脂肪间充质干细胞移植治疗高动力性肺动脉高压的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:高动力性肺动脉高压是左向右分流型先天性心脏病的常见并发症,严重影响患者外科手术治疗时机,手术成功率及手术后的生存质量。有关肺动脉高压形成的机理和治疗研究已经取得了很大进展,现已明确肺动脉高压是以肺血管阻力进行性升高和肺血管阻塞性病变为特征的恶性肺血管病,特征性的病理改变为肺小动脉中膜增生肥厚,最终导致肺小动脉的闭塞,肺血管床减少,使增高的肺动脉压力更高,肺功能严重恶化。左向右分流型先天性心脏病引起的肺动脉高压,在经过手术矫治心内畸形后,部分病例可以缓解,但是肺血管的阻塞性病变一旦发生,却是手术不能恢复的。单纯扩血管治疗肺动脉高压,在一定程度上降低了肺动脉压力,改善了病人的生活质量,但对于肺血管的破坏性病变其疗效有限。近年来,治疗性血管新生成为医学领域的研究热点,干细胞的应用更是组织工程的重点研究对象。脂肪组织来源的间充质干细胞是一种来源于脂肪可以向中胚层多种细胞诱导分化的多能干细胞,因其取材简单,创伤小,少量脂肪组织即可获取大量细胞,体外培养方便,扩增容易而倍受研究者的关注。而且体外研究指出ADSCs(Adipose Derived Stromal Cells,ADSCs)可以分泌大量的促血管新生的细胞因子如肝细胞生长因子(Hepatocyte Growth Factor, HGF),血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF)等。HGF是一种高效的血管生成因子,对多种组织器官的损伤起到修复作用,以往的多项研究将ADSCs用于缺血性疾病取得了满意的结果,更有研究将该种细胞用于肺损伤模型,如肺气肿的动物模型,依靠ADSCs的多向分化功能和/或其分泌的HGF的作用增加肺组织的血管及腺泡的生成和修复,从而改善了肺组织的血流灌注和换气功能。因此我们设想:在肺动脉高压的情况下利用自体ADSCs增加肺组织的血管生成,增加肺组织的灌注,对进行性恶化的肺血管进行修复,改善肺功能。从而为这种破坏性疾病寻求一种有效的治疗方式,目前,将脂肪间充质干细胞用于肺动脉高压的研究尚未见报道。
     目的:建立大鼠的动力性肺动脉高压模型,体外分离培养大鼠自体ADSCs并进行有效标记,经静脉途径移植细胞到肺组织,观察大鼠肺动脉压力变化及肺血管的病理变化,分析ADSCs移植后与肺动脉压力变化之间的关系,同时检测肺组织HGF的表达情况,为ADSCs移植后对肺动脉高压的影响寻求可能的解释。
     方法:1.以大鼠为研究对象,行大鼠颈动脉-颈静脉套管法分流手术,分别在手术后4周,8周,12周,通过心脏血管超声进行无创检查,检测分流血管是否通畅,测量大鼠的肺动脉瓣环内径和主动脉瓣环内径,肺动脉血流频谱测量计算肺动脉血流加速时间,心脏超声探测右心室前壁和左心室后壁厚度,计算厚度指数,并行心尖四腔超声观察右心室的变化,有创检查包括经右心导管及开胸测量大鼠的肺动脉压力。动物处死后肺组织行病理形态学分析,计算各组动物肺小血管的肌化血管的百分比,血管壁厚度指数和相对血管面积指数,从病理学角度观察肺血管的病变,确定是否成功建立肺动脉高压模型。
     2.取大鼠腹股沟脂肪组织,剪碎后用胶原酶消化,反复过滤离心获取ADSCs,体外培养观察细胞形态,流式细胞仪鉴定不同代细胞的免疫表型,并用不同条件的培养基诱导细胞向脂肪细胞,骨细胞及内皮细胞分化,通过油红染色,碱性磷酸酶染色及Ⅷ因子免疫荧光鉴定其多向分化功能。不同代数的细胞传代时进行台盼兰染色测定细胞活力,MTT法测定体外培养的不同代数细胞的生长曲线,计算细胞倍增时间。酶联免疫吸附法测定常氧和低氧条件下体外培养的大鼠ADSCs分泌的HGF含量,CM-DiL标记细胞并传代观察其标记效率,同时对标记后的细胞进行MTT活力检测以揭示该染料对细胞活力的影响。
     3.将大鼠颈动静脉分流手术后12周处死的动物模型资料作为基线水平,另有造模12周的动物分为空白对照组,细胞移植组,DMEM组作为阳性对照组,仅作血管分离的假手术组作为阴性对照组。细胞移植组经非手术侧颈静脉给予含5×107个自体ADSCs的培养基,DMEM组仅给予不含细胞的培养基注射,空白对照组为造模12周后的动物不给予任何处理。细胞移植2周后,行超声多普勒检查,右心导管肺动脉测压。处死动物后行肺组织病理检查,冰冻组织切片行免疫荧光检查,观察移植到体内的ADSCs在肺组织的分布,并鉴定其在体内是否继续分泌HGF。免疫组织化学检测ADSCs移植后的HGF含量,Ⅷ因子染色进行肺小血管计数,观察细胞移植后对肺血管数量的影响。Western Blot及RT-PCR测定各组动物肺组织HGF含量及细胞移植后eNOS的表达变化。
     结果:1.分流手术中因麻醉过量或出血死亡10只,死亡率为13.4%(10/60),手术后因套管脱落及其他原因死亡4只,手术后死亡率为8%(4/50),超声及解剖发现分流手术后存活的46只大鼠有10只动物血管桥阻塞,2只血管桥套管不明原因丢失,从分流组排除,分流通畅率73.9%(34/46)。大鼠颈动静脉分流12周后,超声显示肺动脉瓣环内径(3.52±0.27mm)明显大于主动脉瓣环内径(2.99±0.32mm,P<0.05)。肺动脉血流频谱显示肺动脉血流加速时间(75.31±22.12 ms)较正常对照组(135.14±26.42ms)及分流4周(119.38±12.81 ms),8周时(106.56±31.45 ms)缩短,右心室游离壁与左心室后壁的厚度比值计算分析显示分流12周后(63.02±14.36%)比正常对照组(41.08±4.54%)及4周(40.46±13.41%),8周时(42.24±5.87%)明显增大,P<0.05,心尖四腔图提示分流12周后右心室扩大,收缩期室间隔左向偏移;以上结果间接反映了手术后肺动脉压力的升高。右心导管及开胸测压显示分流组动物的肺动脉收缩压(37.69±7.81 mmHg)较正常对照组(16.59±4.51mmHg)升高,P<0.05。病理学检查发现分流12周后,肺组织小动脉管壁增厚,管腔狭窄,肺小动脉的管壁厚度指数(34.25±9.11%),及管壁面积指数(69.72±13.19%)均比正常对照组(分别为16.71±4.99%,29.05±9.79%)明显增高,P<0.05。
     2.大鼠腹股沟脂肪组织经过胶原酶消化后,72小时细胞贴壁,成纤维细胞样生长,原代细胞分离种植后7-10天融合至80%左右可以传代,传代后细胞生长旺盛,约3-5天即可再次传代。流式细胞仪测定细胞表面免疫表型,原代细胞CD29, CD105, SCa-1阳性率较高,CD31阳性率稍高,CD45基本阴性,传代2次后细胞CD31基本阴性,其余表型变化不大。油红染色鉴定成脂诱导7天后的细胞可见细胞浆内脂滴染成红色,碱性磷酸酶染色鉴定成骨诱导14天的ADSCs,细胞变长,聚集,细胞浆可见棕红色的钙化沉积颗粒,Ⅷ因子染色显示细胞浆内呈阳性表达。MTT测定细胞的生长曲线显示不同代的细胞生长旺盛,贴壁24-60小时达到倍增时间,72小时后到达平台期。细胞传代时台盼兰染色测定细胞传代15次以内的活力均在90%以上。酶联免疫吸附法测定细胞上清HGF的含量显示:低氧条件下培养的细胞其上清液中HGF含量明显高于常氧条件下培养的细胞,而且细胞代数越低,细胞上清液中HGF的含量越高。CM-DiL标记细胞后进行荧光观察显示细胞标记率高达99%以上,而且进行多次传代后荧光无明显淬灭。标记后的P2代细胞MTT活性检测发现与正常未标记的细胞生长曲线相似,没有明显差异。
