青蒿琥酯抗炎与抗菌增敏作用在其保护细菌脓毒症模型小鼠中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     脓毒症(Sepsis)是由感染因素引起的全身失控性炎症反应综合症(Systemic inflammatory response sydrome, SIRS),由其导致的脓毒症休克和多器官功能障碍综合症(multiple organ dysfuction syndrome, MODS)是死亡的重要原因,病死率高达50%-80%,至今尚无有效的治疗手段。
     目前认为,菌体成分如细菌基因组DNA和存在于革兰阴性细菌外膜的脂多糖/内毒素(lipopolysaccharide/endotoxin,LPS)等是诱导脓毒症发生的主要致病因子。虽然抗菌药物可抑制细菌的增殖,达到治疗感染性疾病的目的,但已有大量实验表明,许多抗菌药物尤其是β-内酰胺类抗生素在杀死细菌的同时,能促使内毒素从细菌胞膜的释放而加重感染。因此,寻找具有治疗细菌脓毒症的药物对提高感染性疾病的治疗效果具有重要意义。
     我们实验室前期的工作已证实:青蒿素对LPS、CpG ODN、热灭活大肠埃希菌攻击小鼠具有显著的保护作用;其与β-内酰胺类抗生素同时使用可对活大肠埃希菌攻击小鼠具有显著保护作用。但是,由于青蒿素不溶于水或油,仅能口服给药,不适宜于重症脓毒症病人的抢救。
     青蒿素的4种衍生物包括双氢青蒿素、蒿甲醚、蒿乙醚及青蒿琥酯,均可静脉、肌肉给药,剂型适合重症患者使用。鉴于与青蒿素相似的化学结构,推测它们可能具有治疗脓毒症的效果。为此,本课题拟通过体外细胞因子实验筛选出对不同致炎成分诱导的细胞因子释放有较强抑制作用的青蒿素衍生物;在上述工作基础上,采用不同脓毒症模型研究该青蒿素衍生物防治细菌脓毒症的作用并探讨其可能的作用机制,为寻找有效的治疗细菌脓毒症的药物并拓宽青蒿素及其衍生物的临床适应症提供实验依据。
     方法:
     一、双氢青蒿素、青蒿琥酯、蒿甲醚抑制炎性细胞因子释放的活性筛选:ELISA法观察三种衍生物对不同刺激物诱导的小鼠原代腹腔巨噬细胞和传代巨噬细胞系RAW264.7细胞释放TNF-α、IL-6的影响
     二、青蒿琥酯对细菌脓毒症模型小鼠的保护作用:分别建立热灭活大肠埃希菌攻击脓毒症小鼠模型、活大肠埃希菌攻击脓毒症小鼠模型和CLP脓毒症小鼠模型,观察青蒿琥酯对不同脓毒症模型小鼠的保护作用。
     三、青蒿琥酯对细菌脓毒症模型小鼠保护作用的分子机制研究
     (一)青蒿琥酯的抗炎作用分子机制研究
     1.生物传感器技术研究青蒿琥酯与LPS/lipid A或CpG ODN的直接结合作用;
     2.鲎试剂动态浊度法检测青蒿琥酯对内毒素的体外中和作用;
     3.流式细胞术观察青蒿琥酯对CpG ODN在RAW264.7细胞表面结合及细胞内聚集的影响;
     4. RT-PCR观察青蒿琥酯对TLR4 mRNA、TLR9 mRNA表达的影响;免疫荧光技术检测青蒿琥酯对TLR9蛋白表达的影响;
     5. ELISA法检测青蒿琥酯对NF-κB活化的影响;
     (二)青蒿琥酯抗菌增敏作用及其机制研究
     1.采用微孔稀释法观察青蒿琥酯和不同抗菌药物的MIC、青蒿琥酯和不同抗菌药物联合使用时对大肠埃希菌国际标准株ATCC35218和临床分离株MICs的影响;
     2.采用动态生长曲线法观察青蒿琥酯和不同抗菌药物联合使用时对大肠埃希菌ATCC35218和大肠埃希菌临床分离株的体外协同抗菌作用;
     3.采用激光共聚焦、荧光分光光度法观察青蒿琥酯对柔红霉素在大肠埃希菌ATCC35218内聚集的影响;
     4.透射电镜技术观察青蒿琥酯对大肠埃希菌ATCC35218胞膜通透性的影响。
     结果:
     一、双氢青蒿素、青蒿琥酯、蒿甲醚抑制炎性细胞因子释放的活性筛选三种青蒿素衍生物中,青蒿琥酯抑制炎性细胞因子释放的作用最强;
     二、青蒿琥酯对细菌脓毒症模型小鼠的保护作用
     1.青蒿琥酯能明显延迟热灭活大肠埃希菌攻击模型小鼠的死亡时间,降低脓毒症小鼠的死亡率,其保护作用可能与其降低热灭活大肠埃希菌攻击小鼠血清内毒素和TNF-α的水平有关;
     2.青蒿琥酯与庆大霉素、舒氨西林联合使用对活大肠埃希菌攻击脓毒症模型小鼠具有协同保护作用;
     3.青蒿琥酯与舒氨西林联合使用对CLP脓毒症模型小鼠具有协同保护作用。
     三、青蒿琥酯对脓毒症模型小鼠保护作用的分子机制研究
     (一)青蒿琥酯的抗炎作用的机制研究
     1.青蒿琥酯在体外不能直接结合LPS和CpG ODN,对LPS无中和作用;
     2.青蒿琥酯对CpG ODN表面的结合,但增加CpG ODN在细胞内的聚集;
     3.青蒿琥酯可抑制热灭活大肠埃希菌、LPS和CpG ODN诱导的RAW264.7细胞TLR4 mRNA和TLR9 mRNA高表达和TLR9蛋白的表达;
     4.青蒿琥酯可抑制热灭活大肠埃希菌诱导的RAW264.7细胞NF-κB的活化。
     (二)青蒿琥酯的抗菌增敏作用及机制研究
     1.青蒿琥酯单独使用几乎没有抗菌作用,但与不同抗生素联合使用时对大肠埃希菌可产生明显的抗菌增敏作用;
     2.青蒿琥酯可增加柔红霉素在细菌内聚集,呈显著的量效和时效关系;
     3.一定浓度的青蒿琥酯预处理可破坏大肠埃希菌细胞膜结构的完整性,其抗菌增敏作用机制可能与青蒿琥酯增加抗菌药物在细菌内的聚集有关。
     结论:
     1.双氢青蒿素、青蒿琥酯、蒿甲醚3种青蒿素衍生物中,青蒿琥酯抑制炎性细胞因子释放的作用最强;
     2.青蒿琥酯对热灭活大肠埃希菌攻击脓毒症模型小鼠具有显著的保护作用,青蒿琥酯与抗菌药物联合使用对活大肠埃希菌攻击脓毒症和CLP脓毒症模型小鼠均具有协同保护作用;
     3.青蒿琥酯的抗炎作用机制可能与抑制TLR4、TLR9表达和抑制NF-κB活性,从而减少致炎细胞因子TNF-α、IL-6的释放有关;
     4.青蒿琥酯的抗菌增敏作用机制可能与增加抗菌药物在细菌内的聚集有关;
     5.鉴于青蒿琥酯的抗炎作用与抗菌增敏作用、对细菌脓毒症模型动物具有明显的保护作用,深入研究青蒿琥酯具有重要意义。
Objective:
     Sepsis is systemic inflammatory response syndrome (SIRS) caused by infection. This condition may result in septic shock, multiple organ dysfunction syndrome (MODS) and ultimately death. The mortality is as high as to 50~80%. There have been few effective therapeutic method.
