出版社,pp.21-26.
    李夜光、胡鸿钧、张良军、陈志祥,以CO2为碳源工业化生产螺旋藻工艺艺术的研究。武汉植物学研究, 1996, 14(4): 349-356.
    茅云翔、杨官品、张宝红、张学成,2001. 16SrRNA基因与16S-23SrRNA转录单元内间隔区序列分析及其在节旋藻和螺旋藻分类鉴定中的应用,高技术通讯,6: 12-18.
    邱保胜、高坤山,2001.蓝藻浓缩二氧化碳的机制,植物生理学通讯,37:385-392.
    汤佩松,阎隆飞,1993.光合作用机理研究进展概况,汤佩松论文集,中国世界语出版社, pp.227-274.
    吴红艳、高坤山、渡辺辉夫,2005.静止和充气条件下短期紫外辐射对钝顶螺旋藻光化学效率的影响。水生生物学报,673-677.
    吴红艳, 2006,钝顶螺旋藻的无机碳吸收及其碳酸酐酶作用。自然科学进展, 16(4): 179-183.
    许莉、刘世琦、齐连东、梁庆玲、于文艳,2007.不同光质对叶用莴苣光合作用及叶绿素荧光的影响。植物生理科学23 (1): 96-100.
    杨志敏、颜景义、王传海,1995.紫外线辐射增加对生物的影响.生物学通报, 30 (5) :17-18.
    岳丽宏、陈宝智、王黎、胡莜敏,2002.利用微藻固定烟道气中的CO2的实验研究。应用生态学报,13 (2):156-158.
    张爱琴、姜泉、谢小军,1989.不同光质对螺旋藻生长和放氢的影响。植物生理学通讯,4: 23-26.
    张微慧、张光伦,2007.光质对果树形态建成及果实品质的生理生态效应。植物生理科学, 23 (1): 76-82.
    张志良、瞿伟菁,2002.植物生理学实验指导,pp.274-277.
    邹杰、陈信波、刘爱玲、高国赋、朱木兰,2007.植物热激蛋白与作物非生物抗逆性的改良。植物生理学通讯,43(5): 981-985.
    张燕英、董俊德、王汉奎、王友绍、张偲、黄良民,2007.海洋束毛藻的研究进展,海洋科学,31(3):84-88.
    张以芳、杨志雷,1998.螺旋藻的研究和开发进展.海洋科学,5:68-70.
    Aebi H. 1984. Catalase in vitro. In: Packer L, editor. Methods in Enzymology Volume 105. San Diego: Academic Press Inc., pp. 121-126.
    Aguirre-von-Wobeser, E., Figueroa, F.L., Cabello-Pasini, A. 2000. Effect of UV radiation on photoinhibition of marine macrophytes in culture systems. J. Appl. Phycol., 12: 159–168.
    Aguilera J., Bischof K., Karsten U., Hanelt D. and Wiencke C. 2002. Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fiord. II. Pigment accumulation and biochemical defence systems against high light stress. Mar. Biol., 140: 1087-1095.
    Aizawa K. and Miyachi s. 1986. Caronic anhydrase and CO2 concentratiing mechanisms in microalgae and cyanobacteria. FEMS Microbiol. Rev., 39: 215-233.
    Allakhverdiev S. I. and Murata N. 2004. Environmental stress inhibits the synthesis de novo of D1 protein in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta, 1657: 23-32.
    Allakhverdiev S. I., Nishiyama Y., Takahashi, S., Miyairi S., Suzuki I. and Murata N. 2005. Systematic analysis of the relation of electron transport and ATP synthesis to the photodamage and repair of photosystem II in Synechocystis. Plant Physiol., 137: 263-273.
    Allan A. C., Fluhr R. 1997. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell, 9: 1559-72.
    Allahverdiyeva Y., Mamedov F., M?enp?? P., Vass I. and Aro E. M. 2005. Modulation of photosynthetic electron transport in the absence of terminal electron acceptors: characterization of the rbcL deletion mutant of tobacco. Biochim. Biophys. Acta, 1709: 69-83.
    Alscher R. G., Donahue J. H. and Cramer C. L. 1997. Reactive oxygen species and antioxidants: relationships in green cells. Physiol. Plantarum, 100: 224-33.
    Amoroso G., Seimetz N. and Sültemeyer D. 2003. The dc13 gene upstream of ictB is involved in rapid induction of the high affinity Na+ dependent HCO3- transporter in cyanobacteria. Photosynth. Res., 77: 127-138.
    Anderson J. C., Toohey D. W. and Brune W. H. 1991. Free radical within Antarctic vortex: therole of CFCs in Antarctic ozone lose. Science, 251: 39-46.
    Anderson J. M. and Chow W. S. 2002. Structural and functional dynamics of plant photosystem II. Philos. Trans. R. Soc. Lond., B, 357:1421-1430.
    Andersson B. and Aro E. M. 2001. Photodamage and D1 protein turnover in photosystem II, in: E.M. Aro and B. Anderson (Eds.), Regulation of Photosynthesis, Kluwer Academic, Dordrecht, The Netherlands, pp. 377-39.
    Ananyev G., Wydrzynski T., Renger G. and Klimov V. 1992. Transient peroxide formation by the manganese-containing, redox-active donor side of photosystem II upon inhibition of O2 evolution with lauroylcholine chloride, Biochim. Biophys. Acta, 1100: 303-311.
    Apostol I., Heinstein P. F. and Low P. S. 1989. Rapid stimulation of an oxidative burst during elicidation of cultured plant cells. Role in defense and signal transduction. Plant Physiol., 90:106-16.
    Araeoz R. and H?der D.-P. 1997. Ultraviolet radiation induces both degradation and synthesis of phycobilisomes in Nostoc sp.: a spectroscopic and biochemical approach. FEMS Microbio.Ecol., 23: 301-313.
    Aro E. M., Virgin I. and Andersson B. 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta, 1143: 113-134.
    Asada K. and Badger M. R. 1984. Photoreduction of 18O2 and H218O with concomitant evolution of 16O2 in intact spinach chloroplasts: evidence for scavenging of hydrogen peroxide by peroxidase. Plant Cell Physiol., 25: 1169-1179.
    Asada K. and Takahashi M. 1987. Production and scavenging of active oxygen in photosynthesis. In: Photoinhibition, (Eds). D. J. Kyle, C. B. Osborne and C. J. Arntzen, Amsterdam: Elsevier, pp. 227-87.
    Asada K. 1999. The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons, Annu. Rev. Plant Physiol. Plant Mol. Biol., 50: 601-639.
    Badger M. R. 1980. Kinetic properties of ribulose 1,5-biphosphate carboxylase/oxygenase from Anabaena variabilis. Arch Biochem. Biophys., 231: 233-242.
    Badger M. R. and Price G. D. 1994. The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Physiol Plant Mol. Biol., 45: 369-392.
    Badger M. R. and Price G. D. 2003. CO2 concentrating mechanisms in cyanobacteria: molecularcomponents, their diversity and evolution. J. Exp. Bot., 54: 609-22.
    Badger M. R. 1980. Kinetic properties of ribulose 1,5-biphosphate carboxylase/oxygenase from Anabaena variabilis. Arch Biochem. Biophys., 231: 233-242.
    Badger M. R., Basseit M. and Comins H. N. 1985. A model for HCO3- accumulation and photosynthesis in the cyanobacterium Synechococcus sp. Plant Physiol., 77: 465-471.
    Badger M. R. and Price G. D. 1994. The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol., 45: 369-392.
    Balloni W., Tomaselli L., Giovannetti L. and Margheri M.C. 1980. Biologia fundamental del genere Spirulina. (In) Materassi R. (ed.) Prospettive della coltura di Spirulina in Italia. Cosiglia Nazional delle Ricerche, Rome. pp. 49-85.
