桑皮纳米纤维素晶须的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桑树韧皮是一种极具利用价值的新型天然资源,在本实验中,采用预处理—130°C高温高压碱煮—漂白三道工序,制得了桑皮纤维,随后通过64 wt%的硫酸水解30 min制得了桑皮纤维素纳米晶须悬浮液。根据GB5889-86《苎麻化学成分定量分析方法》分析了脱胶前后桑皮纤维中各化学组成成分的含量,发现脱胶后的桑皮纤维中,半纤维素、果胶和木质素等杂质的含量已经非常低了,FT-IR和XRD的结果也证明了脱胶过程中这些杂质的去除。同时因为在酸解中纤维素的无定形部分被水解,而释放出了纤维素单晶,最后制得的纤维素纳米晶须的结晶度高达73.4%。但是因为在水解中纤维素分子上接上了磺酸基团,因而纤维素纳米晶须的热稳定性要比桑皮纤维差很多,而且经历了低温分解和高温分解两个阶段。这种纤维素晶须的用途非常广泛,可以作为一种增强剂、也可以在药品或光学器件中作为一种添加剂。
     将桑皮纤维素纳米晶须来作为经过聚乙二醇增塑后的丝素膜的增强剂,最后制得了一种兼有较好的拉伸强度和柔韧性的丝素复合膜。通过场发射扫描电镜观察到纤维素晶须均匀地分散在丝素基质中,但是当晶须的含量为15 wt%时,纳米粒子出现了部分团聚。FT-IR和XRD结果表明,聚乙二醇和纤维素晶须的加入诱导了丝素蛋白的二级结构的转变,力学拉伸测试表明,在较低的晶须含量下,随着纤维素晶须含量的增加,丝素复合膜的拉伸强度不断增加,断裂应变不断减小。动态机械分析(DMA)表明,刚性的纤维素晶须与丝素基质的作用限制了无定形区的丝素多肽链在玻璃化转变时的自由运动。最后,研究了MG-63细胞在这种生物复合膜上的黏附和增殖情况,发现加入了聚乙二醇和桑皮纤维素纳米晶须后,改变了丝素复合膜的表面微观形貌等表面性能,使得纳米复合膜具有良好的生物相容性。
A kind of cellulose whiskers were extracted from the branch-barks of mulberry (Morus alba L.) by an alkali treatment at 130°C and subsequently a sulfuric acid hydrolysis. AFM image showed that the diameter of obtained whiskers was ranged from 20 nm to 40 nm. The chemical compositions analysis, FT-IR, XRD results indicated that the hemicellulose and lignin were removed extensively in the cellulose whiskers, with a crystallinity of 73.4%. The TGA curves implied a two-stage thermal decomposition behavior of cellulose whisker due to the introduction of sulfated groups into the crystals in the sulfuric acid hydrolysis process. The obtained whiskers may have the potential applications in the fields of composites as a reinforcing phase, as well as in pharmaceutical and optical industries as additives.
     The flexible and transparent composite films were fabricated by a mixture of silk fibroin, poly(ethylene glycol) and mulberry cellulose nanowhiskers. The cellulose nanowhiskers were uniformly dispersed in the matrix when its content was as high as 12 w/w%. The tensile properties of composite films generally depended on the nanowhisker content, but significantly improved when compared with the pure SF film. DMA analysis revealed that the alpha transition temperature increased gradually with the increase of nanowhisker content, probably due to the formation of interactions between the nanowhiskers and the silk fibroin molecular chains, leading to the mobility reduction of the amorphous silk fibroin. A preliminary biocompatibility study of the nanocomposite films was carried out and the results showed an increment of MG-63 cell numbers attached on the MCW filled films and the morphologies of cells on them looked more flatten and spread, which are attributed to the much more complex surfaces properties of the nanocomposites. This kind of flexible silk fibroin-matrix composite films may possess the potential utilizations in the extended biomedical application fields.
引文
[1] D. Klemm, B. Heublein, H. P. Fink, et al. Cellulose: fascinating biopolymer and sustainable raw material [J]. Angew. Chem. Int. Ed., 2005, 44: 3358-3393.