     At present, sepsis is found to be triggered by the presence of invasive bacteria and bacterial components, such as bacterial genomic DNA (bDNA) and lipopolysaccharide (LPS [endotoxin]), etc. Although antibacterial agents could inhibit bacterial growth and treat infectious disease, there are reports that many antibacterial agents, especiallyβ-lactam antibiotics, could induce LPS release from bacterial membrance during killing bacteria and enhance infection. Therefore, it is very important to search drugs to treat bacterail sepsis. In our previous study, we have confirmed that artemisinin (ART) could protect mice against lethal heat-killed E. coli challenge and synergize with antibiotics to protect animals against lethal live E. coli challenge. However, ART is poorly soluble in oil and water and can only be administered orally, which is disadvantageous for treating critically ill patients.
     There are four derivates of ART; they are dihydroartemisinine (DHA), artemether(AM), arteether and artesunate(AS). The derivates of ART could be administered by intravescular and intramuscular injection, which is suitabl for critically ill patients. Based on their similar chemical structure, we suppose four derivates of ART possibly play role to treat sepsis as well as ART.
     With these considerations in mind, we undertook the current study to find most effective derivate by screening the effects of their inhibitons on inflammatory cytokines release induced by bacteria and bacterial component. And then, the protection of this derivate on different sepsis model mice and its possible molecular mechanisms will be investigated in orde to search for effective anti-sepsis drug and broaden indications.
     Methods:
     1. Screening of inhibitory effect of DHA, AS and AM on TNF-αand IL-6 releases from mice primary peritoneal macrophages and macrophage cell line RAW264.7 cells stimulated by different stimulators using ELISA method.
     2. The protective effect of AS on bacterial sepsis model mice. Sepsis mice model challenged with heat killed E.coli, live E.coli and CLP model were established. The protective effects of AS were observed.
     3. The molecular mechanisms of AS on sepsis model mice
     (1) Mechanism of AS’anti-inflammatory effect The ability of AS to neutralize LPS in vitro was assayed using the LAL test. The direct binding ability of AS to CpG ODN or LPS/lipid A was observed using affinity biosensor technology.
     Cell-surface binding and accumulation of 6-FAM CpG ODN in RAW264.7 cell lines treated with AS were observed using flow cytometry. TLR4 and TLR9 mRNA expression down-regulated by AS was tested using RT-PCR method; TLR9 expression at protein level within the cells was observed using immunofluorescence assay. Inhibition of AS on NF-κB activation was observed using ELISA assay.
     (2) Mechanisms of AS as antibacterial potentiator
     ①MICs of AS and different antibacterial agents on E.coli ATCC 35218 and clinical separated strains were observed using micropore dilution, and effects of AS with antibiotics on above strains were observed,too.
     ②Synergistic effect of AS with antibacterial agents on E.coli ATCC35218 and clinical separated strains were observed using dynamic growth curve assay.
     ③Accumulation of daunorubicin within bacteria treated with AS was using confocal scanning microscopy and fluorospectrophotometry.effect of AS on bacterial membrance permeability was observed using transmission electron microscope.
     Results:
     1. Among three derivates of ART, AS produced most marked inhibition on inflammatory cytokines release.
     2. The protective effect of AS on different sepsis model mice.
     ①AS could delay the death time and decrease the mortality of sepsis mice challenged with heat-killed E.coli. This protection was associated with reductions in serum TNF-αand measurable endotoxin levels.
     ②The administration of AS together with gentamycin or a complex of ampicillin and sulbactam decreased sepsis mice mortality challenged by lethal live E.coli. The administration of AS together with a complex of ampicillin and sulbactam decreased CLP sepsis model mice mortality.
     3. The molecular mechanisms of AS on sepsis model mice
     (1) Mechanism of AS’anti-inflammatory effect
     ①AS could not directly bind to LPS or CpG ODN. AS could not neutralize LPS in vitro. AS could not change CpG ODN-binding to the cell-surface of RAW264.7 cells but could promote CpG ODN’s accumulation within.
     ③AS down-regulated TLR4 mRNA and TLR9 mRNA expressions up-regulated by LPS, CpG ODN or heat-killed E. coli. AS also down-regulated TLR9 at protein level, too.
     ④AS inhibited heat-killed E. coli-induced NF-κB activation.
     (2) Mechanisms of AS as antibacterial potentiator
     ①AS had no antibacterial effect, but AS could produce synergistic effect if it with antibacterial agents to E.coli.
     ②AS could increase accumulation of daunomycin within E.coli ATCC35218 in a dose-dependent and time-dependent manners.
     ③AS could destroy the integrity of E.coli cell membrance. The mechanism of AS as antibacterial potentiator was tightly related to increased accumulation of antibacterial agents within bacteria.
     Conclusions:
     ①Among three derivates of ART, AS produced most marked inhibition on inflammatory cytokines release.
     ②AS could protect sepsis mice challenged with heat-killed E.coli. The administration of AS together with antibacterial agents could produce synergistic protection for sepsis model mice.
     ③AS-mediated anti-inflammatory effect was associated with a reduction of TNF-αand IL-6 releases via a decrease in TLR4 and TLR9 expressions and NF-κB activation.
     ④Antibacterial potentiator’s effect of AS was related to increased drug accumulation within bacteria.
     ⑤Based on anti-inflammatory effect and antibacterial potentiator’s effect of AS, and its protection for sepsis model mice, it is significant to further investigate AS.
引文
1. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM. CpG motifs in bacterial DNA trigger direct B-cell activation[J]. Nature, 1995, 374(6522):546-549.