    Barry B. A., Boerner R. J. and Paula J. C. 1994. The use of cyanobacteria in the study of the structure and function of photosystem II. In: Bryant D. A. (ed.) The molecular Biology of Cyanobacteria. Dorfrecht: Kluwer Academic Publisher. Pp. 217-257.
    Batschauer A. 1998. Photoreceptors of higher plants. Planta, 2006: 479-492.
    Beardall J. and Giordano M. 2002. Ecological implications of microalgal and cyanobacterial CCMs and their regulation. Funct. Plant Biol., 29: 335–47.
    Bebout B. M. and Garcia-Pichel F. 1995. UV-B induced vertical migrations of cyanobacteria in a microbial mat. Appl. Environ. Microb., 61: 4215-4222.
    Belkin S. and Boussiba S. 1991. Resistance of Spirulina platensis to ammonia at high pH values, Plant Cell Physiol., 32 (7): 953-958.
    Belkin S. and Boussiba S. 1991. Resistance of A. platensis to ammonia at high PH values. Plant Cell Physiol., 32: 953-958.
    Bennet A. and Bogard L. 1973. Complementary chromatic adaptation in blue-green alga. J. Cell Biol., 58:419-435.
    Bentley R. 1990. The shikimate pathway-A metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol., 25: 307-384.
    Binaghi L., Borghi A. D., Lodi A., Converti A. and Borghi M. D. 2003. Batch and fed-batch uptake of carbon dioxide by Spirulina platensis. Proc. Biochem., 38: 1341-1346.
    Bischof K. Kr?bs G. Wiencke C. and Hanelt D. 2002. Solar ultraviolet radiation affects the activity of ribulose-1,5-bisphosphate carboxylaseoxygenase and the composition ofphotosynthetic and xanthophylls cycle pigments in the intertidal green alga Ulva lactuca L., Planta, 215: 502-509.
    Blumwald E. and Tel-Or E. 1982. Osmoregulation and cell composition in salt adaptation of Nostoc muscorum. Arch. Microbial., 132:168-172.
    Boehm G. A. 1995. Structure of a novel oligosaccharide-mycosporine-amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc comune. J. Biol. Chem., 270: 8536-8539
    Bolwell G. P., Bindschedler L.V., Blee K. A., Butt V. S., Davies D. R., Gardner S. L., Gerrish C. and Minibayeva F. 2002. The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J. Exp. Bot., 53:1367-76.
    Bolwell G. P., Davies D. R., Gerrish C., Auh C. K. and Murphy T. M. 1998. Comparative biochemistry of the oxidative burst produced by rose and french bean cells reveals two distinct mechanisms. Plant Physiol., 116: 1379-85.
    Borowitzka M. A. 1999. Commercial production of microalgae: Ponds, tanks, tubes and fermenters. J. Biotechnol., 70: 313-321.
    Boyd P. W. and Doney S. C. 2002. Modeling regional responses by marine pelagic ecosystems to global climate change. Geophys. Res. Lett., 104(13): 391-404.
    Britt A. B. 1995. Repair of DNA damage induced by ultraviolet radiation. Plant physiol., 108(2): 891-896.
    Britt A. B. 2004. Repair of DNA damage induced by solar UV. Photosynth. Res., 81:105-112.
    Cabello-Pasini A., Aguirre-von-Wobeser E. and Figueroa F. L. 2000. Photoinhibition of photosynthesis in macrocystis pyrifera (Phaeophyceae), Chondrus crispus (Rhodophyceae) and Ulva lactuca (Chlorophyleae) in outdoor culture systems. J. Photochem. Photobiol. B, 57: 169-178.
    Cadenas E. 1989. Biochemistry of oxygen toxicity. Annu. Rev. Biochem., 58:79-110.
    Campell D. 1998. The cyanobacterium Synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins. Proc. Natl. Acad. Sci. USA, 95(1): 362-364.
    Capone D. G., Zehr J. P., Paerl H. W., Bergman B. and Carpenter E. J. 1997. Trichodesmium, a globally significant marine Cyanobacterium. Science, 276: 1221-1229.
    Carriazo J., Guélou E., Barrault J., Tatibou?t J. M., Molina R. and Moreno S. 2005. Catalyticwet peroxide oxidation of phenol by pillared clays containing Al–Ce–Fe. Wat. Res., 39: 3891-3899.
    Chang E. H. and Yang S. S. 2003. Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Bot. Bull Acad. Sin., 44: 43-52.
    Chen G.-X., Kazimir J. and Cheniae G. M. 1992. Photoinhibition of hydroxylamine extracted photosystem II membranes: studies of the mechanism. Biochem., 31: 11072-11083.
    Chen X., Qiu C. and Shao J. 2006. Evidence for K+-Dependent HCO3- Utilization in the Marine Diatom Phaeodactylum tricornutum. Plant Physiol., 141: 731-736.
    Ciapetti, G., Granchi, D., Verri, E., Savarino, L., Cenni, E., Savioli, F., Arturo, P. 1998. Fluorescent microplate assay for respiratory burst of PMNs challenged in vitro with orthopedic metals. J. Biomed. Material. Res., 41(3):455-460.
    Ciferri O. 1983. Spirulina, the edible Microorganism. Microbiol. Rev., 551-578.
    Cohen Z. 2004. The chemicals of Spirulina. In: Spirulina: Physiology, cell-biology and biotechnology. (Ed.) A. Vonshak, London: Taylor and Francis., pp. 175–204.
    Cohen G., Kim M. and Ogwu V. 1996. A modified catalase assay suitable for a plate reader and for the analysis of brain cell cultures, J. Neurosci. Met., 67: 53-56.
    Colman B. 1989. Photosynthetic carbon assimilation and the suppression of photorespiration in the cyanobacteria. Aquat. Bot., 34: 211-231.
    Colman B. and Rotatore C. 1995. Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant. Cell. Environ., 19: 919-924.
    Conklin P. L., Williams E. H. and Last R. L. 1996. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc. Natl. Acad. Sci. USA, 93: 9970-9974.
    Dangeard P. 1940. Sur une algue bleue alimentaire pour l’homme: Arthrospira platensis (Nordst.) Gomont. Actes Soc Linn Bordeaux, 91: 39-41.
    Costa J. A. V., Colla L. M. and Filho P. F. D. 2004. Improving Spirulina platensis biomass yield using a fed-batch process. Bioresource Technol., 92: 237-241.
    Davis K. J. A. 1987. Protein damage and degradation by oxygen radicals I. General aspects. J. Biol. Chem., 262:9895-9901.
    Davison P. A., Hunter C. N. and Horton P. 2002. Overexpression of ?-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature, 418:203-6.
    Desikachary T. V. and Jeeji Bai N. 1992. Taxonomic studies in Spirulina. In: C.V., Seshadri, N. Jeeji Bai (eds), Spirulina national Symposium. India: S. N, pp. 12-20.
    Dhiab R. B., Ouada H. B., Boussetta H., Franck F., Elabed A. and Brouers M. 2007. Growth, fluorescence, photosynthetic O2 production and pigment content of salt adapted cultures of Arthrospira (Spirulina) platensis. J. Appl. Phycol., 19: 293-301.
    Dionisio-Sese M. L. and Miyachi S. 1992. The effect of sodium chloride on carbonic anhydrase activity in marine microalgae. J. Phycol., 28: 619-624.
    Dixon G. K., Patel B. N. and Merrett M. J. 1987. Role of intracellular carbonic anhydrase in inorganic carbon assimilation by Porphyridium purpureum. Planta, 172: 508-513.
    Douglas S. E. 1994. Chloroplast origins and evolution. In: (Ed.) The Molecular Biology of Cyaobacteria. Bryant, D. A., Dordrecht: Kluwer Academic Publisher, pp. 91-118.