    [2] P. Zugenmaier. Conformation and packing of various crystalline cellulose fibers [J]. Prog. Polym. Sci., 2001, 26: 1341-1417.
    [3] M. Jarvis. Cellulose stacks up [J]. Nature, 2003. 426: 611-612.
    [4] S. Beck-Candanedo, M. Roman, D. G. Gray. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions [J]. Biomacromolecules, 2005, 6: 1048-1054.
    [5] M. A. S. Azizi Samir, F. Alloin, A. Dufresne. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field [J]. Biomacromolecules, 2005, 6: 612-626.
    [6] M. M. de Souza Lima, R. Borsali. Rodlike cellulose microcrystals: structure, properties, and applications [J]. Macromol. Rapid Commun., 2004, 25: 771-787.
    [7]马君志,杜丽霞.桑皮纤维的制备及其产品开发[J].纺织导报, 2007, 5: 67-69.
    [8]羌晓阳,钱震.纺织纤维家族又一新成员[J].四川丝绸, 2001, 3: 46-47.
    [9]杨草.利用桑皮生产人造棉新工艺[J].河南科技, 1996, 2: 13.
    [10]邱训国,严松俊.桑皮纤维开发及其综合利用[J].辽宁丝绸, 2002, 4: 10-13.
    [11]张之亮,张元明.桑皮纤维脱胶工艺和结构性能研究[D].东华大学硕士学位论文2005.
    [12]黄小龙,孙焕良,李建军.南方亚麻微生物脱胶技术及其理论研究—亚麻天然水沤法脱胶动态过程的观测[J].中国麻业, 2003, 25: 38-41.
    [13] G. Henriksson, D. E. Akin, L. L. Rigsby, et al. Influence of chelating agents and mechanical pretreatment on enzymatic retting of flax [J]. Tex. Res., 1997, 67: 829-836.
    [14]田华,张金燕.大麻产品开发现状与发展趋势[J].纺织科技进展, 2006, 5: 7-11.
    [15] B. Wang, M. Sain, K. Oksman. Study of structural morphology of hemp fiber from the micro to the nanoscale [J]. Appl. Compos. Mater., 2007, 14: 89-103.
    [16]俞春华,冯新星,贾长兰, et al.大麻纤维高温-酶联合脱胶技术[J].纺织学报, 2007, 28: 79-82.
    [17]杨英贤,姜宜宽,张书策.罗布麻微波—超声波脱胶工艺的研究[J].毛纺科技, 2006, 9: 27-30.
    [18]殷祥刚,滑钧凯.大麻纤维“闪爆”处理脱胶方法初探[J].纤维素科学与技术, 2006, 14: 41-46.
    [19]王德骥等.苎麻纤维素化学与工艺学—脱胶和改性[M].北京:科学出版社, 2001.
    [20]欧阳曙,姚刚.苎麻化学脱胶新技术的评述与应用[J].苎麻纺织科技, 1993, 16: 30-32.
    [21] H. Staudinger.über polymerization (on polymerization) [J]. Ber. Dtsch. Chem. Ges., 1920, 53: 1073-1085.
    [22] S. Kobayashi, J. Sakamoto, S. Kimura. In vitro synthesis of cellulose and related polysaccharides [J]. Prog. Polym. Sci. 2001, 26: 1525-1560.
    [23] R. L. Whistler, J. M. BeMiller. Cellulosics // N. B. James, ed. In Carbohydrate Chemistry for Food Scientists [M]. Minnesota: American Association of Cereal Chemists, Inc., 1997, 155.
    [24] R. H. Marchessault, F. F. Morehead, N.M. Walter. Liquid crystal systems from fibrillar polysaccharides [J]. Nature, 1959, 184: 632.
    [25] X. M. Dong, T. Kimura, J. F. Revol, et al. Effect of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites [J]. Langmuir, 1996, 12: 2076-2082.
    [26] J. F. Sassi, H. Chanzy. Ultrastructural aspects of the acetylation of cellulose [J]. Cellulose, 1995, 2:111-127.
    [27] P. Terech, L. Chazeau, J.Y. Cavailé. A small-angle scattering study of cellulose whiskers in aqueous suspensions [J]. Macromolecules, 1999, 32: 1872-1875.