    2.周红,郑江,鲁永玲,罗平. CpG基元在细菌DNA诱导人THP-1释放细胞因子中的作用[J].第三医大学学报, 2003, 25(9):750-752.
    3. Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S, Akira S, Wagner H, Lipford GB. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition[J]. Proc Natl Acad Sci U S A, 2001, 98(16):9237-9242.
    4. Ruslan Medzhitov, Paula Preston-Hurlburt, Elizabeth Kopp, Andrew Stadlen, Chaoqun Chen, Ghosh S, A. C, Janeway J. MyD88 Is an Adaptor Protein in the hToll/IL-1 Receptor Family Signaling Pathways[J]. Mol Cell, 1998, 2(2):253-258.
    5.曹红卫,郭毅斌,魏利召,王宁,曲海,周红,郑江.青蒿素对脓毒症大鼠肺损伤的保护作用[J].第三军医大学学报, 2007, 29(10):951-954.
    6.吴翀,蒋栋能,周红,郑江.大蒜抗内毒素组分的分离及活性分析重庆医学, 2006, 35(7):622-629.
    7.郑江,周红,,鲁永玲,,肖光夏.氯喹对内毒素血症小鼠的保护作用以及对细胞因子的影响[J].第三军医大学学报, 2003, 25(5):391-393.
    8. Wang J, Zhou H, Zheng J, Cheng J, Liu W, Ding G, Wang L, Luo P, Lu Y, Cao H, Yu S, Li B, Zhang L. The antimalarial artemisinin synergizes with antibiotics to protect against lethal live Escherichia coli challenge by decreasing proinflammatory cytokine release[J]. Antimicrob Agents Chemother, 2006, 50(7):2420-2427.
    9. Yibin G, Jiang Z, Hong Z, Gengfa L, Liangxi W, Guo W, Yongling L. A synthesized cationic tetradecapeptide from hornet venom kills bacteria and neutralizes lipopolysaccharide in vivo and in vitro[J]. Biochem Pharmacol, 2005, 70(2):209-219.
    10. Genfa L, Jiang Z, Hong Z, Yimin Z, Liangxi W, Guo W, Ming H, Donglen J, Lizhao W. The screening and isolation of an effective anti-endotoxin monomer from Radix Paeoniae Rubra using affinity biosensor technology[J]. Int Immunopharmacol, 2005, 5(6):1007-1017.
    11.程娟,郑江,周红,蒋栋能,吴种,陈益国,张向武,姚婕.以CpG ODN为靶点应用生物传感器技术筛选抗炎中药[J].中国临床药理学与治疗学, 2005, 10(11):1240-1244.
    12. Jiang Z, Hong Z, Guo W, Xiaoyun G, Gengfa L, Yongning L, Guangxia X. A synthetic peptide derived from bactericidal/permeability-increasing protein neutralizes endotoxin in vitro and in vivo[J]. Int Immunopharmacol, 2004, 4(4):527-537.
    13. Fungladda W, Honrado ER, Thimasarn K, Kitayaporn D, Karbwang J, Kamolratanakul P, Masngammueng R. Compliance with artesunate and quinine + tetracycline treatment of uncomplicated falciparum malaria in Thailand[J]. Bull World Health Organ, 1998, 76 Suppl 1:59-66.
    14. Hong Z, Jiang Z, Liangxi W, Guofu D, Ping L, Yongling L, Wendong P, Minghai W. Chloroquine protects mice from challenge with CpG ODN and LPS by decreasing proinflammatory cytokine release[J]. Int Immunopharmacol, 2004, 4(2):223-234.
    15. Klayman DL. Qinghaosu (artemisinin): an antimalarial drug from China[J]. Science, 1985, 228(4703):1049-1055.
    16. Li Y, Wu YL. An over four millennium story behind qinghaosu (artemisinin)--a fantastic antimalarial drug from a traditional chinese herb[J]. Curr Med Chem, 2003, 10(21):2197-2230.
    17. Pandey AV, Tekwani BL, Singh RL, Chauhan VS. Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite[J]. J Biol Chem, 1999, 274(27):19383-19388.
    18. Hoppe HC, van Schalkwyk DA, Wiehart UI, Meredith SA, Egan J, Weber BW. Antimalarial quinolines and artemisinin inhibit endocytosis in Plasmodium falciparum[J]. Antimicrob Agents Chemother, 2004, 48(7):2370-2378.
    19. He H, Kogut MH. CpG-ODN-induced nitric oxide production is mediated through clathrin-dependent endocytosis, endosomal maturation, and activation of PKC, MEK1/2 and p38 MAPK, and NF-kappaB pathways in avian macrophage cells (HD11)[J]. Cell Signal, 2003, 15(10):911-917.
    20. Aldieri E, Atragene D, Bergandi L, Riganti C, Costamagna C, Bosia A, Ghigo D. Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-kB activation[J]. FEBS Lett, 2003, 552(2-3):141-144.
    21. Sherry BA, Alava G, Tracey KJ, Martiney J, Cerami A, Slater AF. Malaria-specific metabolite hemozoin mediates the release of several potent endogenous pyrogens (TNF,MIP-1 alpha, and MIP-1 beta) in vitro, and altered thermoregulation in vivo[J]. J Inflamm, 1995, 45(2):85-96.
    22. Kwiatkowski D, Bate CA, Scragg IG, Beattie P, Udalova I, Knight JC. The malarial fever response--pathogenesis, polymorphism and prospects for intervention[J]. Ann Trop Med Parasitol, 1997, 91(5):533-542.
    23. Adachi K, Tsutsui H, Kashiwamura S, Seki E, Nakano H, Takeuchi O, Takeda K, Okumura K, Van Kaer L, Okamura H, Akira S, Nakanishi K. Plasmodium berghei infection in mice induces liver injury by an IL-12- and toll-like receptor/myeloid differentiation factor 88-dependent mechanism[J]. J Immunol, 2001, 167(10):5928-5934.
    24. Eckstein-Ludwig U, Webb RJ, Van Goethem ID, East JM, Lee AG, Kimura M, O'Neill PM, Bray PG, Ward SA, Krishna S. Artemisinins target the SERCA of Plasmodium falciparum[J]. Nature, 2003, 424(6951):957-961.
    25. Ridley RG. Malaria: to kill a parasite[J]. Nature, 2003, 424(6951):887-889.
    26. Beekman AC, Wierenga PK, Woerdenbag HJ, Van Uden W, Pras N, Konings AW, el-Feraly FS, Galal AM, Wikstrom HV. Artemisinin-derived sesquiterpene lactones as potential antitumour compounds: cytotoxic action against bone marrow and tumour cells[J]. Planta Med, 1998, 64(7):615-619.
