ZnAl_2O_4基低介电常数微波介质陶瓷的结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综观微波介质陶瓷材料的发展历史和应用前景,结合当前微波介质陶瓷的研究现状,确定ZnAl_2O_4基陶瓷为本文的研究对象。利用X射线衍射(XRD)、扫描电镜(SEM)、X射线能谱(EDS)、X射线光电子能谱(XPS)、电子探针(EPMA)和网络分析仪等仪器系统地研究了制备方法(常规固相法和熔盐法)、烧结工艺、相成分、微观组织结构和微波介电性能之间的关系。
     首先研究了(1-x)ZnAl_2O_(4-x)TiO_2材料的烧结特性、相成分和微波介电性能。结果表明,TiO_2能有效地改善材料的烧结性能和调节材料的谐振频率温度系数,当x=0.21时,(1-x)ZnAl_2O_(4-x)TiO_2陶瓷具有近零的谐振频率温度系数,体系中包括细小的ZnAl_2O_4尖晶石晶粒和粗大的金红石相晶粒。在此基础上,系统地研究了(1-x)ZnAl_2O_(4-x)TiO_2 (x=0.21)材料的预烧温度、烧结温度和升温速率,并确定了最佳工艺参数,它们分别为1150℃、1500℃和5℃/min,此时的微波介电性能为:εr=11.6、Q·f=74000GHz、τf=-0.4ppm/℃。
     利用熔盐法制备了(1-x)ZnAl_2O_(4-x)TiO_2陶瓷,并探索了材料的烧结性能、微观组织和微波介电性能特点。与常规固相法相比,利用LiCl和ZnCl_2熔盐均能制备出颗粒细小均匀、活性高的(1-x)ZnAl_2O_(4-x)TiO_2粉末,并能有效降低材料的烧结温度,但同时也降低了材料的密度和微波介电性能。当熔盐为LiCl、预烧温度为900℃时,(1-x)ZnAl_2O_(4-x)TiO_2(x=0.21)陶瓷的致密化温度为1425℃,微波介电性能分别降到:εr=10.0、Q·f=39970GHz、τf=-21.2ppm/℃。当x=0.25时,(1-x)ZnAl_2O_(4-x)TiO_2陶瓷的致密化温度降低到1300℃,τf值被调节到-7.1ppm/℃,同时,Q·f值降低到27000GHz,而εr值变化很小。当熔盐为ZnCl2、预烧温度为900℃时,(1-x)ZnAl_2O_(4-x)TiO_2(x=0.25)陶瓷的致密化温度为1350℃,此时材料的微波介电性能为:εr=10.0、Q·f=56440GHz、τf=-25.4ppm/℃。
     利用MO(M=Co, Mg, Mn)和TiO_2共同改性ZnAl_2O_4时,比较了(1-x)ZnAl_2O_4- xM2TiO_4(x=0.21)与(1-x)ZnAl_2O_(4-x)TiO_2(x=0.21)陶瓷的相成分、微观结构和微波介电性能之间的差异。研究表明,Co~(2+)离子能促使Ti~(4+)离子固溶入ZnAl_2O_4尖晶石晶格中形成单一的固溶体相,能将Q·f值从74000GHz提高到94000GHz。Mg~(2+)和Mn~(2+)离子均不能使Ti~(4+)离子完全固溶入ZnAl_2O_4晶格中,而在体系中分别出现了MgTi_2O_5和ZnMn3O7相,两者的Q·f值分别为188540GHz和23530GHz。与(1-x)ZnAl_2O_4-xTiO_4 (x=0.21)陶瓷相比,(1-x)ZnAl_2O_(4-x)M_2TiO_4(x=0.21)陶瓷的εr和τf值均有所降低,但相互之间的差别很小。
     进一步研究了(1-x)ZnAl_2O_(4-x)M_2TiO_4(M=Co, Mg)陶瓷的相变过程和微波介电性能特点。结果表明,对于(1-x)ZnAl_2O_(4-x)Mg_2TiO_4体系,当x=0.1时,ZnAl_2O_4能与Mg2TiO_4形成尖晶石固溶体,当x=0.21~0.8时,体系中包括尖晶石相和MgTi2O5相,当x=0.9和1.0时,体系中存在尖晶石相和MgTiO_3相。对于(1-x)ZnAl_2O_(4-x)Co_2TiO_4体系,当x=0.1~0.3时,ZnAl_2O_4能与Co2TiO_4形成尖晶石固溶体,当x=0.4时,体系中析出少量Co_2TiO_4相,当x=0.5时,体系中同时析出Co_2TiO_4和(Zn, Co)Al_2O_4相,两者相互交替生长在(1-x)ZnAl_2O_(4-x)Co_2TiO_4基体上。随着M_2TiO_4含量的增加,(1-x)ZnAl_2O_(4- x)M_2TiO_4陶瓷的εr值几乎线性增大,Q·f值先减小然后增大,τf值变化很小。
     研究了TiO_2、CaTiO_3和SrTiO_3对0.79ZnAl_2O_4-0.21M_2TiO_4(M=Co, Mg)陶瓷谐振频率温度系数的影响。研究发现,TiO_2不能调节0.79ZnAl_2O_4-0.21M_2TiO_4(M=Mg, Co)材料的τf值,因为TiO_2与基体反应生成了具有负温度系数的MTi2O5相。CaTiO_3和SrTiO_3均能有效地调节0.79ZnAl_2O_4-0.21M2TiO_4(M=Co, Mg)材料的τf值。总的来说,随着CaTiO_3(或SrTiO_3)添加量的增多,材料的εr和τf值逐渐增大,而Q?f值具有减小的趋势。
     研究了ZnB_2O_4和B_2O_3助烧剂对(1-x)(0.79ZnAl_2O_4-0.21Co2TiO_4)-xCaTiO_3(x=0.08) (ZCC)和(1-x)(0.79ZnAl_2O_4-0.21Mg2TiO_4)-xCaTiO_3(x=0.06)(ZMC)材料的烧结特性、相成分和微波介电性能的影响。ZnB_2O_4助烧剂能将ZCC材料的烧结温度降低到1100℃,降幅为300℃,但ZnB_2O_4助烧剂对ZMC材料以及B_2O_3助烧剂对ZCC和ZMC材料的助烧作用均不显著,仅能降低50~100℃。当掺入助烧剂后,材料的εr值均有所降低,但材料的Q?f和τf值的变化趋势与助烧剂的种类和数量有关。一般而言,ZnB_2O_4助烧剂使ZCC和ZMC材料的Q?f值降低幅度较大,而B_2O_3助烧剂对Q?f值的影响相对较小。
Based on the development, application and research actuality of microwave dielectric ceramics, ZnAl_2O_4-based ceramics are chosen as research objective in this dissertation. The relationships among preparing methods (including solid-state reaction and molten salt method) and processes, phase compositions, microstructures and microwave dielectric properties have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), electron-probe microanalysis (EPMA) and network analyzer, etc.