    [28] M. M. de Souza Lima, J. T. Wong, M. Paillet, et al. Translation and rotational dynamics of rodlike cellulose whiskers [J]. Langmuir, 2003, 19: 24-29.
    [29] J. F. Revol, L. Godbout, X. M. Dong, et al. Chiral nematic suspensions of cellulose crystallites phase separation and magnetic field orientation [J]. Liq. Cryst., 1994, 16: 127-134.
    [30] J. F. Revol, H. Bradford, J. Giasson, et al. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension [J]. Int. J. Biol. Macromol. 1992, 14: 170-172.
    [31] F. Favier, H. Chanzy, J. Y. Cavaillé. Polymer nanocomposites reinforced by cellulose whiskers [J]. Macromolecules, 1995, 28: 6365-6367.
    [32] J. Araki, M. Wada, S. Kuga, et al. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose [J]. Colloids Surf. A, 1998, 142: 75-82.
    [33] J. Araki, M. Wada, S. Kuga. Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting [J]. Langmuir, 2001, 17: 21-27.
    [34] C. Bonini, L. Heux. French Patent, 07493. 1999.
    [35] L. Heux, G. Chauve, C. Bonini. Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents [J]. Langmuir, 2000, 16: 8210-8212.
    [36] C. Goussé, H. Chanzy, G. Exoffier, et al. Stable suspensions of partially silylated cellulose whiskersdispersed in organic solvents [J]. Polymer, 2002, 43: 2645-2651.
    [37] M. A. S. Azizi Samir, F. Alloin, J. Y. Sanchez, et al. Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension [J]. Macromolecules, 2004, 37: 1386-1393.
    [38] A. Speranza, P. Sollich. Simplified on sager theory for isotropic nematic phase equilibria of length polydisperse hard rods [J]. J. Chem. Phys., 2002, 117: 5421-5436.
    [39] J. Sugiyama, H. Chanzy, G. Maret. Orientation of cellulose microcrystals by strong magnetic fields [J]. Macromolecules, 1992, 25: 4232-4234.
    [40] W. J. Orts, L. Godbout, R. H. Marchessault, et al. Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: A small-angle neutron scattering study [J]. Macromolecules, 1998, 31: 5717-5725.
    [41] D. Bordel, J. L. Putaux, L. Heux. Orientation of native cellulose in an electric field [J]. Langmuir, 2006, 22: 4899-4901.
    [42] J. F. Revol, L. Godbout, D. G. Gray. Solid films of cellulose with chiral nematic order and optically variable properties [J]. J. Pulp Paper Sci., 1998, 24: 146-149.
    [43] V. Favier, G. R. Canova, J. Y. Cavaillé, et al. Nanocomposites materials from latex and cellulose whiskers [J]. Polym. Adv. Technol., 1995: 351-355.
    [44] Azizi Samir MAS, Alloin F, Sanchez J-Y, Dufresne A. Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers [J]. Macromolecules, 2004, 37: 4839-4844.
    [45] N. K. Gopalan, A. Dufresne, A. Gandini, et al. Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers [J]. Biomacromolecules, 2003, 4: 1835-1842.
    [46] G. Siqueira, J. Bras, A. Dufresne. Cellulose whiskers versus microfibrils: influence of nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites [J]. Biomacromolecules, 2009, 10: 425-432.
    [47] J. R. Capadona, O. van der Berg, L. A. Capadona, et al. A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates [J]. Nature Nanotech., 2007, 2: 765-769.
    [48] J. R. Capadona, K. Shanmuganathan, D. J. Tyler, et al. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis [J]. Science, 2008, 319: 1370-1374.
    [49] W. Helbert, J. Y. Cavaillé, A. Dufresne. Thermoplastic nanocomposites filled with wheat straw cellulosewhiskers. Part I: processing and mechanical behavior [J]. Polym. Compos., 1996, 17: 604-611.
    [50] D. Dubief, E. Samain, A. Dufresne. Polysaccharide microcrystals reinforced amorphous poly (β-hydroxyoctanoate) nanocomposite materials [J]. Macromolecules, 1999, 32: 5765-5771.
