用户名: 密码: 验证码:
早衰小鼠P8(SAMP8)额叶脑衰老相关人鼠同源基因筛选及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界各国人口老龄化进程的到来,研究衰老的机制,进一步防治衰老相关的疾病已逐渐成为当今医学科学研究新的热点。为了更深入地进行脑衰老及相关疾病发生发展分子机制的研究,我们利用目前公认的脑衰老哺乳动物模型——SAMP8(senescence-accelerated mice prone 8,快速老化小鼠-8)——作为研究对象,利用微点阵技术(Microarray/Gene Chip/基因芯片),对12月龄与4月龄SAMP8鼠额叶基因的转录水平进行了对比研究。
     Microarray是将指大量寡核苷酸分子固定于支持物上,然后与标记的样品进行杂交,通过检测杂交信号的强弱进而判断样品中靶分子数量的一项新兴生物技术。1995年,Stanford大学的P Brown实验室发明了第一块以玻璃为载体的基因微点阵芯片,标志着基因芯片技术进入了广泛研究和应用的时期。基因芯片被广泛应用于高通量基因表达水平检测、基因诊断、药物筛选及个性化给药、新基因发现等领域,成为21世纪生物技术发展的重要特征。
     生物信息学(Bioinformatics)是20世纪80年代末随着人类基因组计划(human genome project,HGP)的启动而兴起的一门新的边缘学科和技术,是分子生物学与计算机科学的交叉。其任务之一为发展有效的信息分析工具,构建适合于基因组研究的数据库,搜集、管理和使用人类基因组和模式生物基因组的巨量信息。迄今已发展完善了GenBank核酸序列、SWISS-PROT蛋白质序列和PDB生物大分子结构等著名的数据库,开发了如Blast、NEBcutter、Primer-3等上百种生物信息分析软件。生物信息学就如同一个向导,为科研工作者提供了一个崭新的工具,帮助科研人员从纷繁复杂生物信息中找寻真理。
     同源基因通常指不同物种中起源于同一祖先的基因,在遗传学中,同源这一概念主要是指序列同源。直向同源序列(Orthologs)被认为在不同的物种中具有相近甚至相同的功能、相似的调控途径,扮演相似甚至相同的角色,而且,绝大多数核心生物功能就是由相当数量的直向同源基因所承担。因此,研究模式生物中与人同源基因的功能对揭示人体各种生理过程及疾病发生发展分子机制具有重要意义。
     本研究应用基因芯片技术检测12月龄和4月龄SAMP8鼠额叶基因表达谱,筛选到65个明显上调基因和632个明显下调基因。上调基因多为促炎症、应激反应相关基因;而下调基因则多为突触可塑性、囊泡运输、线粒体功能、蛋白质和DNA修复、神经激素等相关基因。进一步经生物信息学分析及RT-PCR、WesternBlot验证,证实了4个基因——Gnaq(Guanine Nucleotide Binding Protein-alpha qPolypeptide)、KIF1b(Kinesin Family Member 1b)、Sort1(sortilin-1)、Sst(somatostatin)——是脑衰老相关人鼠同源基因。这4个基因随衰老呈明显降低的mRNA转录水平和蛋白表达水平。这些发现将有助于更好地在模型动物中研究脑衰老及相关疾病发生的分子机制。
     基于上述发现,我们进一步研究抗脑衰老药物对脑衰老相关人鼠同源基因表达的影响及这些基因在脑衰老过程中的功能。首先我们研究了天麻素对SAMP8鼠Sst表达水平及相关衰老表征的影响。结果显示天麻素能明显上调SAMP8鼠额叶内Sst的转录水平和蛋白表达水平,并明显改善SAMP8鼠的学习记忆能力和其它衰老相关表征。这些结果提示天麻素治疗可能通过增进额叶Sst的转录和表达水平以延缓SAMP8鼠的脑衰老进程,各种原因所致的Sst表达水平降低可能是导致脑衰老及相关疾病的分子机制之一。Gnaq、KIF1b及Sort1的功能研究正在进行之中。
Due to the increasing amount of aged people in the world's population, it is becoming a new focus to study mechanisms of aging and to prevent and treat aging-related diseases. In order to illuminate the underlying molecular mechanisms of brain aging and concerned diseases, we exploited the received mammal brain aging model, senescence-accelerated mice prone 8 (SAMP8), as a researched object. The transcriptional level of genes in the frontal cortex of 12-month SAMP8 and 4-month SAMP8 was determined by microarray.