    Ehling-Schulz M., Bilger W. and Scherer S. 1997. UV-B induced Synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J. Bacteriol., 179(6): 1940-1943.
    Elstner E. F. 1991. Mechanisms of oxygen activation in different compartments of plant cells. In Active Oxygen/Oxidative Stress in Plant Metabolis, (eds.) E. J. Pelland and K. L. Steffen. Rockville, M. D.: Am. Soc. Plant Physiol., pp.13-25.
    Enling S. M. 1997. UV-B induced synthesis of photoprotective pigments and extracellular polysacchrides in terrestrial cyanobacterium Nosto commune. Bacteriol, 179(6): 1940-1943.
    Espie G. S. and Canvin D. T. 1987. Evidence for Na+-independent HCO3- uptake by the cyanobacterium Synechococcus leopliensis. Plant Physiol., 84: 125-130.
    Espie G. S. Miller A. G. Birch D. G. and Canvin D. T. 1988. Simultaneous transport of CO2 and HCO3- by the cyanobacterium Synechococcus UTEX 625. Plant Physiol., 87: 551-554.
    Espie G. S. and Kandasamy R. A. 1994. Monensin inhibition of Na+-dependent HCO3? transport distinguishes it from Na+ independent HCO3? transport and provides evidence for Na+/HCO3? symport in the cyanobacterium Synechococcus UTEX 625. Plant Physiol., 104: 1419-1428.
    Favre D. Karamata D. and Mendelson N. H. 1985. Temperature pulse-induced“memory”in Bacillus subtilis macrofibers and a role for protein(s) in the anti-right-handed-twist state. J. Bacteriol., 164:1141-1145.
    Foyer C. H. and Harbinson J. C. 1994. Oxygen metabolism and the regulation of photosyntheticelectron transport. In: C. H. Foryer and P. M. Mullineaux, Causes of photooxidative stress and Amelioration of denfense systems in plant, Boca Raton, Fla.:CRC., pp. 1-42.
    Foyer C. H., Lelandais M. and Kunert K. J. 1994a. Photooxidative stress in plants, Physiol. Plant, 92: 696-717.
    Foyer C. H., Descourvieres P. and Kunert K. J. 1994b. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants, Plant Cell Environ., 17:507–523.
    Franklin L. A., Osmond C. B. and Larkum A.W. D. 2003. Photoinhibition, UV-B and algal photosynthesis. In Photosynthesis in Algae (Ed.) A. W. D. Larkum, S. E. Douglas and J. A. Rave, Netherlands: Kluwer Academic Publishers, pp.351-384.
    Frederick J. E., Slusser J. R.and Bigelow D. S. 2000. Annual and interannual behavior of solar ultraviolet irradiance revealed by broadband measurements. Photochem. Photobiol., B, 72(4): 488-496.
    Ganesh A. B., Manoharan P. T. and Suraishkumar G. K. 2007. Responses of the Photosynthetic Machinery of Spirulina maxima to Induced Reactive Oxygen Species. Biotech. Bioeng., 96: 1191-1198.
    Ganf G. G. and Oliver R. L. 1982. Vertical separation of light and available nutrients as a factor causing replacement of green algae by blue-green algae in the plankton of a stratified lake. J. Ecol., 70: 829-844.
    Gantt E., Lipschultz C. A. Grabowski J. and Zimmerman B. K. 1979. Phycobilisomes from blue-green and red algae. Plant physiol., 63: 615-620.
    Gantt E. 1994. Supramolecular membrane organization. In: The molecular biology of cyanobacteria. (Ed.) D. A. Bryant, Kluwar, Dordrecht, The Netherlands, pp. 119-138.
    Gao K. 1998. Growth and Carbon budget of Spirulina pacifica with a special reference to light. Algae (The Korean Journal of Phycology), 13(1): 119-122.
    Gao K., Li P., Watanabe T. and Helbling E.W. 2008. Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis and DNA of Arthrospira (Spirulina) platensis. J. Phycol., 44: 777-786.
    Gao K. and Ma Z. 2008. Photosynthesis and growth of Arthrospira (Spirulina) platensis (Cyanophyta) in response to solar UV radiation, with special reference to its minor variant. Environ. Exp. Bot., 63: 123-129.
    Gao K., Wu Y., Li G., Wu H., Villafa?e V. E. and Helbling E. W. 2007. Solar UV radiation drives CO2 fixation in marine phytoplankton: A double-edged sword. Plant Physiol., 144: 54-59.
    Garcia-pichel F. and Castenholz R. W. 1991. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol., 27:395-409.
    Garcia-pichel F., Wingard C. E. and Castenholz R. W. 1993. Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl. Environ. Microbiol., 59: 170-176.
    Giordano M., Beardall J. and Raven J. A. 2005. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol., 56: 99-131.
    Glauner B. H?ltje J. V. and Schwarz U. 1988. The composition of the murein of Escherichia coli. J. Biol. Chem., 268:10088-10095.
    Glazer A. N. 1981. Photosynthetic accessory protein with bilin prosthetic groups. (Ed) Hatcg, M. D. and Boardman, N. K.. The biochemistry of plants. Academic Press. New York. Pp. 51-96.
    Glazer A. N. 1984. Phycobilisome-a macromolecular complex optimized for light energy transfer. Biochim. Biophys. Acta, 768: 29-51.
    Gold L. 1988. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu. Rev. Biochem., 57: 199-233.
    Gombos Z., Wada H. and Murata N. 1994. The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: a mechanism of chilling tolerance. Proc. Natl. Acad. Sci. USA, 91: 8787-8791.
    Gomont M. 1892. Monographie des Oscillariées. Ann Sci Nat Bot., Sér 7, 15: 263-368; 16: 91-264.
    Gordillo F. J. L., Jiménez C., Figuerroa F. L. and Niell F. X. 1999. Effects of increased atmospheric CO2 and N supply on photosynthesis, growth and cell composition of the Cyanobacterium Spirulina pltatensis. J. Appl. Phycol., 10: 461-469.
    Goyet C. and Poisson A. 1989. New determination of carbonic acid dissociation constants in seawater as a function of temperature and salinity. Deep-Sea Res., 36: 1635-1654.
    Grant W. D., Mwatha W. E. and Jone B. E. 1990. Alkaliphiles: ecology, diversity and applications. FEMS Microbiol. Rev., 75: 255-270.
    Grobbelaar J. U., Nedbal L. and Tichy V. 1996. Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J. Appl. Phycol., 8: 335-343.
    Gustavsson N., Kokke B. P., Harndahl U., Silow M., Bechtold U., Poghosyan Z., Murphy D., Boelens W. C. and Sundby C. 2002. A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shoak protein. Plant J., 29(5): 543-553.
    Guterman H., Vonshak A. and Ben-Yaakov S. 1989. Automatic on line growth estimated method for outdoor algal biomass production. Biotechchnol. Bioengin., 34: 143-152.
    H(?)der D.P., Lebert M., Marangoni R. and Colombetti, G., 1999. ELDONET: European Light Dosimeter Network hardware and software. J. Photochem. Photobiol., B 52: 51-58.
    H(?)der D.-P. Kumar H. D., Smith R. C. and Worrest R. C. 2007. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci., 6: 267-285.
    Haglund K., Bjork M., Ramazanov Z., Garcia-Reina G. and Pedersen M. 1992. Role of carbonic anhydrase in photosynthesis and inorganic carbon assimilation in red alga Gracilaria tenuistipata. Planta, 187: 275-281.
    Halliwell B. and Gutteridge J. M. C. 1999. Free Radicals in Biology and Medicine, 2rd ed., Oxford University Press, pp. 48-53.