    [51] V. Favier. Etude de nouveaux matériaux composites obtenusàpartir de latex filmogènes et de whiskers de cellulose: effect de percolation mécanique [D]. Ph.D. Thesis, Joseph Fourier University, Grenoble, France, 1995.
    [52] A. Morin, A. Dufresne. Nanocomposites of chitin whiskers from Riftia tubes and poly(caprolactone) [J]. Macromolecules, 2002, 35: 2190-2199.
    [53] N. K. Gopalan, A. Dufresne. Crab shell chitin whiskers reinforced natural rubber nanocomposites. 1. Processing and swelling behavior [J]. Biomacromolecules, 2003, 4: 657-665.
    [54] P. Hajji, J.Y. Cavaillé, V. Favier, et al. Tensile behavior of nanocomposites from latex and cellulose whiskers [J]. Polym. Compos., 1996, 17: 612-619.
    [55] A. Dufresne, M. B. Kellerhals, B. Witholt. Transcrystallization in mcl-PHAs/cellulose whiskers composites [J]. Macromolecules, 1999, 32: 7396-7401.
    [56] M. N. Anglès, A. Dufresne. Plasticized starch/tunicin whiskers nanocomposites: 2. Mechanical behavior [J]. Macromolecules, 2001, 34: 2921-2931.
    [57] M. Grunert, W. T. Winter. Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals [J]. J. Polym. Environ., 2002, 10: 27-30.
    [58] L. Chazeau, J. Y. Cavaillé, G. Canova, et al. Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers [J]. J. Appl. Polym. Sci. 1999, 71: 1797-1808.
    [59] V. Favier, R. Dendievel, G. Canova, et al. Simulation and modelling of 3D percolating structures: case of latex matrix reinforced by a network of cellulose fibers [J]. Acta Mater., 1997, 45: 1557-1565.
    [60] C. W. Nan. Physics of inhomogeneous inorganic materials [J]. Prog. Mater. Sci., 1993, 37: 1-116.
    [61] C. Z. Zhou, F. Confalonieri, M. Jacquet, et al. Silk fibroin: Structural implications of a remarkable amino acid sequence [J]. Proteins, 2001, 44: 119-122.
    [62] T. Asakura, J. Yao, T. Yamane, et al. Heterogeneous structure of silk fibers from Bombyx mori resolved by 13C solid-state NMR spectroscopy [J]. J. Am. Chem. Soc., 2002, 124: 8794-8795.
    [63] J. Magoshi, Y. Magoshi, M. A. Becker, et al. J. C. Salamone, ed. In Polymeric Materials Encyclopedia [M]. New York: CRC Press, 1996, 667.
    [64]李明忠,严灏景.再生丝素的结构及其生物医学应用[J].丝绸, 2000, 5: 37-40.
    [65] A. Matsumoto, J. S. Chen, A. L. Collette, et al. Mechanism of silk fibroin sol-gel transitions [J]. J. Phys. Chem. B, 2006, 110: 21630-21638.
    [66]陈建勇,张加忠,冯新星等.聚乳酸/丝素共混膜的制备及其性能[J].化工学报, 2008, 59: 773-777.
    [67] S. G. Eun, J. David, M. K. Frankowski, et al. Mixed protein blends composed of gelatin and Bombyx mori silk fibroin: effects of solvent-induced crystallization and composition [J]. Biomacromolecules, 2006, 7: 728-735.
    [68] H. Y. Kweon, I. C. Um, Y. H. Park. Structural and thermal characteristics of Antheraea pernyi silk fibroin/chitosan blend film [J]. Polymer, 2001, 42: 6651-6656.
    [69] C. X. Liang, K. Hirabayaahi. Improvement of the physical property of fibroin [J]. J. Appl. Polym. Sci., 1992, 45: 1937-1942.
    [70] G. H. Altman, F. Diaz, C. Jakuba. Silk-based biomaterials [J]. Biomaterials, 2003, 24: 401-416.
    [71] G. Yang, L. N. Zhang, Y. G. Liu. Structure and microporous formation of cellulose/silk fibroin blend membranes I. Effect of coagulants [J]. J. Membr. Sci., 2000, 177: 153-161.