    27. Bork PM, Schmitz ML, Kuhnt M, Escher C, Heinrich M. Sesquiterpene lactone containing Mexican Indian medicinal plants and pure sesquiterpene lactones as potent inhibitors of transcription factor NF-kappaB[J]. FEBS Lett, 1997, 402(1):85-90.
    28. Wong HR, Menendez IY. Sesquiterpene lactones inhibit inducible nitric oxide synthase gene expression in cultured rat aortic smooth muscle cells[J]. Biochem Biophys Res Commun, 1999, 262(2):375-380.
    29.董妍君,李卫东,屠呦呦,邹万忠,膝慧玲,林志彬.双氢青蒿素对BXSB狼疮小鼠自身抗体产生、TNFα分泌及狼疮性肾炎病理改变的影响[J].中国中西医结合杂志, 2003, 13(9):676-679.
    30.叶彬,陈雅棠.双氢青蒿素、青蒿琥酯治疗大鼠肺孢子虫肺炎的疗效研究[J].中国人兽共患病杂志, 2001, 17(4):43-45,48.
    31.丁小芬,胡红.青蒿治疗类风湿性关节炎的免疫药理作用[J].中国中医基础医学杂志, 2006, 12(1):75-76.
    32.刘鹏,叶玉津,许韩师,杨岫岩,莫汉有,梁柳琴,陈少贞,江沁.青蒿琥酯对类风MIP-1 alpha, and MIP-1 beta) in vitro, and altered thermoregulation in vivo[J]. J Inflamm, 1995, 45(2):85-96.
    22. Kwiatkowski D, Bate CA, Scragg IG, Beattie P, Udalova I, Knight JC. The malarial fever response--pathogenesis, polymorphism and prospects for intervention[J]. Ann Trop Med Parasitol, 1997, 91(5):533-542.
    23. Adachi K, Tsutsui H, Kashiwamura S, Seki E, Nakano H, Takeuchi O, Takeda K, Okumura K, Van Kaer L, Okamura H, Akira S, Nakanishi K. Plasmodium berghei infection in mice induces liver injury by an IL-12- and toll-like receptor/myeloid differentiation factor 88-dependent mechanism[J]. J Immunol, 2001, 167(10):5928-5934.
    24. Eckstein-Ludwig U, Webb RJ, Van Goethem ID, East JM, Lee AG, Kimura M, O'Neill PM, Bray PG, Ward SA, Krishna S. Artemisinins target the SERCA of Plasmodium falciparum[J]. Nature, 2003, 424(6951):957-961.
    25. Ridley RG. Malaria: to kill a parasite[J]. Nature, 2003, 424(6951):887-889.
    26. Beekman AC, Wierenga PK, Woerdenbag HJ, Van Uden W, Pras N, Konings AW, el-Feraly FS, Galal AM, Wikstrom HV. Artemisinin-derived sesquiterpene lactones as potential antitumour compounds: cytotoxic action against bone marrow and tumour cells[J]. Planta Med, 1998, 64(7):615-619.
    27. Bork PM, Schmitz ML, Kuhnt M, Escher C, Heinrich M. Sesquiterpene lactone containing Mexican Indian medicinal plants and pure sesquiterpene lactones as potent inhibitors of transcription factor NF-kappaB[J]. FEBS Lett, 1997, 402(1):85-90.
    28. Wong HR, Menendez IY. Sesquiterpene lactones inhibit inducible nitric oxide synthase gene expression in cultured rat aortic smooth muscle cells[J]. Biochem Biophys Res Commun, 1999, 262(2):375-380.
    29.董妍君,李卫东,屠呦呦,邹万忠,膝慧玲,林志彬.双氢青蒿素对BXSB狼疮小鼠自身抗体产生、TNFα分泌及狼疮性肾炎病理改变的影响[J].中国中西医结合杂志, 2003, 13(9):676-679.
    30.叶彬,陈雅棠.双氢青蒿素、青蒿琥酯治疗大鼠肺孢子虫肺炎的疗效研究[J].中国人兽共患病杂志, 2001, 17(4):43-45,48.
    31.丁小芬,胡红.青蒿治疗类风湿性关节炎的免疫药理作用[J].中国中医基础医学杂志, 2006, 12(1):75-76.
    32.刘鹏,叶玉津,许韩师,杨岫岩,莫汉有,梁柳琴,陈少贞,江沁.青蒿琥酯对类风
    45. Zhou HJ, Wang WQ, Wu GD, Lee J, Li A. Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells[J]. Vascul Pharmacol, 2007, 47(2-3):131-138.
    46. Efferth T, Oesch F. Oxidative stress response of tumor cells: microarray-based comparison between artemisinins and anthracyclines[J]. Biochem Pharmacol, 2004, 68(1):3-10.
    47. Wang Q, Wu LM, Zhao Y, Zhang XL, Wang NP. [The anticancer effect of artesunate and its mechanism][J]. Yao Xue Xue Bao, 2002, 37(6):477-478.
    48.郑红艳.青蒿素母液体外抗真菌试验[J].四川畜牧兽医, 2001, 28(5):33-34.
    49.吴静,丁伟,张永强,郭文明.黄花蒿(Artemisia annua L.)提取物对两种病原真菌的生物活性[J].农药, 2007, 46(10):713-715.
    50.金慧玲,唐素兰.青蒿琥酯抗真菌、抗细菌的实验研究[J].中国微生态学杂志, 2003, 15(1):26-28.
    51.曹红卫,郭毅斌,魏利召,王宁,曲海,郑江.青蒿素对脓毒症大鼠肝脏脂质过氧化损伤的影响[J].中国临床药理学与治疗学, 2006, 11(8):911-914.
    52.姚咏明,盛志勇. MODS抗炎治疗研究的反思[J].中国危重病急救医学, 1999, 11(8):456-458.
    53. Ahmad-Nejad P, Hacker H, Rutz M, Bauer S, Vabulas RM, Wagner H. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments[J]. Eur J Immunol, 2002, 32(7):1958-1968.
    54. Alam M, Miyoshi S, Tomochika K, Shinoda S. Hemagglutination is a novel biological function of lipopolysaccharide (LPS), as seen with the Vibrio cholerae O139 LPS[J]. Clin Diagn Lab Immunol, 1997, 4(5):604-606.
    55. Raetz, C. R. Biochemistry of endotoxins[J]. Annu Rev Biochem, 1990, 59:129-170.
    56. Vollmer J, Weeratna R, Payette P, Jurk M, Schetter C, Laucht M, Wader T, Tluk S, Liu M, Davis HL, Krieg AM. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities[J]. Eur J Immunol, 2004, 34(1):251-262.