     Sintering characteristic, phase compositions and microwave dielectric properties of (1-x)ZnAl_2O_(4-x)TiO_2 ceramics had been studied. It shows that TiO2 can effectively improve the sintering characteristic and control the temperature coefficient of resonant frequency (τf). (1-x)ZnAl_2O_(4-x)TiO_2 (x=0.21) ceramics with near-zeroτf value includes smaller ZnAl_2O_4 spinel grains and larger rutile grains. And then, the sintering processes such as calcining temperature, sintering temperature and heating rate of the (1-x)ZnAl_2O_(4-x)TiO_2 (x=0.21) system have been researched systematically, and the optimal sintering process parameters have been determined which are 1150℃, 1500℃and 5℃/min, respectively, in which sintering conditions the microwave dielectric properties are as follows:εr=11.6, Q·f=74000GHz,τf=-0.4ppm/℃.
     Sintering characteristic, microstructures and microwave dielectric properties of (1-x)ZnAl_2O_(4-x)TiO_2 ceramics synthesized by molten salt method had been explored. In contrast to the solid-state reaction, smaller size, more homogenous and higher activity powder can be synthesized by LiCl and ZnCl_2 molten salt, which lowers the sintering temperature, at the same time, also deteriorates the density and microwave dielectric properties of the (1-x)ZnAl_2O_(4-x)TiO_2 ceramics. (1-x)ZnAl_2O_(4-x)TiO_2 (x=0.21) calcined at 900℃in LiCl molten salt can be fully densified at 1425℃, and the microwave dielectric properties withεr=10.0, Q·f=39970GHz andτf=-21.2ppm/℃can be obtained. When x is equal to 0.25, the densification temperature reduces to 1300℃, andτf value is adjusted to -7.1ppm/℃and theεr value nearly doesn’t change, however, the Q·f value reduces to 27000GHz. (1-x)ZnAl_2O_(4-x)TiO_2 (x=0.25) calcined at 900℃in ZnCl2 molten salt can be fully densified at 1350℃and the ceramics exhibits the microwave dielectric properties withε_r=10.0, Q·f=56440GHz andτf=-25.4ppm/℃.
     When MO(M=Co, Mg, Mn) and TiO_2 were added to ZnAl_2O_4, the phase compositions, microstructures and microwave dielectric properties of (1-x)ZnAl_2O_(4-x)M_2TiO_4 (x=0.21) ceramics were compared with those of (1-x)ZnAl_2O_(4-x)TiO_2 (x=0.21) ceramics. It is found that the single phase solid solution appears in the (1-x)ZnAl_2O_(4-x)Co_2TiO_4 (x=0.21) ceramics because Co~(2+) ion can promote Ti~(4+) ion to diffuse into the ZnAl_2O_4 crystal lattice which increases the Q·f value from 74000 to 94000GHz. However, the MgTi_2O_5 and ZnMn_3O_7 phase can be observed in the (1-x)ZnAl_2O_(4-x)Mg_2TiO_4 (x=0.21) and (1-x)ZnAl_2O_(4-x)Mn_2TiO_4 (x=0.21) ceramics, whose Q·f value is 188540GHz and 23530GHz, respectively. Theεr andτf values of the (1-x)ZnAl_2O_(4-x)M_2TiO_4 (x=0.21) are lower than those of (1-x)ZnAl_2O_(4-x)TiO_2 (x=0.21) ceramics, whereas theεr andτf values are weakly dependent on the M element and are equal to about 9.7 and -65ppm/℃, respectively.
     Phase transition and microwave dielectric properties of (1-x)ZnAl_2O_(4-x)M_2TiO_4 (M=Co, Mg) ceramics had been further studied. In the (1-x)ZnAl_2O_(4-x)Mg_2TiO_4 system, ZnAl_2O_4 can form a spinel solid solution with Mg2TiO_4 for x=0.1, while the MgTi2O5 and MgTiO_3 second phase exists in the systems for 0.21≤x≤0.8 and 0.9≤x≤1.0, respectively. In the (1-x)ZnAl_2O_(4-x)Co_2TiO_4 system, ZnAl_2O_4 can also form a spinel solid solution with Co2TiO_4 for 0.1≤x≤0.3, however, the Co2TiO_4 second phase appears in the ceramics for x=0.4. When x is equal to 0.5, Co2TiO_4 and (Zn, Co)Al_2O_4 phase coexist and grow alternately in the (1-x)ZnAl_2O_(4-x)Co_2TiO_4 matrix. As the content of M2TiO_4 increases in the (1-x)ZnAl_2O_(4-x)M_2TiO_4 system, theεr value takes on a tendency of linear increase, and the Q·f value increases initially and then decreases, while theτf value only changes slightly.