    Havaux M., Eymery F., Porfirova S., Rey P. and D?rmann P. 2005. Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana, Plant Cell, 17: 3451-4369.
    He Y.-Y. and H?der D.-P. 2002. UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-L-cysteine. J. Photochem. Photobiol., 66: 115-124.
    He Y.-Y., Klisch M. and H?der D.-P. 2002. Adaptation of cyanobacteria to UV-B stress correlated with oxidative stress and oxidative damage, Photochem. Photobiol., 76: 188–196.
    Helbling E. W., Buma A. G. J., de Boer M. K. and Villafa?e,V. E. 2001. In situ impact of solar ultraviolet radiation on photosynthesis and DNA in temperate marine phytoplankton. Mar. Ecol. Progr. Ser., 130: 537-543.
    Hirano M., Satoh K. and Kotch S. 1980. Plastoquinone as a common link betweenphotosynthesis and respiration in blue-green alga. Photosynth. Res., 1: 149-162.
    Hirayama S., Ueda R. and Sugata K. 1995. Detection of hydroxyl radical in intact cells of Chlorella vulgaris. Free Radic. Res., 23:51-59.
    Hirayama S., Ueda R. and Sugata K. 1996. Evaluation of active oxygen effect on photosynthesis of Chlorella vulgaris. Free Radic. Res., 25:247-254.
    Holloesy F. 2002. Effects of ultraviolet radiation on plant cells. Micron., 33: 179-197.
    Hongsthong A., Sirijuntarut M., Prommeenate P., Thammathorn S., Bunnag B., Cheevadhanarak S. and Tanticharoen M. 2007. Revealing differentially expressed proteins in two morphological forms of Spirulina platensis by proteomic analysis. Mol. Biotechnol., 36: 123-130.
    Horikoshi K. and Aiba T. 1982. Alkalophilic Microorganisms, Japan Scientific Societies Press, Tokyo. pp. 101-102.
    Jassby A. D. and Platt T. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr., 21: 540-547.
    Jeeji Bai N. and Seshadri C. V. 1980. On coiling and uncoiling of trichromes in the genus Spirulina. Archives of Hydrobiology, 60(suppl), Algological Studies, 26: 32-47.
    Jeeji Bai N. 1985. Competitive exclusion or morphological transformation ? A case study with Spirulina fusiformis. Archives of Hydrobiology, 71(suppl), Algological Studies, 38/39, 191-199.
    Jensen S. and Knutsen G. 1993. Influence of light and temperature on photoinibition of photosynthesis in Spirulina platensis. J. Appl. Phycol. 5: 495-504.
    Johnson K .S. 1982. Carbon dioxide hydration and dehydration kinetics in seawater. Limnol. Oceanogr., 27: 849-855.
    Jordan B. R. 1996. The effects of ultraviolet-B radiation on plants: a molecular perspective, Adv. Bot. Res., 22: 97-162.
    Jost M. 1965. Die Ultrastructure von Osillatoria rubescens D.C. Arch. Mikrobiol., 50: 211-245.
    Kaplan A. 1981. Photoinhibition in Spirulina platensis: response of photosynthesis and HCO3- uptake capability to CO2 depleted conditions. J. Exper. Bot., 32: 669-673.
    Kaplan A., Badger M. R. and Berry J. A. 1980. Photosynthesis and intracellular inorganic carbonpool in the blue-green algae Anabaena variabillis: response to external CO2 concentration. Planta, 149: 210-226.
    Kaplan A. Schwarz R. Zriel R. and Reihold L. 1990. The“CO2 concentrating mechanism”of cyanobacteria physiological, molecular, and theoretical studies. Bot. Mag. Tokyo, 2: 53-72.
    Kaplan A. and Reinhold L. 1999. CO2 concentrating mechanisms in photosynthetic microorganisms. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50: 539-59.
    Karentz D., Cleaver J. E. and Mitchell D. L. 1991. Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. J. Phycol., 27: 326-341
    Karl D., Michaels A., Bergman B., Capone D., Carpenter E., Letelier R., Lipschultz F., Paerl V., Sigman D. and Stal L. 2002. Dinitrogen fixation in the world’s oceans. Biogeochem., 57/58: 47-98.
    Kashino Y., Lauber W. M. and Carroll J. A. 2002. Proteomic analysis of a highly active photosystem II preparation from cyanobacterium Synechocytis sp. PCC 6803 reveals the presence of novel polypeptides. Biochem., 41: 8004-8012.
    Kerby N.W. and Raven J. A. 1985. Transport and fixation of inorganic carbon by marine algae. Adv. Bot. Res., 11: 71-104.
    Kim J. H., Glick R. E. and Melis A. Dynamics of photosystem stoichiometry adjustment by light quality in chloroplasts. Plant Physiol., 102: 181-190.
    Kim S. G., Choi A., Ahn C. Y., Park C. S., Park Y. H. and Oh H. M. 2005. Harvesting of Spirulina platensis by cellular flotation and growth stage determination. Lett. Appl. Microbiol., 40: 190-194.
    Klemer A. R. 1991. Effects of nutritional status on cyanobacterial buoyancy, bloom, and dominance, with special reference to inorganic carbon. Can. J. Bot., 69:1133-1138.
    Klotz L. O. 2002. Oxidant-induced signaling: effects of peroxynitrite and singlet oxygen. Biol. Chem., 383:443-56.
    Klughammer B., Suèltemeyer D., Badger M. R. and Price G. D. 1999. The involvement of NAD(P)H dehydrogenase subunits, NdhD3 and NdhF3, in high-afinity CO2 uptake in Synechococcus sp. PCC7002 gives evidence for multiple NDH-1 complexes with specific roles in cyanobacteria. Mol. Microb., 32:1305-1315.
    Komárek J. and Lund J. W. G. 1990. What is“Spirulina platensis”in fact? Arch Hydrobiol,Suppl 85, Algological Studies, 58: 1-6.
    Kochert G. 1978. Carbohydrate determination by the phenol-sulfuric acid method. In: Handbook of Phycological Methods: Physiological and Biochemcal Methods. J. A. Hellebust, J. S. Graigie (Eds.), Cambridge University Press. pp. 91-93.
    Kolber Z. and Falkowski P.G. 1993. Use of fluorescence to estimate phytoplankton photosynthesis in situ. Limnol. Oceanogr., 38: 1646–1665.
    Knox J. P. and Dodge A. D. 1985. Singlet oxygen and plants. Phytochem., 24: 889-896.
    Korbee-peinado N., Abdala-díaz R. T., Figueroa F. L. and Helbling E. W. 2004. Ammonium and UV radiation stimulate the accumulation of mycosporine-like amino acids in Porphyra columbina (Rhodophyta) from Patagonia, Argentina. J. Phycol., 40: 248-259.
    Kramer G. F., Norman H. A., Krizek D. T. and Mirecki R. M. 1991. Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber. Phytochem., 30: 2101-2108.
    Kromkamp J. and Walsby A. E. 1990. A computer model of buoyancy and vertical migration in cyanobacteria. J. Plankton Res., 12: 161-183.
    Kruschel C. and Castenholz R. W. 1998. The effect of solar UV and visible irradiance on the vertical movements of cyanobacteria in microbial mats of hypersaline waters. FEMS microbial. Ecol., 27: 53-72.
    Kumar A., Tyagi M. B., Jha P. N., Srinivas G. and Singh A. 2003. Inactivation of cyanobacterial nitrogenase after exposure to ultraviolet-B radiation. Curr. Microbiol., 46: 380–384.
    Kumar A., Tyagi M. B. and Jha P. N. 2004. Evidences showing ultraviolet-B radiation-induced damage of DNA in cyanobacteria and its detection by PCR assay, Biochem. Biophys. Res. Commun., 318: 1025–1030.