    57. Rietschel ET, Kirikae T, Schade FU, Ulmer AJ, Holst O, Brade H, Schmidt G, Mamat U, Grimmecke HD, Kusumoto S. The chemical structure of bacterial endotoxin in relation to bioactivity[J]. Immunobiology, 1993, 187(3-5):169-190.
    58. Byerley LO, Alcock NW, Starnes HF, Jr. Sepsis-induced cascade of cytokine mRNA expression: correlation with metabolic changes[J]. Am J Physiol, 1992, 262(5 Pt1):E728-735.
    59.陆付耳,李鸣真,叶望云.论内毒素血症的治疗对策[J].中国危重病急救医学, 2000, 12(10):579-580.
    60. Krieg AM. CpG motifs in bacterial DNA and their immune effects[J]. Annu Rev Immunol, 2002, 20:709-760.
    61. Akira S, Takeda K. Toll-like receptor signalling[J]. Nat Rev Immunol, 2004, 4(7):499-511.
    62.金伯全.北京:科学出版社,第二版[J]. 2001.
    63. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. A Toll-like receptor recognizes bacterial DNA[J]. Nature, 2000, 408(6813):740-745.
    64. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene[J]. Science, 1998, 282(5396):2085-2088.
    65. Poltorak A, Smirnova I, Clisch R, Beutler B. Limits of a deletion spanning Tlr4 in C57BL/10ScCr mice[J]. J Endotoxin Res, 2000, 6(1):51-56.
    66. Goldstein DR. Toll-like receptors and other links between innate and acquired alloimmunity[J]. Curr Opin Immunol, 2004, 16(5):538-544.
    67. Schilling JD, Mulvey MA, Vincent CD, Lorenz RG, Hultgren SJ. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism[J]. J Immunol, 2001, 166(2):1148- 1155.
    68. Akashi S, Shimazu R, Ogata H, Nagai Y, Takeda K, Kimoto M, Miyake K. Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages[J]. J Immunol, 2000, 164(7):3471-3475.
    69. Seternes T, Dalmo RA, Hoffman J, Bogwald J, Zykova S, Smedsrod B. Scavenger-receptor-mediated endocytosis of lipopolysaccharide in Atlantic cod (Gadus morhua L.)[J]. J Exp Biol, 2001, 204(Pt 23):4055-4064.
    70. Vasselon T, Hailman E, Thieringer R, Detmers PA. Internalization of monomeric lipopolysaccharide occurs after transfer out of cell surface CD14[J]. J Exp Med, 1999,
    71. Thieblemont N, Wright SD. Transport of bacterial lipopolysaccharide to the golgi apparatus[J]. J Exp Med, 1999, 190(4):523-534.
    72. Hornef MW, Frisan T, Vandewalle A, Normark S, Richter-Dahlfors A. Toll-like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells[J]. J Exp Med, 2002, 195(5): 559-570.
    73. Cowan DB, Noria S, Stamm C, Garcia LM, Poutias DN, del Nido PJ, McGowan FX, Jr. Lipopolysaccharide internalization activates endotoxin- dependent signal transduction in cardiomyocytes[J]. Circ Res, 2001, 88(5): 491-498.
    74. Dunzendorfer S, Lee HK, Soldau K, Tobias PS. TLR4 is the signaling but not the lipopolysaccharide uptake receptor[J]. J Immunol, 2004, 173(2):1166-1170.
    75. Hacker H, Mischak H, Miethke T, Liptay S, Schmid R, Sparwasser T, Heeg K, Lipford GB, Wagner H. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation[J]. Embo J, 1998, 17(21):6230-6240.
    76. Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT. TLR9 signals after translocating from the ER to CpG DNA in the lysosome[J]. Nat Immunol, 2004, 5(2):190-198.
    77. Leifer CA, Kennedy MN, Mazzoni A, Lee C, Kruhlak MJ, Segal DM. TLR9 is localized in the endoplasmic reticulum prior to stimulation[J]. J Immunol, 2004, 173(2):1179-1183.
    78. Takeshita F, Gursel I, Ishii KJ, Suzuki K, Gursel M, Klinman DM. Signal transduction pathways mediated by the interaction of CpG DNA with Toll-like receptor 9[J]. Semin Immunol, 2004, 16(1):17-22.
    79. Siess DC, Vedder CT, Merkens LS, Tanaka T, Freed AC, McCoy SL, Heinrich MC, Deffebach ME, Bennett RM, Hefeneider SH. A human gene coding for a membrane-associated nucleic acid-binding protein[J]. J Biol Chem, 2000, 275(43):33655-33662.
    80. Hefeneider SH, Cornell KA, Brown LE, Bakke AC, McCoy SL, Bennett RM. Nucleosomes and DNA bind to specific cell-surface molecules on murine cells and induce cytokine production[J]. Clin Immunol Immunopathol, 1992, 63(3):245-251.
    81. Hefeneider SH, McCoy SL, JI. M. DNA Binding to Mouse Cells is Mediated by Cell-Surface Molecules: The Role of These DNA-Binding Molecules as TargetAntigens in Murine Lupus[J]. Lupus, 1992, 1(3):167-173.
    82. McCoy SL, Hausman FA, Deffebach ME, Bakke A, Merkens LS, Bennett RM, Hefeneider SH. Quantification of DNA binding to cell-surfaces by flow cytometry[J]. J Immunol Methods, 2000, 241(1-2):141-146.
    83. Lidington D, Ouellette Y, Li F, Tyml K. Conducted vasoconstriction is reduced in a mouse model of sepsis[J]. J Vasc Res, 2003, 40(2):149-158.
    84. Rasaiah VP, Malloy JL, Lewis JF, Veldhuizen RA. Early surfactant administration protects against lung dysfunction in a mouse model of ARDS[J]. Am J Physiol Lung Cell Mol Physiol, 2003, 284(5):L783-790.
    85. Manimtim WM, Hasday JD, Hester L, Fairchild KD, Lovchik JC, Viscardi RM. Ureaplasma urealyticum modulates endotoxin-induced cytokine release by human monocytes derived from preterm and term newborns and adults[J]. Infect Immun, 2001, 69(6):3906-3915.
    86. Johnson GB, Brunn GJ, Platt JL. Cutting edge: an endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through Toll-like receptor 4[J]. J Immunol, 2004, 172(1):20-24.
    87. Obata T, Nomura M, Kase Y, Sasaki H, Shirasawa Y. Early detection of the Limulus amebocyte lysate reaction evoked by endotoxins[J]. Anal Biochem, 2008, 373(2):281-286.