     Microarray, also known as gene chip, is a new biotechnique which can determine high density of hybridization signal by pre-fixing huge amount of oligonucleotide molecules on a supporter chip. In 1995, the P Browm Lab of Stanford University created the first glass-slide-supported gene microarray chip. From then, microarray was extensively used in gene expression spectrum, gene diagnosis, drug screening, individual administration and new gene discovering. The general use of microarray has become a great characteristic of biotechnology in 21 century.
     Bioinformatics is also a new subject and technique developed with the initiation of Human Genome Project (HGP) in the late 1980s. It is a combination between biology and computer. One of Bioinformatics' tasks is to help researchers collecting, managing, using the giant information of human genome and model animals' genomes by developing efficient bioinformation analyzing tools and by establishing databases adapt to genome research. So far, some famous databases have been built up and exploited extensively, such as GenBank nucleotide sequense database, SWISS-PROT protein sequence database and PDB biomacromolecule structure database. And lots of useful softwares such as Blast, NEBcutter and Primer- 3 also have been developed. Bioinformatics is just like a guider directing researchers to find truth from mass of bioinformation.
     Genes contained in different species but evolved from the same ancestor were defined as orthologous genes. In genetics, orthologous generally mean similar sequence. Orthologous genes in variant species usually perform similar functions, exploit same regulatory pathways and play equal roles. Furthermore, most of the key biological functions are controlled by orthologous genes. Therefore, exploring the functions of othologous genes in animal model can provide significant clues in revealing underlying molecular mechanisms of variant physiologic and pathologic processes in human body.
     In the present study, Microarray technology was employed to profile the differentially expressed genes between 12 and 4 month-old frontal cortex of the SAMP8 model. 65 up-regulated genes as well as 632 down-regulated genes were identified. Most of the up-regulated genes are related to inflammations and stress responses, but large part of the down-regulated genes play roles in synapse plasticity, vesicular transportation, mitochondria function, protein and DNA repair, and neurohormone secreting. By further analysis with bioinformatics and verification with RT-PCR and Western Blot, we demonstrated that four genes: Gnaq (Guanine Nucleotide Binding Protein-alpha q Polypeptide)、KIF1b (Kinesin Family Member 1b)、Sort1 (sortilin-1)、Sst (somatostatin), are brain aging related orthologous genes between human and mice. These 4 orthologous genes show reduced mRNA transcription and protein expression level with aging. These finds would contribute to exploring the molecular mechanisms of brain aging and associated diseases.
     Based on the above discovery, we explored the underlying mechanisms of the 4 orthologous genes in brain aging process. In the first, we explored the effect of Gastrodin treatment on the memory, learning, aging related symbols of SAMP8 and the expression level of Sst in the frontal cortex. Our data indicated that administration of Gastrodin can significantly up-regulate the mRNA and protein level of Sst in the frontal cortex, as well significantly promote the learning and memory ability and postpone the emergence of aging related phenotype of SAMP8. These results implied that Gastrodin may prevent the onset of brain aging and brain-aging-related diseases probably by promoting expression level of Sst in the frontal cortex. Reduced Sst expression caused by variant factors may be one of the mechanisms leading to brain aging and related diseases. The exploration of other orthologous genes (Gnaq, KIF1b and Sort1) is being performed.
引文
[1]黄河浪,黄鹏,王国平,等.人口老龄化现状及相关卫生问题的思考.疾病控制杂志,2005,9(5):38-40
    [2]Perl DP.Neuropathology of Alzheimer's disease and related disorders.Neurol Clin.2000Nov;18(4):847-64.
    [3]李珂.万琪.药物治疗阿尔茨海默病的研究与进展.中国临床康复,2004,8(16):114-5
    [4]Cutler NR,Sramek JJ.Review of the next generation of Alzheimer's disease therapeutics:challenges for drug development.Prog Neuropsychopharmacol Biol Psychiatry.2001 Jan;25(1):27-57.
    [5]Takeda T,Hosokawa M,Takeshita S,et al.A new murine model of accelerated senescence.Mech Ageing Dev.1981,17(2):183-94.