    Lao K. and Glazer A. N. 1996. Ultraviolet-B photodestruction of a light-harvesting complex. Proc. Natl. Acad. Sci. USA, 93: 5258-5263.
    Lee D.Y. and Rhee G. Y. 1997. Kinetics of cell death in the cyanobacterium Anabana flos-aquae and the production of dissolved organic carbon. J. Phycol., 33: 991-998.
    Lesser M. P. and Shick J. M. 1989. Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida: primary production, photoinhibition, and enzymic defenses against oxygen toxicity. Mar. Biol., 102: 243-255.
    Lewin R. A. 1980. Uncoil variants of Spirulina platensis (Cyanophyceae: Oscillatoriaceae). Archives of Hydrobiology, 60 (suppl), Algological Studies, 26: 48-52.
    Lu C. M. and Vonshak A. 1999. Photoinhibition in outdoor Spirulina platensis cultures assessed by polyphasic chlorophyll fluorescence transients. J. Appl. Phycol., 11: 355-359.
    Lu C. and Vonshak A. 2002. Effectsof salinity stress on photosystemII function in cyanobacterial Spirulina platensis cells, Physiol. Plant., 114: 405-413.
    Lugomela C., Lyimo T. J., Bryceson I., Semesi A. K. and Bergman B. 2002. Trichodesmium in coastal waters of Tanzania: diversity, seasonality, nitrogen and carbon fixation. Hydrobiologia, 477: 1-13.
    Ma Z., Gao K. and Watanabe T. 2006. Effects of dissolved organic matter on the growth and pigments synthesis of Spirulina platensis (Arthrospira). Prog. Nat. Sci., 16: 50-54.
    Maberly S. C. 1990 Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J. Phycol., 26: 439-449.
    Maeda S., Badger M. R. and Price G. D. 2002. Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium Synechococcus sp. PCC7942. Mol. Microbiol., 43: 425-435.
    Malan C., Gregling M. M. and Gressel J. 1990. Correlation between CuZn superoxide dismutase and glutathione reductase and environmental and xenobiotic stress tolerance in maize in breds. Plant Sci., 69: 157-66.
    Mandalm R. K. and Palsson B. O. 1998. Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures. Biotech. Bioeng., 59 (5): 605-611.
    Marquez F. J., Saski K., Kakizono T., Nioshio N. and Nagal S. 1993. Growth characteristics of Spirulina pltensis in mixotrophic and heterotrophic conditions. J. Ferment. Bioengin., 76: 408-410.
    Marquez F. M., Sasaki K., Nishio N and Nagai S. 1995a. Inhibitory effect of oxygen accumulation on growth of Spirulina platensis. Biotechnol. Lett., 17:225-228.
    Marquez F. J., Nishio N and Nagai S. 1995b. Enhancement of biomass and pigment production during gowth of Spirulina platensis in mixotrophic culture. J. Chem. Tech. Biotechnol., 62: 159-164.
    Matsuda Y., Hara T. and Colman B. 2001. Regulation of the induction of bicarbonate uptake by dissolved CO2 in the marine diatom, Phaeodactylum tricornutum. Plant Cell Environ., 24: 611-620.
    Melis A. 1999. Photosystem II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci., 4: 130-135.
    Miki W., Yamaguchi S. and Konosu S. 1986. Carotenoid composition of Spirulina maxima. Bull. Jpn. Soc. Sci. Fish., 52(7): 1225-1227.
    Miller A. G. and Colman B. 1980. Evidence for HCO3-transport by the blue-green alga (Cyanobacterium) Coccochloris peniocystis. Plant Physiol., 65: 397-402.
    Miller A. G. and Canvin D. T. 1989. Glycolaldehyde inhibits CO2 fixation in the cyanobacterium Synechococcus UTEX 625 without inhibiting the accumulation of inorganic carbon or the associated quenching of chlorophyll a fluorescence, Plant Physiol., 91:1044-1049.
    Miller A. G., Espie G. S. and Canvin D. T. 1990. Physiological aspects of CO2 and HCO3- transport by cyanobacteria: A review. Can. J. Bot., 68: 1291-1302.
    Miller A. G. Turpin D. H. and Canvin D. T. 1984. Na+ requirement for growth, photosynthesis and pH regulation in the alkalotolerant cyanobacterium Synechococcus leopoliensis. J. Bacteriol., 159:100-106.
    Mitchell D. L. 1995. Ultraviolet radiation damage to DNA. In: R. A. Meyers, (Ed.), Molecular biology and biology and biotechnology: A Comprehensionsive Desk Reference VCH Publishers, NY., pp. 939-943.
    Miyao M., Ikeuchi M., Yamamoto N. and Ono T. 1995. Specific degradation of the D1 protein of photosystem II by treatment with hydrogen peroxide in darkness: implication for the mechanism of degradation of the D1 protein under illumination, Biochem., 34: 10019-10026.
    Moon B.Y., Higashi S. I., Gombos Z. and Murata N. 1995. Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants, Proc. Natl. Acad. Sci. USA. 92: 6219-6223.
    Mühling M., Harris N., Belay A. and Whitton B. A. 2003. Reversal of helix orientation in the cyanobacterium Arthrospira. J. Phycol., 39: 360-367.
    Murata N., Takahashi S., Nishiyama Y. and Allakhverdiew S. I. 2007. Photoinhibition ofphotosystem II under environmental stree. Biochim. Biophys. Acta, 1767:414-421.
    Murphy T. M. 1983. Membranes as targets of ultraviolet radiation. Physiol. Plant, 58: 381-388.
    Neyens E. and Baeyens J. A. 2003. A review of classic Fentons’Peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98: 33-50.
    Nimer N. A. Merrett M. J. and Brownlee C. 1996. Inorganic carbon transport in relation to culture age and inorganic carbon concentration in a high calcifying strain Emiliania huxleyi. J. Phycol., 32: 813-818.
    Nishiyama Y., Yamamoto H., Allakhverdiev S. I., Inaba M., Yokota A. and Murata N. 2001. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO. J., 20: 5587-5594.
    Nishiyama Y., Allakhverdiev S. I., Yamamoto H., Hayashi H. and Murata N. 2004. Singlet oxygen inhibits the repair of photosystem II by suppressing translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochem., 43: 11321-11330.
    Nishiyama Y., Allakhverdiev S. I. and Murata N. 2005. Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria, Photosynth. Res., 84:1-7.
    Niyogi K. K. 1999. Photoprotection revisited: genetics and molecular approaches, Annu. Rev. Plant Physiol., 50: 333-359.
    Noctor G., Gomez L., Vanacker H. and Foyer C. H. 2002. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J. Exp. Bot., 53:1283-304.
    Nubel U., Garcia-Pichel F. and Muyzer G. 2000. The halotolerance and phylogeny of cyanobacteria with tightly coiled trichromes (Spirulina Turpin) and the describtion of Halospirulina tapeticola gen. nov., sp. International Journal of Systematic Evolutionary Microbiology, 50: 1265-1277.
    Ogawa T. and Terui G. 1970. Studies on the growth of Spirulina platensis (I) On the culture of Spirulina platensis. Ferment Technol., 48: 361-364.
    Ogawa T. and Kaplan A. 2003. Inorganic carbon acquisition systems in cyanobacteria. Photosynth. Res., 77: 105-115.
    Ohkawa H., Sonoda M., Katoh H. and Ogawa T. 1998. The use of mutants in the analysis of theCCM in cyanobacteria. Can. J. Bot., 76: 1025-1034.
    Ohkawa H., Pakrasi H. B. and Ogawa T. 2000a. Two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp. strain PCC6803. J. Biol. Chem., 275: 31630-31634.
    Ohkawa H., Price G. D., Badger M. R. and Ogawa T. 2000b. Mutation of ndh genes leads to inhibition of CO2 uptake rather than HCO3? uptake in Synechocystis sp. strain PCC 6803. J. Bacteriol., 182: 2591-2596.