    88. Emlen W, Rifai A, Magilavy D, Mannik M. Hepatic binding of DNA is mediated by a receptor on nonparenchymal cells[J]. Am J Pathol, 1988, 133(1):54-60.
    89. Jang CH, Choi JH, Byun MS, Jue DM. Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes[J]. Rheumatology (Oxford), 2006, 45(6):703-710.
    90.张培,陈雪梅,罗炳德,谭庆,邹飞,万为人,郭进强.青蒿琥酯对中暑内毒素血症小鼠腹腔巨噬细胞内CD14和Toll样受体4的影响[J].中华劳动卫生职业病杂志, 2006, 24(4):226-228.
    91. Broll H. Effect of chloroquine diphosphate on the superhelix structure of DNA and protein synthesis in synovial cells in chronic polyarthritis[J]. Wien Klin Wochenschr, 1983, 95(24):877-880.
    92. Muroi M, Suzuki T. Role of protein kinase A in LPS-induced activation of NF-kappa B proteins of a mouse macrophage-like cell line, J774[J]. Cell Signal, 1993,5(3):289-298.
    93. Kwon HJ, Lee KW, Yu SH, Han JH, Kim DS. NF-kappaB-dependent regulation of tumor necrosis factor-alpha gene expression by CpG-oligodeoxynucleotides[J]. Biochem Biophys Res Commun, 2003, 311(1): 129-138.
    94.张致平.抗耐药菌药物研究进展[J].中国抗生素杂志, 2005, 30(7):430-440.
    95. Walsh C. Molecular mechanisms that confer antibacterial drug resistance[J]. Nature, 2000, 406(6797):775-781.
    96. G S. Triethylene tetramine. A new potentiator of antibiotic activity [J]. Cellular and Molecular Life Sciences, 1975, 31(1):84-85.
    97. Light B, Riggs HG, Jr. Effect of triethylenetetramine dihydrochloride on the antibiotic susceptibility of Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 1978, 13(6):979-984.
    98. Light B, Riggs HG, Jr. The effect of triethylenetetramine dihydrochloride on the in vivo susceptibility of Pseudomonas aeruginosa to gentamicin[J]. J Antibiot (Tokyo), 1979, 32(8):834-838.
    99.平松启一. MC-200616 potent iates the act ivity ofβ-lactam antibiotics against MRSA[J].日化疗会志, 1997, 45:801.
    100. Jamieson CE, Lambert PA, Simpson IN. In vitro activities of novel oxapenems, alone and in combination with ceftazidime, against gram-positive and gram-negative organisms[J]. Antimicrob Agents Chemother, 2003, 47(8):2615-2618.
    101. Jamieson CE, Lambert PA, Simpson IN. In vitro and in vivo activities of AM-112, a novel oxapenem[J]. Antimicrob Agents Chemother, 2003, 47(5):1652-1657.
    102. Choi KI, Cha JH, Pae AN, Cho YS, Kang HY, Koh HY, Chang MH. Studies on new catechol containing cephalosporins. II. Synthesis and structure-activity relationships of cephalosporins having a catechol moiety at the C-7 position[J]. J Antibiot (Tokyo), 1995, 48(11):1375-1377.
    [1]. Livermore DM. Multiple mechanism of antimicrobial resistance in pseudomonas aeruginosa: Our worst nightmare[J]. Antimicrobial resistance, 2002, 34: 634-640
    [2].温玉芝.浅析中西药临床合理联用[J].中国实用医药,2007, 11:
    [3]. Kim Lewis, Frederick MA. Prospects for plant-derived antibacterials[J]. Nature biotechnology 2006; 24(12): 1504-1507
    [4].吕礼,金光盛.中药对专性厌氧菌的抗菌效果[J].浙江医科大学学报, 1990, 19 (5) : 221 - 224, 234
    [5].沈永生.63种中草药对8种细菌体外抗菌实验报告[J].徐州医学院学报, 1981, 1(2): 64.
    [6].陈娟,肖洋,池明,闫枫. 10种清热解毒类中药对绿脓杆菌体外抑菌试验的研究.吉林医学. 2006, 27(11): 1386-1387
    [7].陈星灿,刘定安,宫锡坤.中药抗菌作用研究[J].中医药学报,1998, (1) ,36-37
    [8].林国福,林国安,朱琦峰.复合烧伤油外用对烫伤创面细菌量的影响[J].中医研究,2001,14(3):11.
    [9].胡领娟.千里光治疗外伤性皮肤感染11例[J].中国中医药科技,2000,5(5):310.
    [10].王一平,郭世民.中药抗菌作用研究思路[J].云南中医中药杂志, 2007, 28(6): 5-7
    [11].陈小飞,马海泉,杨倩.中药抗感染研究进展[J].中国基层医药, 2007, 14(4): 680-681
    [12].张致平.抗耐药菌药物研究进展[J].中国抗生素杂志. 2005, 30: 430-40
    [13]. Walsh C. Molecular mechanisms that confer antibacterial drug resistance. Nature. 2000; 406: 775-81
    [14].虞红,李英伦.中药逆转细菌耐药性的研究进展[J].养禽与禽病防治. 2006, 1(2): 2-3.
    [15].陈小英.大黄对金黄色葡萄球菌抗生素耐药质粒的消除作用[J].南京药学院学报. 1985, 16(2): 48-52.
    [16].王莉娟,关显智,李菁华.中药双花对金黄色葡萄球菌R质粒消除作用的实验研究[J].武警医学. 1996, 7(5): 345.
    [17].黄通旺,杨灏强.抑制β-内酰胺酶的中草药的筛选研究[J].汕头大学学报(自然科学版). 2000, 15 (2) : 46-49.
    [18]. Piddock LJ. Multidrug-resistance efflux pumps-not just for resistance[J]. Nat Rev Microbiol. 2006; 4: 629-636
    [19].雷连成,韩文瑜,乔红伟.大肠杆菌耐药性中药抑制剂的初步研究[J].吉林农业大学学报, 2003, 25 (4): 429- 433.
    [20].熊南燕,曹明耀,王雪玲,姜彩娥,苏县辉.鱼腥草对氨苄青霉素和乳糖酸红霉素抗菌作用的影响[J].时珍国医国药; 2007, 18(9):1303-1304.
    [21].耿洁,王玉杰,陆平成.中西抗菌药联用对肺炎链球菌抑菌作用的实验研究[J].现代中西医结合杂志. 2004, 13(4): 446-447.
    [22].林杉,李仲昆,赵云.双黄连粉针与头孢唑啉伍用效果机理研究[J].中国药房. 2000, 11(1): 18-19.
    [23].李仲昆,林杉,李海蜀.双黄连粉针与4种抗生素伍用的体外最小抑菌浓度研究[J].中成药. 1999, 21(3): 137-139.