     3.大鼠自体ADSCs移植后2周,超声检查发现肺动脉血流加速时间比造模后未行任何治疗的空白对照组延长(129.58±35.14毫秒VS 80.49±21.29毫秒,P<0.05),心尖四腔图显示右心室室腔减小,收缩期室间隔的左向偏移消失,右心室前壁与左心室后壁的厚度比值较空白对照组明显减小(42.63±8.71% VS 59.39±7.12%,P<0.05)。右心导管及开胸测量肺动脉压力显示细胞移植组的肺动脉压力(19.83±2.32mmHg)较空白对照组的肺动脉压力(35.82±5.09 mmHg)降低,P<0.05。荧光显微镜下观察细胞移植后的肺组织冰冻切片显示移植的细胞大部分聚集在肺血管周围,但是移植的细胞没有形成明显的环状血管样结构。免疫荧光化学分析显示移植到体内的ADSCs仍然表达HGF,免疫组织化学检测表明细胞移植组的肺组织HGF表达高于空白对照组及DMEM组,RT-PCR及Western Blot也提示细胞移植后增加了肺组织HGF的mRNA及蛋白表达。同时RT-PCR及Western Blot检测eNOS的表达显示在细胞移植后eNOS的mRNA及蛋白表达与HGF的变化相一致。Ⅷ因子进行的血管染色分析显示细胞移植后肺小血管明显增多,单位面积内的血管数量大于空白对照组及DMEM组。
     结论:1.大鼠颈动脉-颈静脉套管法分流手术12周后,血管通路保持通畅可以形成三尖瓣前型动力性肺动脉高压。手术后12周肺血管的变化符合肺动脉高压的病理特征。
     2.从大鼠腹股沟脂肪组织可以成功分离获取ADSCs。该细胞在形状,表型特征及多向分化的性能方面符合干细胞的标准。细胞在体外培养环境下生长旺盛,多次传代后细胞活力不减。低氧条件下培养的ADSCs较常氧条件下培养的细胞分泌更多的HGF。CM-DiL标记ADSCs效率高,多次传代后荧光不减,可以作为细胞移植示踪的良好标记物。
     3.ADSCs移植减轻了肺动脉高压动物模型的肺动脉压力,逆转了恶化的血液动力学,减轻了肺小血管的病理改变,改善了肺换气功能。移植的细胞可能通过增加肺组织HGF的分泌,促进肺小血管新生,同时增加了eNOS的含量,减轻了肺组织的血管病变。
Background:Hyperkinetic pulmonary arterial hypertension (PAH) is the common complication of congenital heart disease (CHD) with left to right shunt. The opportunity of surgery, success of surgery and the quality of postoperative life were seriously effected by PAH. Now, studies on the mechanism and therapy of PAH have made great progress. It has been recognized that PAH was characterized by an increased resistance in pulmonary circulation and the occlusive remodeling of the pulmonary arterioles. Pathologically, hypertrophy of the media in pulmonary arterioles contributed to the occlusion of the vessels and ultimately, made the decrease of pulmonary vascular bed. Even worse, the increased pulmonary arterial pressure developed higher than before and then deteriorated the pulmonary function. In some cases, pulmonary hypertension induced by CHD could be reversed after surgical treatment. Vasodilation therapy has improved the life quality of patients with PAH. While the obstructive remodeling occurred, mere vasodilation treatment or the surgery could not reverse the pathological changes in the lung. Recent years, therapeutic angiogenesis and the tissue engineering cells for vascular regeneration have been a hot spot in the medical field. Adipose derived stromal cells (ADSCs) as a multipotential stem cell attracted the interests of researchers for its advantages such as the minor invasion and easy culture. ADSCs could secrete some cytokines such as hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) for angiogenesis. HGF was an efficient vasculogenesis factor and could restore the injured organ. Many studies about the application of ADSCs in the ischemia diseases have made success. Previous study has proved that ADSCs implantation could improve the damaged lung in animal models such as emophysematous models via participating in the regeneration of vessels and alveolus or through secreting some cytokines. The perfusion of lung was improved and subsequently the gas exchange function of lung was also restored. But, whether the transplantation of ADSCs could restore the lung of the PAH models has not been reported. So, we put forward the hypothesis that the autologous ADSCs transplantation might improve the function of lung under PAH situation.
     Objective:To establish a hyperkinetic PAH model, to isolate the ADSCs from rat fat, to label the ADSCs in vitro efficiently before injected, to investigate the hemodynamics and the pathological changes of pulmonary arterioles and to analyze the expression of HGF in the lung for explaining the possible reason for the changes of pulmonary arterial pressure after ADSCs tansplantation.