     The effects of TiO_2, CaTiO_3 and SrTiO_3 additions on theτf value of the 0.79ZnAl_2O_4-0.21M2TiO_4 (M=Mg, Co) ceramics had been investigated. TiO_2 cannot control theτf value of the 0.79ZnAl_2O_4-0.21M2TiO_4 (M=Mg, Co) ceramics due to the MTi2O5, formed by the reaction of TiO_2 with the matrix, with relative high negativeτf value, however, CaTiO_3 and SrTiO_3 can adjust effectively theτf value. In general, with the increasing amount of CaTiO_3 (or SrTiO_3), bothεr andτf values increase gradually, while, the Q?f value has a tendency of decrease.
     The influences of ZnB_2O_4 and B_2O_3 sintering aids on the sintering characteristic, phase compositions, microwave dielectric properties of (1-x)(0.79ZnAl_2O_4-0.21Co2TiO_4)- xCaTiO_3(x=0.08)(ZCC) and (1-x)(0.79ZnAl_2O_4-0.21Mg_2TiO_4)-xCaTiO_3(x=0.06)(ZMC) ceramics had been studied. When ZnB_2O_4 is added to ZCC system, the sintering temperature is reduced to 1100℃, which is 300℃lower than the sintering temperature of undoped ZCC. When B_2O_3 is added to ZCC system, or ZnB_2O_4 (or B_2O_3 ) is added to ZMC system, the sintering temperature only lowers 50~100℃. In comparison with the undoped ZCC (or ZMC), theεr values of the doped system all reduce, and the Q-f andτf values are dependent on the category and amount of additions. On the whole, ZnB_2O_4 addition greatly reduces the Q-f value of the ZCC (or ZMC) ceramics, while B_2O_3 addition does not affect obviously on the Q-f value.
引文
[1]李标荣,王筱珍,张绪礼.无机电介质. (第一版).武汉:华中理工大学出版社, 1995.
    [2] Belous A., Ovchar O., Durilin D., et al. High-Q microwave dielectric materials based on the spinel Mg2TiO4. J. Am. Ceram. Soc., 2006, 89(11): 3441-3445
    [3] Guo Y. P., Ohsato H., Kakimoto K. I. Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. J. Eur. Ceram. Soc., 2006, 26(10-11): 1827-1830
    [4] Ohsato H., Tsunooka T., Sugiyama T., et al. Forsterite ceramics for millimeterwave dielectrics. J. Electroceram., 2006, 17(2-4): 445-450
    [5]贡长生,张克立.新型功能材料. (第一版).北京:化学工业出版社, 2001.
    [6] Vanderah T. A. Talking ceramics. Science, 2002, 298(5596): 1182-1184
    [7] Richtmyer R. D. Dielectric resonators. J. Appl. Phys., 1939, 10(6): 391-398
    [8] Okaya A. The rutile microwave resonator. Proceedings of the IEEE., 1960, 48: 1921
    [9] Hakki B. W., Coleman P. D. A dielectric resonant method of measuring inductive capacitance in the millimeter range. IEEE Trans. Microwave Technology Tech., 1960, 8: 402-410
    [10]章锦泰,许赛卿,周东祥,等.微波介质材料与器件的发展.电子元件与材料, 2004, 23(6): 6-9
    [11] O’Bryan H. M., Thomson J., Plourde J. K. A new BaO-TiO2 compound with temperature stable high permittivity and low microwave loss. J. Am. Ceram. Soc. 1974, 57: 450-453
    [12] Plourde J. K., Linn D. F., O'Bryan H. M., et al. Ba2Ti9O20 as a microwave dielectric resonator. J. Am. Ceram. Soc. 1975, 58: 418-420
    [13] Ohashi M., Ogawa H., Kan A., et al. Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic. J. Eur. Ceram. Soc., 2005, 25(12): 2877-2881
    [14] Umemura R., Ogawa H., Ohsato H., et al. Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic. J. Eur. Ceram. Soc., 2005, 25(12): 2865-2870
    [15] Tsunooka T., Androu M., Higashida Y., et al. Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics. J. Eur. Ceram. Soc., 2003, 23(14): 2573-2578
    [16] Kim M. H., Lim J. B., Kim J. C., et al. Synthesis of BaCu(B2O5) ceramics and their effect on the sintering temperature and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics. J. Am. Ceram. Soc., 2006, 89(10): 3124-3128
    [17] Bian J. J., Kim D. W., Hong K. S. Microwave dielectric properties of Ca2P2O7. J. Eur. Ceram. Soc., 2003, 23(14): 2589-2592
    [18] Surendran K. P., Santha N., Mohanan P., et al. Temperature stable low loss ceramic dielectrics in (1-x)ZnAl2O4-xTiO2 system for microwave substrate applications. Eur. Phys. J. B., 2004, 41(3): 301-306
    [19] Surendran K. P., Bijumon P. V., Mohanan P., et al. (1-x)MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. a-Materials Science & Processing., 2005, 81(4): 823-826