    [72] N. Minora, M. Tsukada, M. Nagura. Physico-chemical properties of silk fibroin membrane as biomaterial [J]. Biomaterials, 1990, 11: 430-434.
    [73] B. Panilaitis, G. H. Altman, J. Chen, et al. Macrophage responses to silk [J]. Biomaterials, 2003, 24: 3079-3085.
    [74] L. Meinel. S. Hofmann, V. Karageorgiou, et al. The inflammatory responses to silk films in vitro and vivo [J]. Biomaterials, 2005, 26: 147-155.
    [75] R. Horan, K. Antle, A. Collette, et al. In vitro degradation of silk fibroin [J]. Biomaterials, 2005, 26: 3385-3393.
    [76] R. Nazarov, H. J. Jin, D. L. Kaplan. Porous 3-D scaffolds from regenerated silk fibroin: silk-biology, genetics, biomaterials, materials science, and engineering [J]. Biomacromolecules, 2004, 5: 718-726.
    [77] U. J. Kim, J. Park, H. J. Kim, et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin [J]. Biomaterials, 2005, 26: 2775-2785.
    [78] G. H. Altman, H. H. Lu, R. L. Horan, et al. Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering [J]. J. Biomech. Eng., 2002, 124: 742-749.
    [79] G. H. Altman, R. L. Horan, H. H. Lu, et al. Silk matrix for tissue engineered anterior cruciate ligaments [J]. Biomaterials, 2002, 23: 4131-4141.
    [80] H. J. Jin, J. Park, P. Valluzzi, et al. Biomaterial films of Bombyx mori silk fibroin with poly(ethyleneoxide) [J]. Biomacromolecules, 2004, 5: 711-717.
    [81] H. J. Jin, J. Park, V. Karageorgiou, et al. Water-stable films with reduced beta-sheet content [J]. Adv. Funct. Mater., 2005, 15: 1241-1247.
    [82] S. Sofia, M. B. McCarthy, G. Gronowicz, et al. Functionalized silk-based biomaterials for bone formation [J]. J. Biomed. Mater. Res., 2001, 54: 139-148.
    [83] H. J. Jin, S. V. Fridrikh, G. C. Rutledge, et al. Electrospinning Bombyx mori silk with poly(ethylene oxide) [J]. Macromolecules, 2002, 3: 1233-1239.
    [84] M. Wang, H. J. Jin, D. L. Kaplan, et al. Mechanical properties of electrospun silk fibers [J]. Macromolecules, 2004, 37: 6856-6864.
    [85] U. J. Kim, J. Park, C. Li, et al. Structure and properties of silk hydrogels [J]. Biomacromolecules, 2004, 5: 786-792.
    [86]张雨青,家蚕丝素蛋白-一种天然的固定化酶载体[J].江苏蚕业,1999, 2: 1-5.
    [87] H. Yoshimizu, T. Asakura, The structure of Bombyx morl silk fibroin membrane swollen by water studied fh ESR, 13C-NMR, and FT-IR spectroscopy [J]. J. Appl. Polym. Sci., 1990, 40: 1745-1756.
    [88] T. Asakuka, M. Kitaguchi, M. Demura, et al, Immobilization of glucose oxidase on nonwoven fabrics with bombyx/mori silk fibroin gel [J]. J. Appl. Polym. Sci., 1992, 1: 49-53.
    [89] M. Demura, T. Xomura, H. Hiraide, et al, Enzymatic properties of lipase-immobilised silk fibroin membrane and potential with the enzyme reaction [J]. Sen-J. Gakkaishi, 1990, 46: 391-395.
    [90] T. Asakuka, H. Yoshimizu, A. Kuzuhara, et al, Mechanism of glucose oxidase immobilitation with silk fibroin [J]. J. Sericultural Sci. Japan, 1988, 57: 203-209.
    [91] Y. Q. Zhang, J. Zhu, R. A. Gu. Improved biosensor for glucose based on glucose oxidase-immobilized silk fibroin membrane [J]. Appl. Biochem. Biotechnol., 1998, 75: 215-233.