    Ohkawa H., Sonoda M., Maeda S., Badger M. R. and Price G. D. 2002. Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp. PCC7942. Mol. Microbiol., 43: 425-435.
    Oliver R. L. 1994. Floating and sinking in gas-vacuolate cyanobacteria. J. Phycol., 30:161-173.
    Oliver R. L. and Walsby A. E. 1984. Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation of Anabaena flos-aquae (cyanobacteria). Limnol. Oceanogr., 29: 879-86.
    Omata T. and Murata N. 1983. Isolation and characterization of the cytoplasmic membranes from the blue-green alga (cyanobacterium) Anacystis nidulans. Plant Cell Physiol., 24: 1101-1112.
    Omata T. and Murata N. 1984. Isolation and characterization of three types of membranes from the cyanobacterium (blue-green alga) Synechosystis PCC 6714. Arch Microbiol., 139: 113-116.
    Omata T., Price G. D., Badger M. R., Okamura M., Gohta S. and Ogawa T. 1999. Identification of an ABC-Type bicarbonate transporter of the cyanobacterium Synechococcus sp. strain PCC 7942. Proc. Natl. Acad. Sci. USA., 96: 13571-13576.
    Packer L. and Glazer A. N. 1988. Methods in enzymology. (186) pp. 89-197.
    Padan E., Zilberstein D. and Schuldiner S. 1981. PH Homeostasis in bacteria. Biochem. Biophys. Acta, 650: 151-166
    Park Y.-I., Chow W. S. and Anderson J. M. 1995. Light inactivation of functional photosystem II in leaves of peas grown in moderate light depends on photon exposure, Planta, 196: 401-411.
    Pakker H., Beekman C. A. C. and Breeman A. M. 2000a. Efficient photoreactivation of UVBR-induced DNA damage in the sublittoral macroalga Rhodymenia pseudopalmata(Rhodophyta). Eur. J. Phycol., 35: 109-114.
    Pakker H., Martins R., Boelen P., Buma A. G. J., Nikaido O. and Breeman A. M. 2000b. Effects of temperature on the photoreactivation of ultraviolet-B induced DNA damage in Palmaria palmata (Rhodophyta). J. Phycol., 36: 334-341.
    Parsons T. R. and Strickland J. D. H. 1963. Disscussion of spectrophotometric determination of marine plant pigments, with revised equation for ascertaining chlorophylls and carotenoids. J. Mar. Res., 21: 155-163.
    Patil G. G., Oi R., Gissinger A. and Moe R. 2001. Plant morphology is affected by light quality selective plastic films and alternating day and night temperature. Gartenbauwissenschaft, 66 (2): 53-60.
    P?tsikk? E., Aro E. M. and Tyystj?rvi E. 1998. Increase in the quantum yield of photoinhibition contributes to copper toxicity in vivo. Plant physiol., 117: 619-627. Porra R. J. 2002. The chequered history of the development and use of simultaneous equations for the determination of chlorophylls a and b. Photosynth. Res., 73, 149-156.
    Powles S. B. 1984. Photoinhibition of photosynthesis induced by visible light. Ann. Rev. Plant Physiol. 35:15-44.
    Prasad T. K., Anderson M. D., Martin B. A. and Stewart C. R. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 6: 65-74.
    Prásil O. Adir N. and Ohad I. 1992. Dynamics of photosystem II: mechanism of photoinhibition and recovery process, in: J. Barber (Ed.), The Photosystems: Structure, Function and Molecular Biology. vol. 11, Elsevier Science Publishers, Amsterdam, The Netherlands, pp. 295-348.
    Qiu B. and Liu J. 2004. Utilization of inorganic carbon in the edible cyanobacterium Ge-Xian-Mi (Nostoc) and its role in alleviating photo-inhibition. Plant Cell Environ., 27: 1447-1458.
    Radmer R. J. and Kok B. 1976. Photoreduction of O2 primes and replaces CO2 assimilation. Plant Physiol., 58: 336-340.
    Radmer R. and Ollinger O. 1980. Light-driven uptake of oxygen, carbon dioxide, and bicarbonate by the green alga Scenedesmus. Plant Physiol., 65: 723-729.
    Rail C. 1998. Algal responses to enhanced ultraviolet B radiation. Proc. India Nat. Sci. Acad. B: Biol. Sci., 64(2): 125-137.
    Rajapopal S., Sicora C., Vákonyi Z., Mustárdy L. and Mohanty P. 2005. Protective effect of supplemental low intensity white light on ultraviolet-B exposure-induced impairment in cyanobacterium Spirulina platensis: formation of air vacuoles as a possible protective measure. Photosynth. Res., 85: 181-189.
    Rech M., Mouget J.-L., Morant-Manceau A., Rosa P. and Tremblin G. 2005. Long-term acclimation to UV radiation: effects on growth, photosynthesis and carbonic anhydrase activity in marine diatoms. Bot. Mar., 48: 407–420.
    Reed R. H., Richardson D. L. and Stwart W. D. P. 1985. Na+ uptake and extrusion in the cyanobacterium Synechocystis PCC 6714 in response to hyper-saline treatment. Evidence for transient changes in plasmalemma Na+ permeability. Biochin. Biophys. Acta, 814: 347-353.
    Reinhold L., Zviman M. and Kaplan A. 1986. Inorganic carbon fluxes and photosynthesis in cyanobacteria-a quantitative model. In: Biggins J. (ed.) Progress in Photosynthesis Research. Martinus Nijhoff Publishers, The Hague, Vol 4, pp. 289-296.
    Renger G. 1992. Energy transfer and trapping in photosystem II. In: Barber, J. (ed.) The photosystems: Structure, function and molecular biology, topics in photosynthesis. Amsterdam: Elsevier Science Publisher, pp. 45-99.
    Renger G. 1997. Mechanistic and structural aspects of photosynthetic water oxidation. Physiol. Plant, 100: 828-841.
    Reynolds C. S. Oliver R. L. and Walsby A. E. 1987. Cyanobacterial dominance: The role of buoyancy regulation in the billowing environment. New Zeal. J. Mar. Fresh., 21: 379-390.
    Richmond A. and Grobbelaar J. U. 1986. Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass, 10: 253-264.
    Richmond A. 1996. Efficient utilization of high irradiance for production of photoautotrophic cell mass: A survey. J. Appl. Phycol., 8: 381-386.
    Rosenkranz A. R., Schmaldienst S., Stuhlmeier K. M., Chen W. J., Knapp W. and Zlabinger G. J. 1992. A Microplate Assay For the Detection of Oxidative Products Using 2',7'-Dichlorofluorescin-diacetate. J. Immunol. Meth., 156 (1): 39-45.
    Rozema J. 2002. The role of UV-B radiation in aquatic and terrestrial ecosystems----anexperimental and functional analysis of the evolution of UV-absorbing compounds. J. Photochem. Photobiol. B: Biol., 66: 2-12.
    Sahoo S., Rao K. K. and Suraishkumar G. K. 2006. Reactive oxygen species induced by shears tress mediate cell death in Bacillus subtilis. Biotechnol. Bioeng., 33:698-707.
    Sasaki K. 1993. Effect of culture pH on the extracellular production of 5-aminolevulinic acid by Rhodobacter sphaeroides from volatile fatty acids. Biotechnol. Lett., 15: 859-864.
    Sass L., Spetea C., MátéZ., Nagy F. and Vass I. 1997. Repair of UV-B induced damage of photosynthesis II via de novo synthesis of the D1 and D2 reaction center subunits in Synechocystis sp. PCC 6803. Photosyn. Res., 54: 55-62.