    [20] Breeze J. D., Aupi X., Alford N. M. Ultralow loss polycrystalline alumina. Appl. Phys. Lett., 2002, 81(26): 5021-5023
    [21] Kim E. S., Kim S. H., Lee B. I. Low-temperature sintering and microwave dielectric properties of CaWO4 ceramics for LTCC applications. J. Eur. Ceram. Soc., 2006, 26(10-11): 2101-2104
    [22] Watanabe M., Ogawa H., Ohsato H., et al. Microwave dielectric properties of Y2Ba(Cu1-xZnx)O5 solid solutions. Jpn. J. Appl. Phys., 1998, 37(9B): 5360-5363
    [23] Ogawa H., Kan A., Ishihara S., et al. Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwave dielectric ceramics with low dielectric loss. J. Eur. Ceram. Soc., 2003, 23(14): 2485-2488
    [24] Su H., Wu S. H. Studies on the (Mg,Zn)TiO3-CaTiO3 microwave dielectric ceramics. Mater. Lett., 2005, 59(18): 2337-2341
    [25] Pullar R. C., Breeze J. D., Alford N. M. Characterization and microwave dielectric properties of M2+Nb2O6 ceramics. J. Am. Ceram. Soc., 2005, 88(9): 2466-2471
    [26] Cho S. Y., Kim I. T., Hong K. S. Microwave dielectric properties and applications of rare-earth aluminates. J. Mater. Res., 1999, 14(1): 114-119
    [27] Nomura S., Toyama K., Kaneta K. Ba(Mg1/3Ta2/3)O3 ceramics with temperature-stable high dielectic constant and low microwave loss. Jpn. J. Appl. Phys. 1982, 21(10): L624-626
    [28] Seabra M. P., Avdeev M., Ferreira V. M., et al. Structure and microwave dielectric properties of La(Mg0.5Ti0.5)O3-CaTiO3 system. J. Eur. Ceram. Soc., 2003, 23(14): 2403-2408
    [29] Tseng C. F., Huang C. L., Yang W. R., et al. Dielectric characteristics of Nd(Zn1/2Ti1/2)O3 ceramics at microwave frequencies. J. Am. Ceram. Soc., 2006, 89(4): 1465-1470
    [30] Ratheesh R., Sebastian M. T., Mohanan P., et al. Microwave characterisation of BaCe2Ti5O15 and Ba5Nb4O15 ceramic dielectric resonators using whispering gallery mode method. Mater. Lett., 2000, 45(5): 279-285
    [31] Hirano S., Takashi H., Hattori H. Chemical processing and microwave characteristics of (Zr, Sn)TiO4 microwave dielectrics. J. Am. Ceram. Soc. 1991, 74: 1320-1324
    [32] Huang C. L., Weng M. H., Wu C. C., et al. Low fire BiNbO4 microwave dielectric ceramics modified by Sm2O3 addition. Mater. Res. Bull., 2001, 36(5-6): 827-835
    [33] Kamba S., Petzelt J., Buixaderas E., et al. High frequency dielectric properties of A5B4O15 microwave ceramics. J. Appl. Phys., 2001, 89(7): 3900-3906
    [34] Borisevich A., Davies P. K. Microwave dielectric properties of Li1+x-yM1-x-3yTix+4yO3 (M=Nb5+, Ta5+) solid solutions. J. Eur. Ceram. Soc., 2001, 21(10-11): 1719-1722
    [35] Templeton A., Wang X. R., Penn S. J., et al. Microwave dielectric loss of titanium oxide. J. Am. Ceram. Soc., 2000, 83(1): 95-100
    [36] Ohsato H., Komura A., Takagi Y., et al. Microwave dielectric properties and sintering of Ba6-3xR8+2xTi18O54 (R = Sm, x = 2/3) solid solution with added rutile. Jpn. J. Appl. Phys., 1998, 37(9B): 5357-5359
    [37] Okawa T., Imaeda M., Ohsato H. Microwave dielectric properties of Bi-added Ba4Nd9+1/3Ti18O54 solid solutions. Jpn. J. Appl. Phys., 2000, 39(9B): 5645-5649
    [38] Surendran K. P., Sebastian M. T., Manjusha M. V., et al. A low loss, dielectric substrate in ZnAl2O4-TiO2 system for microelectronic applications. J. Appl. Phys., 2005, 98(4): 044101
    [39] Ezaki K., Baba Y., Takahashi H., et al. Microwave dielectric properties of CaO-Li2O-Ln2O3-TiO2 ceramics. Jpn. J. Appl. Phys. 1993, 32: 4319-4322
    [40] Ichinose N., Mutoh K. Microwave dielectric properties in the (1-x)(Na1/2La1/2) TiO3-x(Li1/2Sm1/2)TiO3 ceramic system. J. Eur. Ceram. Soc., 2003, 23(14): 2455-2459
    [41] Wise P. L., Reaney I. M., Lee W. E., et al. Structure-microwave property relations of Ca and Sr titanates. J. Eur. Ceram. Soc., 2001, 21(15): 2629-2632
    [42] Wise P. L., Reaney I. M., Lee W. E., et al. Tunability of tau(f) in perovskites and related compounds. J. Mater. Res., 2002, 17(8): 2033-2040
    [43]关振铎,张中太,焦金生.无机材料物理性能. (第一版).北京:清华大学出版社, 1992.