    [92] M. Demura, T. Asakura, E. Nakamura, et al. Immobilitation of peroxidase with bombyx mori silk fibroin membrane and its application to biophotosensor [J]. J. Biotechnol., 1989, 10: 113-120.
    [93]彭图治,陈建勇.丝蛋白膜免疫传感器的研制及临床分析应用[J].应用科学学报, 1999, 17: 13-17.
    [94]胡晓波,浙江大学硕士毕业论文[D]. 1998.
    [95] L. Jeong, I. S. Yeo, H. N. Kim, Y. I. Yoon, et al. Plasma-treated silk fibroin nanofibers for skin regeneration [J]. Int. J. Biol. Macromol., 2009, 44: 222-228.
    [96] B. M. Min, L. Jeong. Y. S. Nam, et al. Electrospinning of silk fibroin nanofibers and its effort on theadhesion and spreading of normal human keratinocytes and fibroblasts in vitro [J]. Biomaterials, 2004, 25: 1289-1297.
    [97] T. Furuzono, T. Taguchi, A. Kishida, et al. Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process [J]. J. Biomed. Mater. Res., 2000, 50: 344-352.
    [98] X. Q. Wang, E. Wenk, A. Matsumoto, et al. Silk microspheres for encapsulation and controlled release [J]. J. Congrol. Release, 2007, 117: 360-370.
    [99] S. Hofmann, C. T. Wong Po Foo, F. Rossetti, et al. Silk fibroin as an organic polymer for controlled drug delivery [J]. J. Congrol. Release, 2006, 111: 219-227.
    [100] Y. Z. Wang, D. J. Blasioli, H. J. Kim, et al. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes [J]. Biomaterials, 2006, 27: 4434-4442.
    [101] S. Hofmann, H. Hagenmüller, A. M. Koch. et al. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds [J]. Biomaterials, 2007, 28: 1152-1162.
    [102] C. Li, C. Vepari, H. J. Jin, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering [J]. Biomaterials, 2006, 27: 3115-3124.
    [103] L. Meinela, S. Hofmann, O. Betz, et al. Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP-2 [J]. Biomaterials, 2006, 27: 4993-5002.
    [104] X. M. Dong, J. F. Revol, D. G. Gray. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose [J]. Cellulose, 1998, 5: 19-32.
    [105] A. Alemdar, M. Sain. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties [J]. Compos. Sci. Technol., 2008, 68: 557-565.
    [106]俞春华,冯新星,贾长兰等.高温脱胶对大麻纤维成分与结构的影响[J].纺织学报,2006, 27: 80-83.
    [107] M. Sain, S. Panthapulakkal. Bioprocess preparation of wheat straw fibers and their characterization [J]. Ind. Crop. Prod., 2006, 23: 1-8.
    [108] X. F. Sun, F. Xu, R. C. Sun, et al. Characteristics of degraded cellulose obtained from steam-exploded wheat straw [J]. Carbohydr. Res., 2005, 340: 97-106.
    [109] B. Xiao, X. F. Sun, R. C. Sun. Chemical, structural, and thermal characterization of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw [J]. Polym.Degrade. Stab., 2001, 74: 307-319.
    [110] A. Alemdar, M. Sain. Isolation and characterization of nanofibers from agricultural residues-wheat straw and soy hulls [J]. Bioresour. Technol., 2008, 99: 1664-1671.
    [111] R. H. Atalla, D. L .van der Hart. Native cellulose: a composite of two distinct crystalline forms [J]. Science, 1984, 223: 283-285.
    [112] P, Lanpan. Y, Nishiyama, H, Chanzy. X-ray structure of mercerized cellulose II at 1 a resolution [J]. Biomacromolecules, 2001, 2: 410-416.
    [113] H. P. Fink, E. Walenta, J. Kunze, et al. // J. F. Kennedy, G. O. Phillips, P. A. Williams, L. Piculell, Eds: In Cellulose and Cellulose Derivates: Physico-Chemical Aspects and Industrial Applications [M]. Woodhead, 1995, 523-528.
    [114] R. J. Li, J. M. Fei, Y. R. Cai, et al. Cellulose whiskers extracted from mulberry: a novel biomass production [J]. Carbohydr. Polym., 2009, 76: 94-95.