     Methods:1. Carotid artery-jugular vein shunt was performed using a cannulation style in rat. Echocardiogram was performed to measure the internal diameter of pulmonary valve and aortic valve, frequency spectrum of pulmonary flow and the thickness of right ventricular anterior wall (RVAW) and left ventricular posterior wall (LVPW) and to investigate right ventricle by apical four chamber view. Invasive examination was the right heart catheter and thoracotomy for the measurement of pulmonary arterial pressure. Pathomorphyology analysis of pulmonary arterioles included vascular wall thickness index (TI), relative vascular wall area index (AI), and the percentage of the muscularized vessels.
     2. The fat was obtained form rat inguina and epididymis. A series of filtration and centrifugation was performed after the digestion of collagenase for the isolation of adipose derived stromal cells (ADSCs). Morphous, the immunophenotype, and the multi-directional differentiation of ADSCs such as adipogenic, osteogenic inductions were investigated. Growth curve of ADSCs was draw after MTT test and the doubling generation time was calculated. Enzyme linked immunosorbent assay (ELISA) was used for detecting the HGF in supernatant of ADSCs cultured under hypoxia or normaxia condition in vitro. Cells were labeled by CM-DiL and MTT test was also performed to investigate the cell vitality after labeling.
     3. The data of the PAH models 12 weeks after A-V shunt was regarded as the baseline data. Another PAH models were separated into blank group (without any treatment after shunt surgery), cell transplantation group (5×107 cells in 0.5 mL DMEM were injected per rat through right jugular vein), DMEM group (injection of 0.5 mL DMEM) and the sham group was taken as negative control. Two weeks after cell transplantation, Echocardiogram, right heart catheter and gas blood ananlysis were performed. Frozen slices and immunofluorescence was made for investigating the location of the transplanted cells and HGF secreted by ADSCs in vivo. Immunohistocytochemistry of HGF and VIII factor were also performed to compare the vascular number among the groups for revealing the possible mechanisms of the decreasing of pulmonary arterial pressure. Real time PCR and Western blot analysis were done to demonstrate the expressions of mRNA and protein levels of HGF and eNOS.
     Results:1.Ten rats died because of the overdose of anesthesia drugs or bleeding during the operation. The surgery mortality rate was 13.4%(10/60). Four rats died of the loss of cannulation or other accidents. The postoperative mortality rate was 8% (4/50). In the 46 residual living rats,12 animals were excluded from the study because occlusion of the shunt which was detected by echocardiogram. The patency rate was 73.9% (34/46). Twelve weeks after the shunt surgery, echocardiogram showed that the internal diameter of pulmonary valve (3.52±0.27mm) was much wider than the internal diameter of aortic valve (2.99±0.32mm, P<0.05) in animals underwent shunt operation. Pulmonary arterial blood frequency spectrum analysis suggested that the pulmonary arterial acceleration time (PAAT) of the shunt rats (75.31±22.12 ms) was much shorter than that in the normal rats (135.14±26.42 ms) and that in the 4th week (119.38±12.81 ms) and 8th week (106.56±31.45 ms) rats after operation. Twelve weeks after shunt operation, the rate of RVAW to LVPW increased (63.02±14.36%) compared with that in the normal control animals (41.08±4.54%) or that in the 4th week (40.46±13.41%) and 8th week (42.24±5.87%) animals. The enlargement of right ventricle was shown by apical four chamber view in the animals after 12 weeks shunt and the interventricular septum shifting toward left side during systolic period was also displayed by echocardiogram. Pulmonary arterial pressure was higher in the shunt rats (37.69±7.81 mmHg)than that in the normal animals (16.59±4.51mmHg, P<0.05) which was confirmed by the right heart catheter and the thoracotomy for the pressure measurement. Pathological examination for the pulmonary arterioles showed that the TI and AI were both increased in the shunt animals (34.25±9.11% and 69.72±13.19%, respectively) than that in the normal rats (16.71±4.99% and 29.05±9.79%, respectively, P<0.05)
     2. ADSCs from the rat's adipose tissue exhibited a fibroblast-like morphology, had the ability to self-renew and adhere to plastic 72 hours after the planting, and extensively expanded in culture without loss of differentiation potential. These cells could be induced into mature adipocytes, which was confirmed by microscopic observation of intracellular lipid droplets after Oil Red O staining. ADSCs also differentiated into osteoblasts, which was evaluated by alkaline phosphatase staining. Immunocytochemistry revealed that these cells showed a positive signal for factor-Ⅷin vitro after the endothelial induction. Fluorescence-activated cell sorter analysis showed that the cultured ADSCs were positive for stem cell such as CD29, CD105 and SCa-1. The percentage of CD31 positive cells was a little higher in the primary cells and decreased after twice passages. MTT examination showed that the ADSCs have high vitality and the doubling generation time was between 24-60 hours since the planting. During the passage, trypan blue stain showed that the rate of living cells maintained over 90% within the passage 15. ELISA results demonstrated that the HGF content in supernatant of the cells cultured under hypoxia condition was much higher than that of the cells cultured under normoxia condition. Furthermore, the younger the cell is, the more the HGF was detected in the supernatant. The labeling rate of CM-DiL in ADSCs was more than 99% and the fluorescence did not quench even after several passages. In addition, the MTT test for the labeled cells with CM-DiL showed that no difference in the growth curve and the doubling generation time compared with the normal cells.
     3. Two weeks after the ADSCs transplantation, the PAAT was extended than that in the blank control group (129.58±35.14 milliseconds VS 80.49±21.29milliseconds, P<0.05). The decreased size of right ventricle and the disappearance of interventricular septum shift were displayed in the apical four chamber view by echocardiogram and the rate of RVAW/LVPW was also significantly lower compared with that in the blank control group (42.63±8.71% VS 59.39±7.12%, P<0.05) Pulmonary arterial pressure in cell transplantation group (19.83±2.32mmHg) was decreased than that in the blank control group (35.82±5.09 mmHg, P<0.05). The transplanted ADSCs located around the vessels in lung which was observed under fluorescence microscope. Immunofluorescence for the HGF analysis indicated that the transplanted cells secreted HGF in vivo. Furthermore, the cells transplantation augments the HGF expression in lung which was confirmed by RT-PCR and Western blot analysis. In addition, the expression of eNOS in lung was also increased after cell transplantation which was in accordance with the increasing of the HGF. Finally, VIII factor immunohistochemistry stain showed that the vessels in certain area of the lung were much more than that in the blank control group.
     Conclusion:1. Carotid artery-Jugular vein shunt in rat could establish a hyperkinetic pulmonary arterial hypertension model after 12 weeks if the patent was patent. The pathological alteration conforms to the pre-tricuspid valve hyperkinetic pulmonary hypertension.