    [44] Shannon R. D. Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys., 1993, 73(1): 348-366
    [45] Ohsato H. Science of tungstenbronze-type like Ba6-3xR8+2xTi18O54 (R = rare earth) microwave dielectric solid solutions. J. Eur. Ceram. Soc., 2001, 21(15): 2703-2711
    [46] Reaney I. M., Iddles D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc., 2006, 89(7): 2063-2072
    [47] Penn S. J., Alford N. M., Templeton A., et al. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc., 1997, 80(7): 1885-1888
    [48] Chen X. M., Li Y. A- and B site cosubstituted Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics. J. Am. Ceram. Soc., 2002, 85(3): 579-584
    [49] Kim J. R., Kim D. W., Yoon S. H., et al. Low temperature sintering and microwave dielectric properties of Ba3Ti5Nb6O28 with B2O3 and CuO additions. J. Electroceram., 2006, 17(2-4): 439-443
    [50] Song Y., Wang F. P., Jiang Z. H. Effect of BaTi4O9 fibers on dielectric properties of 0.64 BaTi4O9+0.36 BaEu2Ti4O12 composites. Microelectronic Engin., 2003, 66(1-4): 615-620
    [51] Lei W., Lu W. Z., Zhu J. H., et al. Effects of heating rate on microstructures and microwave dielectric properties of (1-x)ZnAl2O4-xTiO2 (x=0.21) ceramics. Ceram. Intern., 2008. Doi: 10.1016/j.ceramint.2007.10.021
    [52] Kawashima S., Nishida M., Ueda I., et al. Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies. J. Am. Ceram. Soc. 1983, 66(6): 421-423
    [53] Davies P. K., Tong J. Z., Negas T. Effect of ordering-induced domain boundaries on low-loss Ba(Zn1/3Ta2/3)O3-BaZrO3 perovskite microwave dielectrics. J. Am. Ceram. Soc., 1997, 80(7): 1727-1740
    [54] Desu S. B., O'Bryan H. M. Microwave loss quality of Ba(Zn1/3Ta2/3)O3 ceramics. J. Am. Ceram. Soc. 1985, 68(10): 546-551
    [55] Tamura H., Konoike T., Sakabe Y., et al. Improved high-Q dielectric resonator with complex perovskite structure. J. Am. Ceram. Soc. 1984, 67: C59-C61
    [56] Kageyama K. Crystal structure and microwave dielectric properties of Ba(Zn1/3Ta2/3)O3-(Sr, Ba)(Ga1/2Ta1/2)O3 ceramic. J. Am. Ceram. Soc. 1992, 75(7): 1767-1771
    [57] Park H. S., Yoon K. H., Kim E. S. Relationship between the bond valence and the temperature coefficient of the resonant frequency in the complex perovskite (Pb1-xCax)[Fe0.5(Nb1-yTay)0.5]O3. J. Am. Ceram. Soc., 2001, 84(1): 99-103
    [58] Cockbain A. G., Harrop P. J. The temperature coefficient of capacitance. J. Phys. D-Applied Physics. 1968, 1: 1109-1115
    [59] Colla E. L., Reaney I. M., Setter N. Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity. J. Appl. Phys., 1993, 74(5): 3414-3425
    [60] Reaney I. M., Colla E., Setter N. Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor. Jpn. J. Appl. Phys., 1994, 33(7A): 3984-3990
    [61] Lufaso M. W. Crystal structures, modeling, and dielectric property relationships of 2: 1 ordered Ba3MM ' O-29 (M = Mg, Ni, Zn; M ' = Nb, Ta) perovskites. Chem. Mater., 2004, 16(11): 2148-2156
    [62] Choi J. W., van Dover R. B. Correlation between temperature coefficient of resonant frequency and tetragonality ratio. J. Am. Ceram. Soc. 2006, 89(3): 1144-1146
    [63] Zhao F., Yue Z. X., Pei J., et al. Improvement on the temperature coefficient of resonant frequency of hexagonal perovskites through intergrowth structures. Appl. Phys. Lett., 2006, 89(20): 202901
    [64] Zhao F., Yue Z. X., Pei J., et al. Effects of octahedral thickness variance on the temperature coefficient of resonant frequency of the B-site deficient hexagonal perovskites. Appl. Phys. Lett., 2007, 90(14): 142908
    [65] Chen X. M., Li L., Liu X. Q. Layered complex structures of MgTiO3 and CaTiO3 dielectric ceramics. Mater. Sci. Engin. B, 2003, 99(1-3): 255-258
    [66] Huang C. L., Chen H. L., Wu C. C. Improved high Q value of CaTiO3- Ca(Mg1/3Nb2/3)O3 solid solution with near zero temperature coefficient of resonant frequency. Mater. Res. Bull., 2001, 36(9): 1645-1652
    [67] Sahoo S. K., Agrawal D. C., Dube D. C. Microwave dielectric ceramics in the system Al2O3-SrTiO3. Ferroelectrics, 2005, 327: 51-56
    [68] Bian J. J., Yan K., Gao H. B. Effect of TiO2 addition on the microwave dielectricproperties of La2/3(Mg1/2W1/2)O3. Mater. Chem. Phys., 2006, 96(2-3): 349-352
    [69] Ohishi Y., Miyauchi Y., Ohsato H., et al. Controlled temperature coefficient of resonant frequency of Al2O3-TiO2 ceramics by annealing treatment. Jpn. J. Appl. Phys., 2004, 43(6A): L749-L751
    [70]秦霓. Ba6-3xLn8+2xTi18O54基微波介质陶瓷的改性及若干基础问题: [博士学位论文].材料与化学学院,浙江大学, 2006.
    [71] Nguyen N. H., Lim J. B., Nahm S., et al. Effect of Zn/Si ratio on the microstructural and microwave dielectric properties of Zn2SiO4 ceramics. J. Am. Ceram. Soc., 2007, 90(10): 3127-3130
    [72] Kim J. S., Nguyen N. H., Lim J. B., et al. Low-temperature sintering and microwave dielectric properties of the Zn2SiO4 ceramics. J. Am. Ceram. Soc., 2008, 91(2): 671-674
    [73] Andou M., Tsunooka T., Higashida Y., et al. Development of high Q forsterite ceramics for high-frequency applications. York: UK, 2002.