    Satoh A., Kurano N. and Miyachi S. 2001. Inhibition of photosynthesis by intracellular carbonic anhydrase in microalgae under excess concentrations of CO2. Photosynth. Res., 68: 215-224.
    Schreiber U., Endo T., Mi H. and Asada K. 1995. Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol., 36: 873–882.
    Schimetterer G. 1994. Cyanobacterial respiration. In D. A. Bryant, (ed.) The Molecular Biology of Cyanobacteria. Kluer Academic Publishers, Dordrecht, pp. 409-35.
    Schlesinger P., Belkin S. and Boussiba S. 1996. Soium deprivation under alkaline conditions causes rapid death of the filamentous cyanobacterium Spirulina platensis. J. Phycol., 32: 608-613.
    Schopfer P. Plachy C. and Frahry G. 2001. Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin and abscisic acid. Plant Physiol., 125: 1591-602.
    Setlow R. B., Swenson P. A. and Carrier W. L. 1963. Thymine dimmer and inhibition of DNA synthesis ultraviolet radiation of cultured fish cells. Science, 142: 1464-1465.
    Setlow R. B. 1974. The wavelength in sunlight effective in producing skin cancer: A theoretical analysis. Proc. Nat. Acad. Sci. USA, 71: 3363-3366.
    Shen G. Z. and Vermass W. F. J. 1994. Chlorophyll in a Synechocystis sp. PCC 6803 mutant without photosystem I and photosystem II core complex-evidence for peripheral antenna chlorophylls in cyanobacteria. J. Biol. Chem., 269: 13904-13910.
    Shibata M., Ohkawa H., Kaneko T., Fukuzawa H., Tabata S., Kaplan A. and Ogawa T. 2001.Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc. Nat. Acad. Sci.USA, 98: 11789-11794.
    Shibata M., Ohkawa H., Katoh H., Shimoyama M. and Ogawa T. 2002a. Two CO2-uptake systems: four systems for inorganic carbon acquisition in Synechocystis sp. strain PCC6803. Funct. Plant Biol., 29: 123-129.
    Shibata M., Katoh H., Sonoda M., Ohkawa H., Shimoyama M., Fukuzawa H., Kaplan A. and Ogawa T. 2002b. Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis. J. Biol. Chem., 277: 18658-18664.
    Shimada A., Oguchi M., Otsubo K., Nitta K., Koyano T. and Miki K. 1989. Application of tubular photo-bioreactor system to culture Spirulina for food production and gas exchange. In: Miyachis. karube I. and Ishida Y. (Eds) Current Topics in Marine Biotechnology, Jap. Soc. Mar. Biotechnol., Tokyo, pp. 147-161.
    Sicher R. C. 1984. Glycolaldehyde inhibition of photosynthetic carbon assimilation by isolated chloroplasts and protoplasts, in: C. Sybesma (Ed.), Adv. Photosyn. Res., vol. 3, W. Junk, Hague, pp. 413-416.
    Siegelman H. W. Chapman D. J. and Cole W. J. (1968). The bile pigments of plants. Biochem. Soc. Symp., 28: 107-120.
    Sinha R. P., Klisch M., Gr?niger A. and H?der D.-P. 2001. Responses of aquatic algae and cyanobacteria to solar UV-B. Plant Ecol., 154: 221-236.
    Sinha R. P. Singh N. Kumar A. Kumar H. D. H?der M. and H?der D.-P. 1996. Effects of UV irradiation on certain physiological and biochemical processes in cyanobacteria. J. Photochem. Photobiol. B: Biol., 32: 107-113.
    Sidler W. A. 1994. Phycobilisome and phycobiliprotein structures. In: Bryant D. A., (ed.) The Molecular Biology of cyanobacteria. Dordrecht: Kluwer Academic Publisher. pp. 139-216.
    So A. K. C., Kassam A. and Espie G. S. 1998 Na+-dependent HCO3? transport in the cyanobacterium Synechocystis PCC 6803. Can. J. Bot., 67: 1084-1091.
    Sopory S. K., Greenberg B. M., Mehta R. A., Edelman M. and Mattoo A. K. 1990. Free radical scavengers inhibit light-dependent degradation of the 32 kDa photosystem II reaction center protein. Z. Naturforsch. 45c: 412-417.
    Stanier R. Y. and Cohen-Bazire G. 1977. Phototrophic prokaryotes: the cyanobacteria. Annu. Rev. Microbiol., 31: 225-274.
    Stizenberger E. 1852. Spirulina and Arthrospirua (nov. gen.). Hedwigia., 1: 32-41.
    Su M., Cavallo S., Stefanini S., Chiancone E. and Chasteen N. D. 2005. The So-Called Listeria innocua Ferritin Is a Dps Protein. Iron Incorporation, Detoxification, and DNA Protection Properties. Biochem., 44(15): 5572-5578.
    Swenson P. A. and Setlow R. B. 1966. Effects of ultraviolet radiation on macromolecular synthesis in Escherichia coli. J. Mol. Biol., 15: 201-219.
    Takahashi S. and Murata N. 2005. Interruption of the Calvin cycle inhibits the repair of photosystem II from photodamage. Biochim. Biophys. Acta, 1708: 352-361.
    Takahashi S. and Murata N. 2006. Glycerate-3-phosphate, produced by CO2 fixation in the Calvin cycle, is critical for the synthesis of the D1 protein of photosystem II, Biochim. Biophys. Acta, 1757: 198-205.
    Tan S., Sagara Y., Liu Y., Maher P. And Schubert D. 1998. The regulation of reactive oxygen species production during programmed cell death. J. Cell Biol., 141:1423-1432.
    Tchernov D., Hassidium M. Luz B. Sukenik A. Reinhold L. and Kaplan A. 1997. Sustained net CO2 evolution during photosynthesis by marine microorganisms. Curr. Biol., 7: 723-728.
    Tomaselli L. 1997. Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis. In: Vonshak A, (Ed.) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. London: Taylor and Francis, pp.1-16.
    Torre P., Sassano C. E. N., Sato S., Converti A., Gioielli L. A. and Carvalho J. C. M. 2003. Fed-batch addition of urea for Spirulina platensis cultivation: Thermodynamics and material and energy balances. Enzyme Microb. Technol., 33: 698-707.
    Torzillo G., Sacchi A., Materassi R. and Richmond A. 1991. Effects of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. J. Appl. Phycol., 3: 103-108
    Torzillo G. and Vonshak A. 1994. Effect of light and temperature on the photosynthetic activity of cyanobacterium Spirulina platensis. Biomass Bioeng., 6: 399-404
    Torzillo G., Accolla P., Pinzani E. and Masojídek J. 1996. In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses inSpirulina platensis cultures grown outdoors in photobioreactors. J. Appl. Phycol., 8: 283-291.
    Torzillo G., Bernardini P. and Masojídek J. 1998. On-line monitoring of chlorophyll fluorescence to asses the extent of photoinhibition of photosynthesis induced by high oxygen concentration and low temperature and its effect on the productivity of outdoor cultures of Spirulina platensis (cyanobacteria). J. Phycol., 34: 504-510.
    T?r?k Z., goloubinoff P., Horvath I., Tsvetkova N. M., Glatz A., Balogh G., Varvasovzki V., Los D., Vierling E., Crowe J. H. and Vigh L. 2001. Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc. Natl. Acad. Sci. USA, 98: 3098-3103.
    Tsugane K., Kobayashi K., Niwa Y., Ohba Y., Wada K. and Kobayashi H. 1999. A recessive Arabidopsis mutant that grows enhanced active oxygen detoxification. Plant Cell, 11: 1195-206.
    Tu C. K., Apiller M., Winns G. C. and Silverman D. N. 1987. Carbonic anhydrase and the uptake of inorganic carbon by synechococcus sp. (UTEX 2380). Plant Physiol., 85: 72-77.