     2. ADSCs could be obtained from rat fat. ADSCs were in conformity with the standard of stem cells on the appearance, immunophenotype and the multidirectional differentiation. ADSCs were of high vitality even in high passage cells. ADSCs cultured under hypoxia condition secreted more HGF than that in cells cultured under normoxia condition. CM-DiL was a good tracking probe for the cell transplantation.
     3. Autologous ADSCs transplantation ameliorated pulmonary hypertension induced by shunt flow, reversed the deteriorative hemodynamics caused by PAH, and decreased the pathological process of the pulmonary arterioles, therefore, improved the gas exchange function of lung. All the results mentioned above might due to the HGF secretion of ADSCs and subsequently the increased HGF improved the angiogenesis and the eNOS expression in the lung tissue.
引文
1. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 2009,34(6):1219-1263.
    2. Nauser TD, Stites SW. Diagnosis and treatment of pulmonary hypertension. Am Fam Physician 2001; 63(9):1789-1798.
    3. Palevsky HI, Fishman AP. Chronic cor pulmonale. Etiolology and management. JAMA 1990; 263(17):2347-2353.
    4. Hatano S, Strasser T. World Health organization 1975 primary pulmonary hypertension. Geneva. WHO; 1975.
    5. Rubin LJ. Primary pulmonary hypertension. N Engl J Med 1997; 336(2):111-117.
    6.王秋芬,廖玉华.欧洲心脏病协会2004年肺动脉高压诊断和治疗指南简介.临床心血管病杂志,2005,21:385-386.
    7. Chin Kelly M, Rubin Lewis J. Pulmonary Arterial Hypertension. Jof the Am Coll Cardiol 2008;51 (16):1527-1536
    8.程显声,郭建华,等.1996-2005年阜外心血管病医院肺动脉高压住院构成比变化[J].中华心血管病杂志,2007,35:251-254.
    9. Jeffery TK, Morrell N W. Molecular and cellular basis of pulmonary vascular remondeling in pulmonary hypertension. Prog Cardiovasc Dis 2002,45(3):173-202.
    10. Rudolph AM, Nadas AS. The pulmonary circulation and congenital heart disease. Considerations of the role of the pulmonary circulation in certain systemic-pulmonary communications. N Engl J Med 1962; 267:1022-1029.
    11. Vongpatanasin W, Brickner ME, Hillis LD, Lange RA. The Eisenmenger syndrome in adults. Ann Intern Med 1998; 128 (9):745-55.
    12. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 2004; 43(12 Suppl S):S13-S24.
    13. Farber HW, Loscalzo J. Pulmonary arterial hypertension. N Engl J Med 2004;351(16):1655-1665.
    14. Simonneau G, Galie N, Rubin LJ, Langleben D, Seeger W, Domenighetti G et al. Clinical classification of pulmonary arterial hypertension. J Am Coll Cardiol 2004; 43(12 Suppl S):S5-S12.
    15. Yamaki S, Abe A, Endo M, Tanaka T, Tabayashi K, Takahashi T. Surgical indication for congenital heart disease with extremely thickened media of small pulmonary arteries. Ann Thorac Surg 1998, 66(5):1560-1564.
    16. Pietra GG, Edwards WD, Kay JM, Rich S, Kernis J, Schloo B et al. Histopathology of primary pulmonary hypertension. Circulation 1989:80(5):1198-1206.
    17. Cool CD, Stewart JS, Werahera P, Miller GJ, Williams RL, Voelkel NF, et al. Three-dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell-specific markers. Am J Pathol 1999;155(2):411-419.
    18. Wood P. The Eisenmenger syndrome or pulmonary hypertension with reversed central shunt. Br Med J 1958;2(5098):701-709.
    19. Daliento L, Somerville J, Presbitero P, Menti L, Brach-Prever S, Rizzoli G, et al. Eisenmenger syndrome. Factors relating to deterioration and death. Eur HeartJ 1998;19(12):1845-55.
    20. Ikawa S, Shimazaki Y, Nakano S, Kobayashi J, Matsuda H, Kawashima Y. Pulmonary vascular resistance during exercise late after repair of large ventricular septal defects. Relation to age at the time of repair. J Thorac Cardiovasc Surg 1995; 109(6):1218-1224.
    21. Somerville J. How to manage the Eisenmenger syndrome. Int J Cardiol 1998; 63(1):1-8.
    22. Craig RJ, Selzer A. Natural history and prognosis of atrial septal defect. Circulation 1968; 37(5):805-815.
    23. Bisset GS, Ⅲ, Hirschfeld SS. Severe pulmonary hypertension associated with a small ventricular septal defect. Circulation 1983; 67(2):470-473.
    24. Rich S, Dantzker DR, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, et al. Primary pulmonary hypertension. A national prospective study. Ann Intern Med 1987; 107(2):216-223.
    25. Ahearn GS, Tapson VF, Rebeiz A.Greenfield JC Jr. Electrocardiography to define clinical status in primary pulmonary hypertension and pulmonary arterial hypertension secondary to collagen vascular disease. Chest 2002; 122(2):524-527.
    26. Widimsky J. Noninvasive diagnosis of pulmomary hypertension. Cas Lek Cesk 1985,124(32):993-997.
    27. Schannwell C.M, Steiner S, Strauer BE. Diagnostics in Pulmonary Hypertension. J Physiol Pharmacol 2007,58:S5(Pt 2):591-602.
    28. Leuchte HH, Holzapfel M, Baumgartner RA, Ding I, Neurohr C, Vogeser M, et al. Clinical significance of brain natriuretic peptide in primary pulmonary hypertension. J Am Coll Cardiol 2004; 43(5):764-770.
    29. Huffman M, McLaughlin V. Pulmonary Arterial Hypertension:New Management Options. Curr Treat Options Cardiovasc Med 2004; 6 (6):451-458.
    30. Budev MM, Arroliga AC, Jennings CA. Diagnosis and evaluation of pulmonary hypertension. Cleve Clin J Med 2003; 70(Suppl 1):S9-S17.
    31. Frank H, Globits S, Glogar D, Neuhold A, Kneussl M, Mlczoch J. Detection and quantification of pulmonary artery hypertension with MR imaging:results in 23 patients. Am J Roentgenol 1993; 161(1):27-31.
    32. Paciocco G, Martinez FJ, Bossone E Pielsticker E, Gillespie B, Rubenfire M. Oxygen desaturation on the six-minute walk test and mortality in untreated primary pulmonary hypertension. Eur Respir J 2001; 17 (4):647-652.
    33. Miyamoto S, Nagaya N, Satoh T, Kyotani S, Sakamaki F, Fujita M, et al. Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension. Comparison with cardiopulmonary exercise testing. Am J Respir Crit Care Med 2000; 161 (2 pt 1):487-492.
    34. Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic failure. J Am Coll Cardiol 2001; 37 (1):183-188.