    [74] Tsunooka T., Sugiyama T., Ohsato H., et al. Development of forsterite with high Q and zero temperature coefficient tau(f) for millimeterwave dielectric ceramics. Electroceramics in Japan Vii, 2004, 269: 199-202
    [75] Shin H., Shin H. K., Jung H. S., et al. Phase evolution and dielectric properties of MgTi2O5 ceramic sintered with lithium borosilicate glass. Mater. Res. Bull., 2005, 40(11): 2021-2028
    [76] Sugiyama T., Tsunooka T., Kakimoto,K., et al. Microwave dielectric properties of forsterite-based solid solutions. J. Eur. Ceram. Soc., 2006, 26(10-11): 2097-2100
    [77] Song K. X., Chen X. M., Fan X. C. Effects of Mg/Si ratio on microwave dielectric characteristics of forsterite ceramics. J. Am. Ceram. Soc., 2007, 90(6): 1808-1811
    [78] Sugihara J., Kakimoto K., Kagomiya I., et al. Microwave dielectric properties of porous Mg2SiO4 filling with TiO2 prepared by a liquid phase deposition process. J. Eur. Ceram. Soc., 2007, 27(8-9): 3105-3108
    [79] Ovchar O. V., V'yunov O. I., Durilin D. A., et al. Synthesis and microwave dielectric properties of MgO-TiO2-SiO2 ceramics. Inorganic Mater., 2004, 40(10): 1116-1121
    [80]朱建华,吕文中,梁飞,汪小红,等.新型低介微波介质陶瓷的结构及性能.电子元件与材料, 2006, 25(3): 9-11
    [81] Yoon S. H., Kim D. Y., Cho S. Y. Investigation of the relations between structure andmicrowave dielectric properties of the divalent metal tungstate compounds. in: Third International Conference on Microwave Materials and Their Applications. Inuyama, Japan: 2004. 25-28
    [82] Park I. H., Kim B. S., Kim K. Y., et al. Microwave dielectric properties and mixture behavior of CaWO4-Mg2SiO4 ceramics. Jpn. J. Appl. Phys., 2001, 40(8): 4956-4960
    [83] Yoon S. H., Choi G. K., Kim D. W., et al. Mixture behavior and microwave dielectric properties of (1-x)CaWO4-xTiO2. J. Eur. Ceram. Soc. 2007, 27(8-9): 3087-3091
    [84] Kim E. S., Kim S. H. Effects of structural characteristics on microwave dielectric properties of (1-x)CaWO4-xLaNbO4 ceramics. J. Electroceram., 2006, 17(2-4): 471-477
    [85] Alford N. M., Penn S. J. Sintered alumina with low dielectric loss. J. Appl. Phys. 1996, 80(10): 5895-5898
    [86] Courtney W. E. Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microwave Tech. 1970, MTT-18: 476-485.
    [87] MolláJ., Heidinger R., Ibarra A. Alumina ceramics for heating systems. J. Nuclear Mater., 1994, 212-215
    [88] Kabayashi Y., Katoh M. Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Transactions on Microwave Theory and Techniques. 1985, MTT-33(7): 586-592
    [89] Woode R. A., Ivanov E. N., Tobar M. E., et al. Cryogenic sapphire microwave resonator-oscillator with exceptional stability. Electronics Letters. 1994, 30(5): 417-419
    [90] Ohishi Y., Miyauchi Y., Kakimoto K. I., et al. Microwave dielectric properties of Al2O3-TiO2 improved by addition of ZnO. Ferroelectrics. 2005, 327: 27-31
    [91] Tzou W. C., Chen Y. C., Chang S. L., et al. Microwave dielectric characteristics of glass-added (1-x)Al2O3-xTiO2 ceramics. Jpn. J. Appl. Phys., 2002, 41(12): 7422-7425
    [92] Kumada N., Taki K., Kinomura N. Single crystal structure refinement of a magnesium niobium oxide: Mg4Nb2O9. Mater. Res. Bull., 2000, 35(7): 1017-1021
    [93] Kan A., Ogawa H., Yokoi A., et al. Crystal structural refinement of corundum-structured A4M2O9 (A = Co and Mg, M = Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction. J. Eur. Ceram. Soc., 2007, 27(8-9): 2977-2981
    [94] Kan A., Ogawa H., Ohsato H. Microwave dielectric properties of Y2BaCuO5 compound substituted Ni for Cu. Mater. Sci. Engin. B, 2001, 79(2): 180-182
    [95] Mori K., Ogawa H., Kan A., et al. Microwave dielectric property-microstructure relationships in Y2Ba(Cu1-xMgx)O5. J. Eur. Ceram. Soc., 2004, 24(6): 1749-1753
    [96] Kan A., Ogawa H., Ohsato H., et al. Influence of M (M = Zn and Ni) substitution for Cu on microwave dielectric characteristics of Yb2Ba(Cu1-xMx)O5 solid solutions. Jpn. J. Appl. Phys., 2001, 40(9B): 5774-5778
    [97] Kan A., Ogawa H., Ohsato H. Role of Zn substitution for Cu on the microwave dielectric properties and crystal structure of Eu2Ba(Cu1-xZnx)O5 solid solutions. Physica B-Condensed Matter. 2002, 322(3-4): 403-407
    [98] Kan A., Ogawa H., Ohsato H., et al. Effects of variations in crystal structure on microwave dielectric properties of Y2BaCuO5 system. J. Eur. Ceram. Soc., 2001, 21(15): 2593-2598
    [99] Kan A., Ogawa H., Watanabe M., et al. Microwave dielectric properties of Sm2Ba(Cu1-xZnx)O5(x=0 to 1) solid solutions. Jpn. J. Appl. Phys., 1999, 38(9B): 5629-5632
    [100] Ogawa H., Kan A., Yokota S., et al. Microwave dielectric properties and crystal structure refinements in M (M = Sr, Ca) doped Nd2(Ba1-xMx)ZnO5 solid solutions. J. Eur. Ceram. Soc., 2001, 21(10-11): 1731-1734