    [24].李仝,胡凯文,陈信义等.浙贝母对呼吸系统耐药金黄色葡萄球菌逆转作用的临床研究[J].北京中医药大学学报. 2001, 24(5): 51-52.
    [25]. Liu IX(杨媛译).黄芩苷与β-内酰胺类抗生素对β-内酰胺耐药性金黄色葡萄球菌的协同作用[J].国外医药?抗生素分册. 2001, 22(3): 142.
    [26]. Hatano T, Kusuda M, Hori M, Shiota S, Tsuchiya T, Yoshida T. Theasinensin A, a tea polyphenol formed from (-)-epigallocatechin gallate, suppresses antibiotic resistance of methicillin-resistant Staphylococcus aureus[J]. Planta Med. 2003;69(11): 984-989.
    [27].山口晃史(张来彪,赛敏摘译).难治性呼吸系统感染性疾病与儿茶精吸入疗法.日本医学介绍. 2001, 22(9): 410-411.
    [28].蔡芸,裴斐,郑砚君,梁蓓蓓,范燕,李聪然,童卫杭,王睿.大蒜素联合头孢唑林或苯唑西林对葡萄球菌的抗菌作用[J].中国临床药理学与治疗学, 2006. 11(8): 925-928.
    [29]. Wang J, Soisson SM, Young K, Shoop W, Kodali S, Galgoci A, et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties[J]. Nature. 2006. 441(7091):358-361.
    [30].平松启一. MC-200616 potentiates the activity ofβ-lactamantibiotics against MRSA[J].日化杂志. 1997, 45: 801.
    [31]. Kim KJ, Yu HH, Jeong SI, Cha JD, Kim SM, You YO. Inhibitory effects ofCaesalpinia sappan on growth and invasion of methicillin-resistant Staphylococcus aureus[J]. J Ethnopharmacol. 2004 Mar;91(1): 81-7
    [32]. Shibata H, Shirakata C, Kawasaki H, Sato Y, Kuwahara T, Ohnishi Y, Arakaki N, Higuti T. Flavone markedly affects phenotypic expression of beta-lactam resistance in methicillin-resistant Staphylococcus aureus strains isolated clinically. Biol Pharm Bull. 2003; 26(10):1478-1483.
    [33].戚好文.喹诺酮类抗菌药的研究进展[J].中国抗生素杂志, 1999. 24(增刊): 41
    [34].蔡璇,彭松,施金玲,李从荣. 5种中药对临床常见菌株的体外抗菌活性研究[J].医药导报. 2005, 24(6): 470-472.
    [35].张芳,陈彦,苏显中.赤芍提取物体外抑菌活性的研究[J].徐州医学院学报, 2006, 26(5): 418-420
    [36].蔡长春.李景苏.中西抗菌药物联合治疗医院感染金黄色葡萄球菌的合理性评价[J].中国医院感染学杂志, 2003, 13(7): 666-668.
    [37].施金玲,蔡璇,孙端阳,李从荣,彭少华.大蒜素、氟康唑对医院感染酵母菌的体外抗菌活性研究[J].中华医院感染学杂志, 2005, 15(2): 1339-1341
    [38].王玉杰.中西药联合应用对感染性泌尿系统疾病致病菌抑菌效果的实验研究[J].国医论坛.2001,16(4):42-43
    [39].熊南燕,王雪玲,曹明耀,王奇志.鱼腥草注射液对硫酸庆大霉素兔体内抗菌作用的影响[J].现代中西医结合杂志, 2007, 16(24): 8
    [40]. Eugene Lin, Ronald JS, Maurice AM. Lack of Synergy of Erythromycin Combined with Penicillin or Cefotaxime against Streptococcus pneumoniae In Vitro [J]. Antimicrob Agents Chemother. 2003; 47(3): 1151–1153.
    [41].李影林主编.中华医学检验全书(上卷) [M ].北京:人民卫生出版社, 1996: 1255
    [42]. Johansen HK, Jensen TG, Dessau RB, et al. Antagonism between penicillin and erythromycin against Streptococcus pneumoniae in vitro and in vivo [J]. J Antim icrob Chemother, 2000, 46 (6): 973-980
    [43]. Dawis MA, Isenberg HD, France KA, Jenkins SG. In vitro activity of gatifloxacin alone and in combination with cefepime, meropenem, piperacillin and gentamicin against multidrug-resistant organisms[J]. J Antimicrob Chemother. 2003; 51(5): 1203-1211.
    [44]. Le T, Bayer AS. Combination antibiotic therapy for infective endocarditis[J]. ClinInfect Dis. 2003; 36(5): 615-21.
    [45]. Lewis, R. E., Diekema, D. J., Messer, S. A., Pfaller, M. A., Klepser, M. E.. Comparison of Etest, chequerboard dilution and time-kill studies for the detection of synergy or antagonism between antifungal agents tested against Candida species[J]. J Antimicrob Chemother. 2002, 49: 345-351
    [46]. Grzybowska W, Banaszczyk-Ru? M, Tyski S. Comparison of the checkerboard and E-test methods used for the analysis of two antibiotics combination. Med Dosw Mikrobiol[J]. 2005; 57(1): 65-75.
    [1] Pinner RW, Teutsch SM, Simonsen L, Klug LA, Graber JM, et al. Trends in infectious diseases mortality in the United States. Jama 1996;275:189-193.
    [2] Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003;348:1546-1554.
    [3] Sparwasser T, Miethke T, Lipford G, Borschert K, Hacker H, et al. Bacterial DNA causes septic shock. Nature 1997;386:336-337.
    [4] Vincent JL, Sun Q, Dubois MJ. Clinical trials of immunomodulatory therapies in severe sepsis and septic shock. Clin Infect Dis 2002;34:1084-1093.
    [5] Genfa L, Jiang Z, Hong Z, Yimin Z, Liangxi W, et al. The screening and isolation of an effective anti-endotoxin monomer from Radix Paeoniae Rubra using affinity biosensor technology. Int Immunopharmacol 2005;5:1007-1017.
    [6] Wang J, Zhou H, Zheng J, Cheng J, Liu W, et al. The antimalarial artemisinin synergizes with antibiotics to protect against lethal live Escherichia coli challenge by decreasing proinflammatory cytokine release. Antimicrob Agents Chemother 2006;50:2420-2427.
    [7] He XL, Liu Z. Protection of artesunate on activation and injury of vascular endothelial cells induced by lipopolysaccharide. Zhongguo Zhong Xi Yi Jie He Za Zhi 2004;24:1110-1113.