    35. Hoeper MM, Lee SH, Voswinckel R, Palazzini M, Jais X, Marinelli A, et al. Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J Am Coll Cardiol 2006;48 (12):2546-2552.
    36. Nagumo K, Yamaki S, Takahashi T. Extremely thickened media of small pulmonary arteries in fatal pulmonary hypertension with congeniml heart disease-a morphometric and clinicopathological study. Jpn Circ J 2000,64 (12):909-914.
    37. McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, Michelakis ED. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 2004; 95 (8):830-840.
    38. Ambalavanan N, Bulger A, Murphy-Ullrich J, Oparil S, Chen YF. Endothelin-A receptor blockade prevents and partially reverses neonatal hypoxic pulmonary vascular remodeling. Pediatr Res,2005, 57 (5 pt 1):631-636.
    39. Mathew R, Huang J, Shah M, Patel K, Gewitz M, Sehgal PB. Disruption of endothelial-cell caveolin-lalpha/raft scaffolding during development of monocrotaline-induced pulmonary hypertension. Circulation 2004,110(11):1499-1506.
    40. White RJ, Meoli DF, Swarthout RF, Kallop DY, Galaria Ⅱ, Harvey JL, et al. Plexiform-like lesions and increased tissue factor expression in a rat model of severe pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol.2007; 293 (3):L583-590.
    41. Long L, Crosby A, Yang X, Southwood M, Upton PD, Kim DK, Morrell NW. Altered bone morphogenetic protein and transforming growth factor-beta signaling in rat models of pulmonary hypertension: potential for activin receptor-like kinase-5 inhibition in prevention and progression of disease. Circulation 2009; 119 (4):566-576.
    42. Synhorst DP, Lauer RM, Doty DB, et al. Hemodynamic effects of vasodilator agents in dogs with experimental ventricular septal defects. Circulation 1976,54(3):472—477.
    43. Amin Z, Gu X, Berry JM, Bass JL, Titus JL, Urness M, Han YM, Amplatz K. New device for closure of muscular ventricular septal defects in a canine model. Circulation 1999,100(3):320—328.
    44. Reddy VM, Meyrick B, Wong J, Khoor A, Liddicoat JR, Hanley FL, Fineman JR. In utero placement of aortopulmonary shunts, a model of postnatal pulmonary hypertension with increased pulmonary blood flow in lambs. Circulation 1995,92 (3):606-613.
    45. Geer JC, Glass BA, Albert HM. The morphogenesis and reversibility of experimental hyperkinetic pulmonary vascular lesions in the dog. Exp Mol Pathol 1965,26:399-415.
    46. Muller WH Jr. Observations on the pathogenesis and management of pulmonary hypertension. Am J Surg 1978,135(3):302-311.
    47. Michel RP, Hakim TS, Hanson RE, Dobell AR, Keith F, Drinkwater D. Distribution of lung vascular resistance after chronic systemic-pulmonary shunts. Am J Physiol,1985,249 (6 Pt 2):H1106-1113.
    48.左顺庆,高尚志,毛志福.犬动力性肺动脉高压模型的建立.中华实验外科杂志,1999,16(2):183-184.
    49.崔勤,杨景学,朱海龙,等。实验性幼犬动力型单侧肺动脉高压模型的建立.第四军医大学学报,1999,20(4):328-329.
    50.齐建光,杜军保,李简,等.左向右分流所致肺动脉高压大鼠模型的建立及其肺血管结构的变化.中华实验外科杂志,2002,19(3):199-200.
    51.熊辉,胡盛寿,吴清玉,等.大鼠体肺分流性肺动脉高压模型的建立.中华实验外科杂志,2003,20(6):536.
    52. Garcia R, Diebold S. Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovascular Research 1990,24(5):430-432.
    53.孙波,刘文利.右心导管法测定大鼠肺动脉压的实验方法.中国医学科学院学报,1984,6(6):465-467.
    54. Haworth SG. Pulmonary hypertension in the young. Heart 2003, 88 (6):658-664.
    55. Miyamoto T, Takeishi Y, Shishido T, Takahashi H, Itoh M, Kubota I, Tomoike H. Role of nitric oxide in progression of cardiovascular remodeling induced by carotid arterio-venous shunt in rabbits. Jpn Heart J 2003,44(1):127-137.
    56. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005; 33 (11):1402-1416.
    57. Kern S, Eichler H, Stoeve J, Kliuter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cell 2006;24(5):1294-1301
    58. Case J, Horvath TL, Howell JC, Yoder MC, March KL, Srour EF. Clonal multilineage differentiation of murine common pluripotent stem cells isolated from skeletal muscle and adipose stromal cells. Ann N Y Acad Sci 2005;1044:183—200.
    59. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418 (6893):41-49.
    60. Le Blanc K, Ringden 0. Mesenchymal stem cells:Properties and role in clinical bone marrow transplantation. Curr Opin Immunol 2006:18(5):586-591.
    61. Lin Y, Chen X, Yan Z, Liu L, Tang W, Zheng X, et al. Multilineage differentiation of adipose-derived stromal cells from GFP transgenic mice. Mol Cell Biochem 2006; 285 (1-2):69-78.
    62. Barry FP, Murphy JM. Mesenchymal stem cells:Clinical applications and biological characterization. Int J Biochem Cell Biol 2004; 36 (4):568-584.
    63. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143-147.
    64. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003:112(12):1796-1808.
    65. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112 (12):1821-1830.
    66 Caspar-Bauguil S, Cousin B, Galinier A, Segafredo C, Nibbelink M, Andre M, et al. Adipose tissues as an ancestral immune organ: Site-specific change in obesity. FEBS Lett 2005; 579 (1):3487-3492.
    67. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13 (12):4279-4295.
    68. Katz AJ, Tholpady A, Tholpady SS, Shang H,Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal(hA-DAS) cells. Stem Cells 2005; 23 (3):412-423.
    69. Prunet-Marcassus B, Cousin B, Caton D, Andre M, Penicaud L, Casteilla L. From heterogeneity to plasticity in adipose tissues: Site-specific differences. Exp Cell Res 2006; 312 (6):727-736.
    70. Casteilla L, Planat-Benard V, Cousin B, Silvestre JS, Laharrague P, Charriere G, et al. Plasticity of adipose tissue:A promising therapeutic avenue in the treatment of cardiovascular and blood diseases. Arch Mal Coeur Vaiss 2005; 98(9):922-926.
    71. Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 2004; 14 (4-6):311-324.
    72. Charriere G, Cousin B, Arnaud E, Andre M, Bacou F, Penicaud L, et al. Preadipocyte conversion to macrophage. Evidence of plasticity. J Biol Chem 2003; 278(11):9850-9855.