    [101] Kan A., Ogawa H., Sugishita J. Effects of Dy substitution for Y on microwave dielectric properties of High-Q R2O3-BaO-ZnO (R=Y and Dy) system. J. Eur. Ceram. Soc., 2004, 24(6): 1741-1744
    [102] Kan A., Ogawa H., Ohsato H., et al. Microwave dielectric properties and crystal structure of Y2(Ba1-xSrx)(Cu1-yZny)O5 solid solutions synthesized by a solid-state reaction method. Jpn. J. Appl. Phys., 2000, 39(9B): 5654-5657
    [103] Mori K., Ogawa H., Kan A., et al. Relationships between Sr substitution for Ba and dielectric characteristics in Sm2BaZnO5 ceramics. J. Eur. Ceram. Soc., 2004, 24(6): 1745-1748
    [104] Kawaguchi S., Ogawa H., Kan A., et al. Effect of Sr substitution for Ba on microwave dielectric properties of Sm2(Ba1-xSrx)(Cu0.5Zn0.5)O5 ceramics. J. Eur. Ceram. Soc., 2005, 25(12): 2853-2858
    [105] Tsuji Y., Kan A., Ogawa H., et al. Relationship between microwave dielectric properties and chemical bonding in R2BaMO5 (R = rare earth, M = Cu and Zn)compounds. J. Eur. Ceram. Soc., 2005, 25(12): 2883-2887
    [106] Lu W. Z., Lei W., Zhu J. H., et al. Calcining temperature dependence of microwave dielectric properties of (1-x)ZnAl2O4-xTiO2 (x=0.21) ceramics. Jpn. J. Appl. Phys., 2007, 46(29-32): L724-L726
    [107] Lei W., Lu W. Z., Zhu J. H., et al. Microwave dielectric properties of ZnAl2O4-TiO2 spinel-based composites. Mater. Lett., 2007, 61(19-20): 4066-4069
    [108] Zheng C. W., Wu S. Y., Chen X. M., et al. Modification of MgAl2O4 microwave dielectric ceramics by Zn substitution. J. Am. Ceram. Soc., 2007, 90(5): 1483-1486
    [109] Zheng C. W., Fan X. C., Chen X. M. Analysis of infrared reflection spectra of (Mg1-xZnx)Al2O4 microwave dielectric ceramics. J. Amer. Ceram. Soc., 2008, 91(2): 490-493
    [110]朱建华.钙钛矿添加剂对钨青铜型微波介质陶瓷的固溶调控研究: [博士学位论文].电子科学与技术系,华中科技大学, 2007.
    [111] Kobayashi Y., Katoh M. Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Trans. Microwave Tech. 1985, MTT-13: 586-592
    [112]吕文中,赖希伟.平行板谐振法测量微波介质陶瓷介电性能.电子元件与材料, 2003, 22(5): 4-6
    [113] Ubic R., Reaney I. M., Lee W. E. Microwave dielectric solid-solution phase in system BaO-Ln2O3-TiO2 (Ln = lanthanide cation). Intern. Mater. Rev., 1998, 43(5): 205-219
    [114] Tong Q. F., Wang J. Y., Li Z. P., et al. Low-temperature synthesis/densification and properties Of Si2N2O prepared with Li2O additive. J. Eur. Ceram. Soc., 2007, 27(16): 4767-4772
    [115] Jin B. M., Kim I. W., Kim J. S., et al. Piezoelectric properties of 0.2[Pb(Mg1/3Nb2/3)]-0.8[PbTiO3-PbZrO3] ceramics sintered at a low temperature with the aid of Li2O. J. Electroceram., 2005, 15(2): 119-122
    [116] Chou X., Zhai J., Sun J., et al. Dielectric properties of Mg-doped Ba0.6Sr0.4TiO3 ceramic sintered at a low temperature with Li2O additve. Ferroelectrics. 2007, 356: 305-310
    [117] Huang C. L., Weng M. H. Liquid phase sintering of (Zr, Sn)TiO4 microwave dielectric ceramics. Mater. Res. Bull., 2000, 35(11): 1881-1888
    [118] Huang C. L., Weng M. H. Low-fire BiTaO4 dielectric ceramics for microwaveapplications. Mater. Lett., 2000, 43(1-2): 32-35
    [119] Hsu C. S., Huang C. L. Effect of CuO additive on sintering and microwave dielectric behavior of LaAlO3 ceramics. Mater. Res. Bull., 2001, 36(11): 1939-1947
    [120] Ota Y., Kakimoto K., Ohsato H., et al. Low-temperature sintering of Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics by B2O3 and GeO2 addition. J. Eur. Ceram. Soc., 2004, 24(6): 1755-1760
    [121] Huang C. L., Hsu C. S. Improved high Q value of 0.5LaAlO3-0.5SrTiO3 microwave dielectric ceramics at low sintering temperature. Mater. Res. Bull., 2001, 36(15): 2677-2687
    [122] Zeng Q., Li W., Shi J. L., et al. Effect of B2O3 on the sintering and microwave dielectric properties of M-phase LiNb0.6Ti0.5O3 ceramics. J. Eur. Ceram. Soc., 2007, 27(1): 261-265
    [123] Wu Y. J., Chen X. M. Modified Ba6-3xNd8+2xTi18O54 microwave dielectric ceramics. J. Eur. Ceram. Soc., 1999, 19(6-7): 1123-1126
    [124] Huang C. L., Weng M. H., Chen H. L. Effects of additives on microstructures and microwave dielectric properties of (Zr, Sn)TiO4 ceramics. Mater. Chem. Phys., 2001, 71(1): 17-22
    [125] Hu M. Z., Zhou D. X., Gu H. S., Wang, H., et al. Influence of Bi2O3 and MnO2 doping on microwave properties of [(Pb,Ca)La](Fe,Nb)O3 dielectric ceramics. Mater. Sci. Eng. B, 2005, 117(2): 199-204
    [126] Zeng Q., Li W., Shi J. L., et al. Influence of V2O5 additions to 5Li2O-1Nb2O5-5TiO2 ceramics on sintering temperature and microwave dielectric properties. J. Am. Ceram. Soc., 2007, 90(7): 2262-2265
    [127] Chaouchi A., Marinel S., Aliouat M., et al. Low temperature sintering of ZnTiO3/TiO2 based dielectric with controlled temperature coefficient. J. Eur. Ceram. Soc., 2007, 27(7): 2561-2566
    [128] Kim H. T., Lanagan M. T. Structure and microwave dielectric properties of (Zn1-xCox)TiO3 ceramics. J. Am. Ceram. Soc., 2003, 86(11): 1874-1878
    [129]方俊鑫,陆栋.固体物理学(上册). (第一版).上海:上海科学技术出版社, 1980.