    [8] Xu H, He Y, Yang X, Liang L, Zhan Z, et al. Anti-malarial agent artesunate inhibits TNF-{alpha}-induced production of proinflammatory cytokines via inhibition of NF-{kappa}B and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology 2007;46:920–926
    [9] Efferth T, Ramirez T, Gebhart E, Halatsch ME. Combination treatment of glioblastoma multiforme cell lines with the anti-malarial artesunate and the epidermal growth factor receptor tyrosine kinase inhibitor OSI-774. Biochem Pharmacol 2004;67:1689-1700.
    [10] Chen HH, Zhou HJ, Wu GD, Lou XE. Inhibitory effects of artesunate on angiogenesis and on expressions of vascular endothelial growth factor and VEGF receptor KDR/flk-1. Pharmacology 2004;71:1-9.
    [11] Xu JH, Zhang YP. Contragestational effects of dihydroartemisinin and artesunate. Yao Xue Xue Bao 1996;31:657-661.
    [12] Itonaga I, Sabokbar A, Sun SG, Kudo O, Danks L, et al. Transforming growth factor-beta induces osteoclast formation in the absence of RANKL. Bone 2004;34:57-64.
    [13] Yibin G, Jiang Z, Hong Z, Gengfa L, Liangxi W, et al. A synthesized cationic tetradecapeptide from hornet venom kills bacteria and neutralizes lipopolysaccharide in vivo and in vitro. Biochem Pharmacol 2005;70:209-219.
    [14] Jiang Z, Hong Z, Guo W, Xiaoyun G, Gengfa L, et al. A synthetic peptide derived from bactericidal/permeability-increasing protein neutralizes endotoxin in vitro and in vivo. Int Immunopharmacol 2004;4:527-537.
    [15] Fungladda W, Honrado ER, Thimasarn K, Kitayaporn D, Karbwang J, et al. Compliance with artesunate and quinine + tetracycline treatment of uncomplicated falciparum malaria in Thailand. Bull World Health Organ 1998;76 Suppl 1:59-66.
    [16] Yi AK, Tuetken R, Redford T, Waldschmidt M, Kirsch J, et al. CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygenspecies. J Immunol 1998;160:4755-4761.
    [17] Hu Z, Sun S, Zhou F. The binding of CpG-oligodeoxynucleotides to cell-surface and its immunostimulatory activity are modulated by extracellular acidic pH. Vaccine 2003;21:485-490.
    [18] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63.
    [19] Harbarth S, Holeckova K, Froidevaux C, Pittet D, Ricou B, et al. Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med 2001;164:396-402.
    [20] Yao YM, Redl H, Bahrami S, Schlag G. The inflammatory basis of trauma/shock-associated multiple organ failure. Inflamm Res 1998;47:201-210.
    [21] McCoy SL, Kurtz SE, Hausman FA, Trune DR, Bennett RM, et al. Activation of RAW264.7 macrophages by bacterial DNA and lipopolysaccharide increases cell surface DNA binding and internalization. J Biol Chem 2004;279:17217-17223.
    [22] Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000;408:740-745.
    [23] Leifer CA, Kennedy MN, Mazzoni A, Lee C, Kruhlak MJ, Segal DM. TLR9 is localized in the endoplasmic reticulum prior to stimulation. J Immunol 2004;173:1179-1183.
    [24] Hong Z, Jiang Z, Liangxi W, Guofu D, Ping L, et al. Chloroquine protects mice from challenge with CpG ODN and LPS by decreasing proinflammatory cytokine release. Int Immunopharmacol 2004;4:223-234.
    [25] Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999;162:3749-3752.
    [26] Takeshita F, Leifer CA, Gursel I, Ishii KJ, Takeshita S, et al. Cutting edge: Role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol 2001;167: 3555-3558.
    [27] Naiki Y, Michelsen KS, Zhang W, Chen S, Doherty TM, Arditi M. Transforming growth factor-beta differentially inhibits MyD88-dependent, but not TRAM- and TRIF-dependent, lipopolysaccharide-induced TLR4 signaling. J Biol Chem 2005;280:5491-5495.
    [28] Eicher SD, McMunn KA, Hammon HM, Donkin SS. Toll-like receptors 2 and 4, andacute phase cytokine gene expression in dexamethasone and growth hormone treated dairy calves. Vet Immunol Immunopathol 2004;98:115-125.
    [29] Bhattacharyya S, Brown DE, Brewer JA, Vogt SK, Muglia LJ. Macrophage glucocorticoid receptors regulate Toll-like receptor 4-mediated inflammatory responses by selective inhibition of p38 MAP kinase. Blood 2007;109:4313-4319.
    [30] Sprung CL, Caralis PV, Marcial EH, Pierce M, Gelbard MA, et al. The effects of high-dose corticosteroids in patients with septic shock. A prospective, controlled study. N Engl J Med 1984;311:1137-1143.
    [31] Zhang P, Chen XM, Luo BD, Tan Q, Zou F, et al. Effects of artesunate on CD14 and toll-like receptor 4 in peritoneal macrophages of mice with heat stroke endotoxemia]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2006;24:226-228.
    [32] Veerasubramanian P, Gosi P, Limsomwong C, Walsh DS. Artesunate and a major metabolite, dihydroartemisinin, diminish mitogen-induced lymphocyte proliferation and activation. Southeast Asian J Trop Med Public Health 2006;37:838-847.
    [33] Lin PY, Feng ZM, Pan JQ, Zhang D, Xiao LY. Effects of artesunate on immune function in mice. Zhongguo Yao Li Xue Bao 1995;16:441-444.
    [34] Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal 2001;13:85-94.
    [35] Yi AK, Yoon JG, Hong SC, Redford TW, Krieg AM. Lipopolysaccharide and CpG DNA synergize for tumor necrosis factor-alpha production through activation of NF-kappa B. Int Immunol 2001;13:1391-1404.
    [36] Hacker H, Vabulas RM, Takeuchi O, Hoshino K, Akira S, Wagner H. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med 2000;192:595-600.
    [37] An H, Xu H, Yu Y, Zhang M, Qi R, et al. Up-regulation of TLR9 gene expression by LPS in mouse macrophages via activation of NF-kappaB, ERK and p38 MAPK signal pathways. Immunol Lett 2002;81:165-169.
    [38] Efferth T, Marschall M, Wang X, Huong SM, Hauber I, et al. Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses. J Mol Med 2002;80:233-242.
    [39] Mirshafiey A, Saadat F, Attar M, Di Paola R, Sedaghat R, Cuzzocrea S. Design of a new line in treatment of experimental rheumatoid arthritis by artesunate. Immunopharmacol Immunotoxicol 2006;28:397-410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700