    73. Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, et al. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 2006; 99(5):1285-1297.
    74. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue:Implications for cell-based therapies. Tissue Eng 2001; 7 (2):211-228.
    75. Dicker A, Le Blanc K, Astrom G, van Harmelen V, Gotherstrom C, Blomqvist L et al. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res 2005; 308 (2):283-290.
    76. Pansky A, Roitzheim B, Tobiasch E. Differentiation potential of adult human mesenchymal stem cells. Clin Lab,2007;53(1-2):81-84
    77. Urbich C, Dimmeler S. Endothelial progenitor cells functional characterization. Trends Cardiovasc Med 2004; 14 (8):318-322.
    78. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells.The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8 (4):315-317.
    79. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 2001; 189 (1):54-63.
    80. Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, et al. Immunomodulatory effect ofhuman adipose tissue-derived adult stem cells:Comparison with bone marrow mesenchymal stem cells. Br J Haematol 2005;129(1):118-129.
    81. Morizono K, De Ugarte Da, Zhu M, Zuk P, Elbarbary A, Ashjian P,et al. Multilineage cells from adipose tissue as gene delivery vehicles. Hum Gene Ther 2003,14 (1):59-66.
    82. Shieh SJ, Vacanti JP. State--of-the-art tissue engineering: from tissue engincering to organ building. Surgery,2005,137(1): 1-7.
    83. Schaffler A, Buchler C. Concise review:adipose tissue-derived stromal cells-basic and clinical implications for novel cell-basec therapies. Stem Cells 2007; 25(4):818-827.
    84. Shi YY, Nacamuli RP, Salim A, Longaker MT. The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. Plast Reconstr Surg 2005; 116 (6):1686-1696.
    85. Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M, Helder MN, Klein-Nulend J, Schouten TE, et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 2006;8(2):166-177.
    86. Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells:Isolation, expansion and differentiation. Methods 2008; 45(2):115-120.
    87. Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y, et al. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vase Biol 2005;25 (12):2542-2547
    88. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004;109 (10):1292-1298
    89. Nakagami H, Morishita R, Maeda K, Kikuchi Y, Oqihara T, Kaneda Y. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb 2006; 13 (2):77-81.
    90. Rodriguez AM, Elabd C, Amri EZ.Ailhaud G, Dani C. The human adipose tissue is a source of multipotent stem cells. Biochimie 2005; 87(1):125-128.
    91. Mitchell JB, Mcintosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, et al. Immunophenotype of human adipose-derived cells:temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 2006; 24(2):376-385.
    92. Shigemura N, Okumura M, Mizuno S, Imanishi Y, Nakamura T, Sawa Y. Autologous transplantation of adipose tissue-derived stromal cells ameliorates pulmonary emphysema. Am J Transplant 2006; 6(11):2592-2600.
    93 Tholpady SS, Katz AJ, Ogle RC. Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. Anat Rec Part A 2003; 272(1):398-402.
    94. Hattori H, Nogami Y, Tanaka T, Amano Y, Fukuda K, Kishimoto S, et al. Expansion and Characterization of Adipose Tissue-derived Stromal Cells Cultured With Low Serum Medium. J Biomed Mater Res B Appl Biomater 2008; 87(1):229-236.
    95. Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, et al. Plasticity of human adipose lineage cells toward endothelial cells:physiological and therapeutic perspectives. Circulation 2004; 109 (5):656-663.
    96. Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 2005; 332 (2):370-379.
    97. Fraser JK, Schreiber R, Strem B, Zhu M, Alfonso Z, Wulur I, et al. Plasticity of human adipose stem cells toward endothelial cells and cardiomyocytes. Nat Clin Pract Cardiovasc Med 2006;3 (Suppll):S33-S37.
    98. Moon MH, Kim SY, Kim YJ, Kim SJ, Lee JB, Bae YC, et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem 2006; 17 (5-6):279-290.
    99. Jun ES, Lee TH, Cho HH, Suh SY, Jung JS. Expression of telomerase extends longevity and enhances differentiation in human adipose tissue-derived stromal cells. Cell Physiol Biochem 2004;14(4-6): 261-268.
    100. Jeon ES, Song HY, Kim MR, Moon HJ, Bae YC, Jung JS, et al. Sphingosylphosphorylcholine induces proliferation of human adipose tissue-derived mesenchymal stem cells via activation of JNK. J Lipid Res 2006;47(3):653-664
    101. Kang YJ, Jeon ES, Song HY, Woo JS, Jung JS, Kim YK, et al. Role of c-Jun N-terminal kinase in the PDGF-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells. J Cell Biochem 2005;95(6):1135-1145.
    102. Cai L, Johnstone BH, Cook TG, Liang Z, Traktuev D, Cornetta K, et al. Suppression of Hepatocyte Growth Factor Production Impairs the Ability of Adipose-Derived Stem Cells to Promote Ischemic Tissue Revascularization. Stem Cells 2007;25(12):3234-3243.
    103. Kilroy GE, Foster S, Wu X, Ruiz J, Sherwood S, Heifetz A, et al. Cytokine profile of human adipose-derived stem cells:expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol 2007;212(3):702-709.
    104. Wang M, Crisostomo PR, Herring C, Meldrum KK, Meldrum DR. Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF and IGF-1 in response to TNF by a p38 mitogen activated protein kinase dependent mechanism. Am J Physiol Regul Integr Comp Physiol 2006;291(4):R880-R884.
    105. Kohler RH, Zipfel WR, Webb WW, Hanson MR. The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J 1997; 11(3):613-621.
    106. Taghizadeh RR, Sherley JL. CFP and YFP, but not GFP, provide stable fluorescent marking of rat hepatic adult stem cells. J Biomed Biotechnol 2008;epb.
    107. Wolbank S, Peterbauer A, Wassermann E, Hennerbichler S, Voglauer R, van Griensven M, et al. Labelling of human adipose-derived stem cells for non-invasive in vivo cell tracking, cell Tissue Bank 2007;8(3):163-177
    108. Grebenok RJ, Pierson E, Lambert GM, Gong FC, Afonso CL, Haldeman-Cahill R, et al. Green-fluorescent protein fusions for efficient characterization of nuclear targeting. Plant J 1997; 11(3):573-586.
    109. Leffel SM, Mabon SA, Stewart CN Jr. Applications of green fluorescent protein in plants. Biotechniques 1997;23(5):912-918.
    110. Ripoll CB, Bunnell BA. Comparative characterization of mesenchymal stem cells from eGFP transgenic and non-transgenic mice 2009:3:1-12.