    Turnbull S., Tabner B. J., Brown D. R. and Allsop D. 2003. Generation of hydrogen peroxide from mutant forms of the prion protein fragment PrP121-231. Biochem., 42 (25): 7675-7681.
    Tyystj?rvi E. and Aro E.M. 1996. The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc. Natl. Acad. Sci. USA, 93:2213-2218.
    Unsitalo J., Axelsson L., Carlberg S., Larsson C., Ryberg H. 1990. CO2 storage and CO2 concentrating in brown seaweeds. In: Baltsheffsky M (Ed), Current Research in Photosynthesis. Kluwer, Dordrecht. Pp. 521-524.
    Underwood G. J. C., Nilsson C., Sundb?ck K. and Wulff A. 1999. Short-term effects of UVB radiation on chlorophyll fluorescence, biomass, pigments, and carbohydrate fractions in a benthic diatom mat. J. Phycol. 35: 656-666.
    Van Eykelenburg C. 1979. The ultrastructure of Spirulina platensis in relation to temperature and light intensity. Antonie Van Leeuwenhoek, 45: 369-390.
    Vanacker H., Carver T. L.W. and Foyer C. H. 2000. Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hypersensitive response in the barley-powdery mildew interaction. Plant Physiol., 123:1289-300.
    Vass I., Styring S., Hundal T., Koivuniemi A., Aro E.M. and Andersson B. 1992. Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation, Proc. Natl. Acad. Sci. USA. 89: 1408-1412.
    Vernoux T., Sanchez-Fernandez R. and May M. 2002. Glutathione biosynthesis in plants. In Oxidative Stress in Plants, eds. D. Inze and M. V. Montagu. London: Taylor and Francis, pp. 297-311.
    Villareal T. A. and Carpenter E. J. 2003. Buoyancy regulation and the potential for vertical migration in the oceanic cyanobacterium Trichodesmium. Microb. Ecol., 45: 1-10.
    Visser P., Passarge J. and Mur L. R. 1997. Modeling vertical migration of the cyanobacterium Microcystis. Hydrobiologia, 349: 99–109.
    Volokita M., Zenvirth D., Kaplan A. and Reinhold L. 1984. Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaena variabilis. Plant Physiol., 76: 559-602.
    Vonshak A., Abeliovich A., Boussiba S. and Richmond A. 1982. Production of Spirulina biomass: effects of environmental factors and population density. Biomass, 2: 175-185.
    Vonshak A. 1997. Spirulina: growth, physiology and biochemistry. In: Vonshak A (ed.) Spirulina platensis (Arthrospira): Physiology, Cell- Biology and Biotechnology, Taylor &Francis Ltd, London, UK, pp. 43-65.
    Vonshak A. 1987. Biological limitations in developing the biotechnology for algae mass cultivations. Science de Léau. (Journal.of water Science), 6: 99-103.
    Vonshak A., Guy R. and Guy M. 1988a. The response of the filamentaous cyanobacterium Spirulina platensis to salt stress. Archives of Microbiology, 150: 417-420.
    Vonshak A., Guy R., Poplawsky R. and Ohad I. 1988b. Photoinhibition and its recovery in two strains of the cyanobacterium Spirulina platensis. Plant Cell Physiol., 29: 721-726.
    Vonshak A. and Richmond A. 1981. Photosynthetic and respiratory activity in Anacystis nidulans adapted to osmotic stress. Plant Physiol., 68: 504-509.
    Vonshak A., Chanawongse L., Bunnang B. and Tanticharoen M. 1996. Light acclimation and photoinhibition in three Spirulina platensis (cyanobacterium) isolates. J. Appl. Phycol., 8: 35-40.
    Vonshak A. and Guy R. 1992. Photoadaptation, Photoinhibition and productivity in the blue-green alga, Spirulina platensis grown outdoors. Plant Cell Eviron., 15: 613-616.
    Vonshak A., Cheung S. M. and Chen F. 2000. Mixotrophic growth modifies the response of Spirulina platensis (Cyanobacteria) cells to light. J. Phycol., 36:675-679.
    Wada H., Gombos Z. and Murata N. 1994. Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress, Proc. Natl. Acad. Sci. USA, 91: 4273-4277.
    Wallace B. B. and Hamilton D. P. 1999. The effect of variations in irradiance on buoyancy regulation in Microcystis aeruginosa. Limnol. Oceanogr., 44: 273-281.
    Walsby A. E. 1972. Structure and function of gas vacuoles. Bacteriol. Rev., 36:1-32.
    Walsby A. E. 1994. Gas vesicles. Microbiol. Rev., 58: 94–144.
    Wang Z. P., Chen S. M., Jia X. M., Cui H. R. and Xu B. J. 1997. The effect of environmental factors and gamma-rays on the morphology and growth of Spirulina platensis. The Journal of Zhejiang Agricultural University, 23: 36-40.
    Wang Z. P. and Zhao Y. 2005. Morphological reversion of Spirulina (Arthrospira) platensis (Cyanophyta): From linear to helical. J. Phycol., 41: 622-628.
    Wasielewski M. R. Johnson D. G. Seibert M. and Govindjee 1989. Determination of the primary charge separation rate in isolated photosystem reaction centers with 500-fs time resolution. Proc. Nalt. Acad. Sci. USA, 86: 524-528.
    Weinbauer M. G., Wihelm S. W., Suttle C. A., Pledger R. J. and Mitchel D. L. 1999.
    Sunlight-induced DNA damage and resistance in natural viral communities. Aquat. Microb. Ecol., 17: 111-120.
    Weist G., Drews G. and Jann K. 1970. Identification and analysis of a lipopolysacchride in cell
    walls of the blue-green alga Anacystis nudulans. Arch Mikrobiol., 71: 89-98.
    Wen X., Gong H. and Lu C. 2005. Heat stress induces an inhibition of excitation energy transfer from phycobilisomes to photosystem II but not to photosystem I in a cyanobacteriun Spirulina platensis. Plant Physiol. Biochem., 43: 389-395.
    White A. E., Spitz Y. H. and Letelier R. M. 2006. Modeling carbohydrate ballasting by Trichodesmium spp. Mar. Ecol. Prog. Ser., 323: 35-45.
    Wiese C., Shi L. B. and Heber U. 1998. Oxygen reduction in the Mehler reaction is insufficient to protect photosystems I and II of leaves against photoinactivation, Physiol. Plant, 102: 437-446.
    Wilmotte A. 1994. Molecular evolution and taxonomy of the cynaobacteria. In:Bryant, D.,ed. The molecular biology of cyanobacteria. Dordrecht: Kluwer Academic, pp. l-25.
    Wolfe-Simon F., Grzebyk D., Schofield O. and Falkowski P. G. 2005. The role and evolution of superoxide dismutases in algae, J. Phycol., 41: 453–465.
    Worrest R. C., Van Dyke H. and Thomson B. E. 1978. Impact of enhanced simulated solar ultraviolet radiation upon a marine community. Photochem. Photobiol., 27: 471-478.
    Wu H., Gao K., Villafa?e V., Watanabe T. and Helbling E.W. 2005. Effects of solar UV radiation on morphology and photosynthesis of the filamentous cyanobacterium Arthrospira platensis. Appl. Environ. Microb., 71: 5004-5013.
    Xiong F. 1997. Strategies of ultraviolet-B protection on microscopic algae. Physiol plant, 10:378-380.
    Zolla L. and Rinalducci S. 2002. Involvement of active oxygen species in degradation of light-harvesting proteins under light stresses, Biochem., 41: 14391-14402.
    Zudaire L. and Roy, S. 2001. Photoprotection and long-term acclimation to UV radiation in the marine diatom Thalassiosira weissflogii. J. Photochem. Photobiol. B: Biol., 62:26-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700