    [130] Huang C. L., Liu S. S. Characterization of extremely low loss dielectrics (Mg0.95Zn0.05)TiO3 at microwave frequency. Jpn. J. Appl. Phys., 2007, 46(1): 283-285
    [131] Choy J. H., Han Y. S., Hwang S. H., et al. Citrate route to Sn-doped BaTi4O9 with microwave dielectric properties. J. Am. Ceram. Soc., 1998, 81(12): 3197-3204
    [132] Liou Y. C. Effect of heating rate on properties of Pb(Fe1/2Nb1/2)O3 ceramics produced by simplified wolframite route. Ceram. Intern., 2004, 30(4): 567-569
    [133] Liou Y. C. Effect of heating rate on properties of Pb(Mg1/3Nb2/3)O3 ceramics produced by the reaction-sintering process. Mater. Lett., 2004, 58(6): 944-947
    [134] Zaspalis V. T., Sklari S., Kolenbrander M. The effect of heating rate on the microstructure and properties of high magnetic permeability MnZn-ferrites. Journal of Magnetism and Magnetic Materials. 2007, 310(1): 28-36
    [135] Zhang S. W., Jayaseelan D. D., Bhattacharya G., et al. Molten salt synthesis of magnesium aluminate (MgAl2O4) spinel powder. J. Am. Ceram. Soc., 2006, 89(5): 1724-1726
    [136] Li Z. S., Zhang S. W., Lee W. E. Molten salt synthesis of zinc aluminate powder. J. Eur. Ceram. Soc., 2007, 27(12): 3407-3412
    [137] Yang Z. P., Chang Y. F., Li H. Piezoelectric and dielectric properties of PZT-PZN-PMS ceramics prepared by molten salt synthesis method. Mater. Res. Bull., 2005, 40(12): 2110-2119
    [138] Tian Z. Q., Wang H., Huang W. J., et al. Effect of preparation methods on microstructures and microwave dielectric properties of Ba(Mg1/3Nb2/3)O3 ceramics. J. Mater. Sci.-Materials in Electronics. 2008, 19(3): 227-232
    [139] Gritzner G., Pissenberger A. Dielectric properties of Bi2PbNb2O9 ceramics prepared by different techniques. Appl. Phys. a-Materials Science & Processing. 2007, 87(4): 807-811
    [140] Fukami Y., Wada K., Kakimoto K., et al. Microstructure and microwave dielectric properties of BaLa4Ti4O15 ceramics with template particles. J. Eur. Ceram. Soc., 2006, 26(10-11): 2055-2058
    [141] Ganguli A. K., Nangia S., Thirumal M., et al. A new form of MgTa2O6 obtained by the molten salt method. J. Chem. Sci., 2006, 118(1): 37-42
    [142] Katayama K., Azuma Y., Takahashi Y. Molten salt synthesis of single-phase BaNd2Ti4O12 powder. J. Mater. Sci., 1999, 34(2): 301-305
    [143] Guo L. Z., Dai J. H., Tian J. T., et al. Effects of ZnCl2 addition on the ZnNb2O6 powder synthesis through molten salt method. Mater. Chem. Phys., 2007, 105(2-3): 148-150
    [144] Hashimoto S., Zhang S. W., Lee W. E., et al. Synthesis of magnesium aluminate spinel platelets from alpha-alumina platelet and magnesium sulfate precursors. J. Am.Ceram. Soc., 2003, 86(11): 1959-1961
    [145] Wada K., Kakimoto K., Ohsato H. Grain-orientation control and microwave dielectric properties of Ba4Sm9.33Ti18O54 ceramics. Jpn. J. Appl. Phys., 2003, 42(9B): 6149-6153
    [146] Wada K., Kakimoto K., Ohsato H. Microstructure and microwave dielectric properties of Ba4Sm9.33Ti18O54 ceramics containing columnar crystals. J. Eur. Ceram. Soc., 2003, 23(14): 2535-2539
    [147] Wada K., Kakimoto K., Ohsato H. Control of temperature coefficient of resonant frequency in Ba4Sm9.33Ti18O54 ceramics by templated grain growth. Sci. Tech. Adv. Mater., 2005, 6(1): 54-60
    [148] Wada K., Kakimoto K., Ohsato H. Dielectric anisotropy and sinterability improvement of Ba4Nd9.33Ti18O54 textured ceramics. J. Eur. Ceram. Soc., 2006, 26(10-11): 1899-1902
    [149] Huang C. L., Wang J. J., Chang Y. P. Dielectric properties of low loss (1-x)(Mg0.95Zn0.05)TiO3-xSrTiO3 ceramic system at microwave frequency. J. Am. Ceram. Soc., 2007, 90(3): 858-862
    [150] Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A. 1976, 32: 751-767
    [151] Petrova M. A., Mikirticheva G. A., Novikova A. S., et al. Spinel solid solutions in the systems MgAl2O4-ZnAl2O4 and MgAl2O4-Mg2TiO4. J. Mater. Res. 1997, 12(10): 2584-2588
    [152] Seabra M. P., Salak A. N., Ferreira M., et al. Dielectric properties of (1-x)La(Mg1/2Ti1/2)O3-xSrTiO3 ceramics. J. Eur. Ceram. Soc., 2004, 24(10-11): 2995-3002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700