    111. Amos PJ, Shang H, Bailey AM, Taylor A, Katz AJ and Peirce SM. IFATS Collections:The role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype. Stem Cells 2008; 26(10):2682-2690.
    112. Weber A, I Pedrosa, A Kawamoto, N Himes, J Munasinghe, T Asahara, NM Rofsky, et al. Magnetic resonance mapping of transplanted endothelial progenitor cells for therapeutic neovascularization in ischemic heart disease. Eur J Cardiothorac Surg 2004; 26(1):137-143.
    113. Mothe AJ, Tator CH. Proliferation, migration and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat. Neuroscience 2005;131 (1):177-187.
    114. Smith P, Adams WP Jr, Lipschitz AH, Chau B, Sorokin E, Rohrich RJ, et al. Autologous human fat grafting:Effect of harvesting and preparation techniques on adipocyte graft survival. Plast Reconstr Surg 2006;117 (6):1836-1844.
    115. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003; 174 (3):101-109.
    116. Pu LL, Cui X, Fink BF, Cibull ML, Gao D. The viability of fatty tissues within adipose aspirates after conventional liposuction:A comprehensive study. Ann Plast Surg 2005;54 (3)::288-292.
    117. Pu LL, Cui X, Fink BF, Gao D, Vasconez HC. Adipose aspirates as a source for human processed lipoaspirate cells after optimal cryopreservation. Plast Reconstr Surg 2006; 117(6):1845-1850.
    118. Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, et al. Right ventricular function and failure:report of a national heart, lung, and blood institute working group on cellular and molecular mechanisms of right heart failure. Circulation 2006; 114 (17):1883-1891.
    119. LaRaia AV, Waxman AB. Pulmonary aterial hypertension: evaluation and management. South Med J 2007;100 (4):393-399.
    120. Rich S, Kaugmann E, Levy PS. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med 1992; 327 (2):76-81.
    121. Badesch DB, Abman SH, Ahearn GS, Barst RJ, McCrory DC, Simonneau G,et al. Medical therapy for pulmonary arterial hypertension. ACCP evidence-based clinical practice guidelines. Chest 2004;126 (1 Suppl):35S-62S.
    122. Sitbon O, Humbert M, Jais X, loos V, Hamid AM, Provencher S, et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 2005; 111 (23):3105-3111.
    123. Barst RJ, Rubin LJ, Long WA, McGoon MD, Rich S, Badesch DB, et al.A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N Engl J Med 1996;334(5):296-302.
    124. McLaughlin VV, Shillington A, Rich S. Survival in primary pulmonary hypertension:The impact of epoprostenol therapy. Circulation 2002; 106(12):1477-1482.
    125. Simonneau G, Barst RJ, Galie N, Naei je R, Rich S, Bourge RC, et al. Continuous subcutaneous infusion of treprostinil, a prostacyclin analog, in patients with pulmonary arterial hypertension:A double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med 2002; 165(6):800-804.
    126. Olschewski H, Simonneau G, Galie N, Higenbottam T, Naei je R, Rubin LJ, et al. Inhaled iloprost for severe pulmonary hypertension. N Engl J Med 2002; 347 (5):322-329.
    127. Channick RN, Simonneau G, Sitbon 0, Robbins IM, Frost A, Tapson VF, et al. Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension:a randomised placebo-controlled study. Lancet 2001; 358 (9288):1119-1123.
    128. Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A, et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med 2002; 346 (12):896-903.
    129. Apostolopoulou SC, Rammos S, Kyriakides ZS, Webb DJ, Johnston NR, Cokkinos DV, et al. Acute endothelin A receptor antagonism improves pulmonary and systemic haemodynamics in patients with pulmonary arterial hypertension that is primary or autoimmune and related to congenital heart disease. Heart 2003;89 (10):1221-1226.
    130. D'Alto M, Vizza CD, Romeo E, Badagliacca R, Santoro G, Poscia R, et al. Long term effects of bosentan treatment in adult patients with pulmonary arterial hypertension related to congenital heart disease (Eisenmenger physiology):safety, tolerability, clinical, and haemodynamic effect. Heart 2007;93 (5):621-625
    131. Sitbon O, Badesch DB, Channick RN, Frost A, Robbins IM, Simonneau G, et al. Effects of the dual endothelin receptor antagonist bosentan in patients with pulmonary arterial hypertension:a 1-year follow-up study. Chest 2003;124 (1):247-254.
    132. Apostolopoulou S C, Manginas A, Cokkinos D V, Rammos S, Long-term oral bosentan treatment in patients with pulmonary arterial hypertension related to congenital heart disease:a 2-year study。 Heart 2007;93 (3):350-354.
    133. Park MH. Advances in diagnosis and treatment in patient with pulmonmary arterial hypertension. Catheter Cardiovasc Interv 2008; 71 (2):205-213.
    134. Lang I, Gomez-Sanchez M, Kneussl M, Naeije R, Escribano P, Skoro-Sajer N, et al. Efficacy of long-term subcutaneous treprostinil sodium therapy in pulmonary hypertension. Chest 2006;129 (6):1636-1643.
    135. Barst RJ, Galie N, Naei je R, et al. Long-term outcome in pulmonary arterial hypertension patients treated with subcutaneous treprostinil. Eur Respir J 2006;28 (6):1195-1203.
    136. van Albada ME, Berger RM. Pulmonary arterial hypertension in congenital cardiac disease-the need for refinement of the Evian-Venice classification. Cardiol Young 2008; 18 (1):10-17.
    137. Steele P, Strange G, Wlodarczyk J, Dalton B, Stewart S, Gabbay E, Keogh A. Hemodynamics in pulmonary arterial hypertension (PAH): do the explain long-term clinical outcomes with PAH-specific therapy? BMC Cardiovasc Disord 2010; 10:9.
    138. Michelakis ED, Wilkins MR, Rabinovitch M. Emerging concepts and translational priorities in pulmonary arterial hypertension. Circulation 2008; 118 (14):1486-1495.
    139. Ueno T, Smith JA, Snell GI, Williams TJ, Kotsimbos TC, Rabinov M, Esmore DS. Bilateral sequential single lung transplantation for pulmonary hypertension and Eisenmenger's syndrome. Ann Thorac Surg 2000;69 (2):381-387.
    140. Trulock EP. Lung transplantation. Am J Respir Crit Care Med 1997; 155 (3):789-818.
    141. Yanagisawa-Miwa A, Uchida Y, Nakamura F, Tomaru T, Kido H, Kami jo T, et al. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 1992; 257 (5075):1401—1403
    142. Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, et al. Therapeutic angiogenesis A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 1994;93(2):662—670
    143. Morishita R, Nakamura S, Hayashi S, Taniyama Y, Moriguchi A, Nagano T, et al. Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy. Hypertension 1999; 33 (6):1379—1384.