    [115] H. P. Yang, R. Yan, H. P. Chen, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis [J]. Fuel, 2007, 86: 1781-1788.
    [116] R. Maren, T. W. William. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose [J]. Biomacromolecules, 2004, 5: 1671-1677.
    [117] S. Julien, E. Chornet, R. P. Overend. Influence of acid pre-treatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose [J]. J. Anal. Appl. Pyrolysis, 1993, 27: 25-43.
    [118] D. Y. Kim, Y. Nishiyama, M. Wada, et al. High-yield carbonization of cellulose by sulphuric acid impregnation [J]. Cellulose, 2001, 8: 29-33.
    [119] N. Minoura, M. Tsukada, M. Nagura. Fine structure and oxygen permeability of silk fibroin membrane treated with methanol [J]. Polymer, 1990, 31: 265-269.
    [120] Y. Noishiki, Y. Nishiyama, M. Wada, et al. Mechanical properties of silk fibroin-microcrystallin cellulose composite films [J]. J. Appl. Polym. Sci., 2002, 86: 3425-3429.
    [121] M. A. Paul, M. Alexandre, P. Degée, et al. New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study [J]. Polymer, 2003, 44: 443-450.
    [122] S. Wang, H. J. Sue, J. Jane. Effect of polyhydric alcohols on the mechanical properties of soy protein plastics [J]. J. Macromol. Sci., Pure Appl. Chem., 1996, 33: 557-569.
    [123]裴国献,魏宽海,金丹.组织工程学实验技术[M].人民军医出版社, 2005.
    [124] K. T. Bowers, J. C. Keller, B. A. Randolph, et al. Optimization of surface micromorphology for enhanced osteoblast responses in vitro [J]. Int. J. Oral. Maxillofac. Implants, 1992, 7: 302-310.
    [125] B. Groessner-Schreiber, R. S. Tuan. Enhanced extracellular matrix production and mineralization by osteoblasts cultured on titanium surfaces in vitro [J]. J. Cell. Sci., 1992, 101: 209-217.
    [126] J. L. Ong, C. W. Prince, G. N. Raikar, et al. Effect of surface topography of titanium on surface chemistry and cellular response [J]. Implant. Dent., 1996, 5: 83-90.
    [127] T. Asakura, A. Kuzuhara, R. Tabeta, et al. Conformation characterization of Bombyx mori silk fibroin in the solid state by high-frequency 13C cross polarization-magic angle spinning NMR, X-ray diffraction, and infrared spectroscopy [J]. Macromolecules, 1985, 18: 1841-1845.
    [128] Y. Gotoh, M. Tsukada, N. Minoura, et al. Synthesis of poly(ethylene glycol) silk fibroin conjugates and surface interaction between L-929 cells and the conjugates [J]. Biomaterials, 1997, 18: 267-271.
    [129] L. Chazeau, M. Paillet, J. Y. Cavaillé. Plasticized PVC reinforced with cellulose whiskers: 1-linear viscoelastic behavior analyzed through the quasi point defect’theory [J]. J. Polym. Sci., B: Polym. Phys., 1999, 37: 2151-2164.
    [130] Martin, J. Y.; Schwartz, Z.; Hummert, T. W.; et al. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63) [J]. J. Biomed. Mater. Res., 1995, 29: 389-401.
    [131] A. Muthuvel, R. Rajamani, M. Senthilvelan, et al. Modification of allergenicity and immunogenicity of formate dehydrogenase by conjugation with linear mono methoxy poly ethylene glycol: Improvement in detoxification of formate in methanol poisoning [J]. Clin. Chim. Acta., 2006, 374: 122-128.
    [132] B. D. Boyan, T. D. Hummer, D. D. Dean, et al. Role of material surfaces in regulating bone and cartilage cell response [J]. Biomaterials, 1996, 17: 137-146.
    [133] R. J. Pelham, Y. L. Wang. Cell locomotion and adhesions are regulated by substrate flexibility [J]. Proc. Natl. Acad. Sci. USA. 1997, 94: 13661-13665.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700