    144. Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part Ⅰ: angiogenic cytokines. Circulation 2004; 109 (21):2487—2491.
    145. Powell RJ, Simons M, Mendelsohn FO, Daniel G, Henry TD, Koga M, et al. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation 2008; 118(1):58—65.
    146. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275 (5302):964—967.
    147. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascu larization. Circ Res 1999;85(3):221—228.
    148. Shintani S, Murohara T, Ikeda H, Ueno T, Sasaki K, Duan J, et al. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 2001;103(6):897—903.
    149. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, et al. Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells:a pilot study and a randomised controlled trial. Lancet 2002; 360 (9331):427—435.
    150. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 2000; 97 (7):3422—3427.
    151. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 2001; 104 (9):1046—52
    152. Riordan NH, Ichim TE, Min WP, Wang H, Solano F, Lara F, et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. Journal of Translational Medicine 2009; 7: 29-38.
    153. Shigemura N, Okumura M, Mizuno S, Imanishi Y, Matsuyama A, Shiono H, et al. Lung tissue engineering technique with adipose stromal cells improves surgical outcome for pulmonary emphysema. Am J Respir Crit Care Med 2006; 174(11):1199-2006.
    154. Campbell AI, Zhao Y, Sandhu R, Stewart DJ. Cell-based gene transfer of vascular endothelial growth factor attenuates monocrotaline-induced pulmonary hypertension. Circulation 2001; 104(18):2242-2248.
    155. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski Ni, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA2003;1100(14):8403-8411.
    156. Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ. Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells. Circ Res 2005;96(4):442-450.
    157. Matoba S, Tatsumi T, Murohara T, Imaizumi T, Katsuda Y, Ito M, et al. Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia. Am Heart J 2008; 156 (5):1010—1018.
    158. Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue:an underappreciated source of stem cells for biotechnology. Trends Biotechnol 2006; 24 (4):150—154.
    159. Miyazaki T, Kitagawa Y, Toriyama K, Kobori M, Torii S. Isolation of two human fibroblastic cell populations with multiple but distinct potential of mesenchymal differentiation by ceiling culture of mature fat cells from subcutaneous adipose tissue. Differentiation 2005;73 (2-3):69—78.
    160. Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z. Adipose-derived stem cell:a better stem cell than BMSC. Cell Biochem Funct 2008; 26 (6):664-675.
    161. Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells:isolation, expansion and differentiation. Methods 2008;45(2):115-120.
    162. DiMuzio P, Tulenko T. Tissue engineering applications to vascular bypass graft development:the use of adipose-derived stem cells. J Vasc Surg 2007; 45(Suppl. A):A99-A103.
    163. Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y, et al. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol 2005;25(12):2542-2547.
    164. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004;109 (10):1292-1298.
    165. Kondo K, Shintani S, Shibata R, Murakami H, Murakami R, Imaizumi M, et al. Implantation of adipose-derived regenerative cells enhances ischemia induced angiogenesis. Arterioscler Thromb Vasc Biol2009;29 (1):61-66.
    166. Nakamura T, Nishizawa M, Hagiya M, Seki T, Shimonishi M, Sugimura A, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature 1989; 342 (6248):440-443.
    167. NakamuraT, NawaK, IchiharaA. Partial purification and characterization of hepatocyte growth factor from serum of hepatectomizedrats. Biochem Biophys Res Commun 1984; 122 (3):1450-1459.
    168. SakamakiY, MatsumotoK, MizunoS, MiyoshiS, MatsudaH, Nakamura T. Hepatocyte growth factor stimulates proliferation of respiratory epithelial cells during post pneumonectomy compensatory lung growth in mice. Am J Respir Cell Mol Biol 2002;26(5):525-533.
    169. Ohmichi H, Matsumoto K, Nakamura T. In vivo mitogenic action of HGF on lung epithelial cells:pulmotrophicrolein lung regeneration. Am J Physiol 1996; 270 (6 Pt 1):L1031-L1039.
    170. Shigemura N, Sawa Y, Mizuno S, Ono M, Minami M, Okumura M, et al. Induction of compensatory lung growth in pulmonary emphysemaim proves surgical outcomes in rats. Am J Respir Crit Care Med 2005; 171 (11):1237-1245.
    171. Ono M, Sawa Y, Mizuno S, Fukushima N, Ichikawa H, Bessho K, et al. Hepatocyte growth factor suppresses vascular medial hyperplasia and matrix accumulation in advanced pulmonary hypertension of rats. Circulation 2004; 110 (18):2896-2902.
    172. Shigemura N, Okumura M, Mizuno S, Imanishi Y, Nakamura T, Sawa Y. Autologous transplantation of adipose tissue-derived stromal cells ameliorates pulmonary emphysema. Am J Transplant2006; 6 (11):2592-2600.
    173. Uruno A, Sugawara A, Kanatsuka H, Arima S, Taniyama Y, Kudo M, et al. Hepatocyte growth factor stimulates nitric oxide production through endothelial nitric oxide synthase activation by the phosphoinositide 3-Kinase=Akt pathway and possibly by mitogen-activated protein kinase kinase in vascular endothelial cells. Hypertens Res 2004; 27 (11):887-895.
    174. Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med1995; 333 (4):214-221.
    175. Cuifen Z, Lijuan W, Li G, Wei X, Zhiyu W, Fuhai L. Changes and distributions of peptides derived from proadrenomedullin in left-to-right shunt pulmonary hypertension of rats. Circ J 2008; 72(3):476-481.
    176. Planat-Benard V, Silvestre JS, Cousin B, Andre'M, Nibbelink M, Tamarat R, et al. Plasticity of human adipose lineage cells toward endothelial cells physiological and therapeutic perspectives. Circulation 2004; 109 (5):656-663.
    177. Vilalta M, Degano IR, Bago'J, Gould D, Santos M, Garci' aArranz M, et al. Biodistribution, long-term survival, and safety of human adipose tissue-derived mesenchymal stem cells transplanted in nude mice by high sensitivity non-invasive bioluminescence imaging. Stem Cells Dev 2008; 17 (5):993-1004.
    178. Van Belle E, Witzenbichler B, Chen D, Silver M, Chang L, Schwall R, et al. Potentiated angiogenic effect of scatter factor hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. Circulation 1998:97(4):381-390.
    179. Ono M, Sawa Y, Matsumoto K, Nakamura T, Kaneda Y, Matsuda H. In vivo gene transfection with hepatocyte growth gactor via the pulmonary artery induces angiogenesis in the rat lung. Circulation 2002;106 (12 Suppl 1):1264-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700