    [6]Nabeshi H.,Oikawa S.,Inoue S.,Nishino K.and Kawanishi S.(2006).Proteomic analysis for protein carbonyl as an indicator of oxidative damage in senescence-accelerated mice.Free.Radic.Res.40,1173-81.
    [7]Sureda F.X.,Gutierrez-Cuesta J.,Romeu M.et al.(2006).Changes in oxidative stress parameters and neurodegeneration markers in the brain of the senescence-accelerated mice SAMP-8.Exp.Gerontol.41,360-7.
    [8]Rodriguez M.I.,Escames G.,Lopez L.C.et al.(2007).Chronic melatonin treatment reduces the age-dependent inflammatory process in senescence-accelerated mice.J.Pineal.Res.42,272-9.
    [9]Nomura Y,Okuma Y.Age-related defects in lifespan and learning ability in SAMP8 mice.Neurobiol Aging.1999,20(2):111-5.
    [10]Takeda T,Matsushita T,Kurozumi M,et al.Pathobiology of the senescence-accelerated mouse(SAM).Exp Gerontol.1997,32(1-2):117-27.
    [11]Wu Y.,Zhang A.Q.and Yew D.T.Age related changes of various markers of astrocytes in senescence-accelerated mice hippocampus.Neurochem.Int.2005,46,565-74.
    [12]Xu J.,Shi C.,Li Q.,Wu J.,Forster E.L.and Yew D.T.Mitochondrial dysfunction in platelets and hippocampi of senescence-accelerated mice.J.Bioenerg.Biomembr.2007,39,195-202.
    [13]Chan Y.C.,Hosoda K.,Tsai C.J.,Yamamoto S.and Wang M.F..Favorable effects of tea on reducing the cognitive deficits and brain morphological changes in senescence-accelerated mice.J.Nutr.Sci.Vitaminol.(Tokyo).2006,52,266-73.
    [14]Okuma Y,Nomura Y.Senescence-accelerated mouse(SAM) as an animal model of senile dementia:pharmacological,neurochemical and molecular biological approach.J Pharmacol.1998,78(4):399-404.
    [15]Miller RA.'Accelerated aging':a primrose path to insight? Aging Cell.2004Apr;3(2):47-51.
    [16]http://www.bbioo.com/bio101/2007/19958.htm
    [17]曹亚.实用分子生物学操作指南.人民卫生出版社.北京,2003.
    [18]Lu T,Pan Y,Kao SY,et al.Gene regulation and DNA damage in the ageing human brain.Nature.2004 Jun 24;429(6994):883-91.
    [19]Cheng XR,Zhou WX,Zhang YX,et al.Differential gene expression profiles in the hippocampus of senescence-accelerated mouse.Neurobiol Aging.2007 Apr;28(4):497-506.
    [20]Leuba G,Savioz A,Vernay A,et al.Differential changes in synaptic proteins in the Alzheimer frontal cortex with marked increase in PSD-95 postsynaptic protein.J Alzheimers Dis.2008 Sep;15(1):139-51.
    [21]Pallas M,Camins A,Smith MA,et.From aging to Alzheimer's disease:unveiling "the switch" with the senescence-accelerated mouse model(SAMP8).J Alzheimers Dis.2008 Dec;15(4):615-24.
    [22]Takeda,T.,Hosokawa,M.,Takeshita,et al.1981.A new murine model of accelerated senescence.Mech.Ageing Dev.17,183-194.
    [23]Miyamoto,M.,1997.Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMP10.Exp.Gerontol.32,139-148.
    [24]Hosokawa,M.,Abe,T.,Higuchi,K.,et al.1997.Management and design of the maintenance of SAM mouse strains:an animal model for accelerated senescence and ageassociated disorders.Exp.Gerontol.32,111-116.
    [25]Butterfield DA,Pooh HF.The senescence-accelerated prone mouse(SAMPS):a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease.Exp Gerontol.2005 Oct;40(10):774-83.
    [26]Flood,J.F.,Morley,J.E.,1998.Learning and memory in the SAMP8 mouse.Neurosci.Biobehav.Rev.22,1-20.
    [27]Butterfield,D.A.,Howard,B.J.,Yatin,S.,et al.1997.Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-alpha-phenylnitrone.Proc.Natl.Acad.Sci.USA 94,674-678.
    [28]Flood,J.F.,Morley,J.E.,1993.Age-related changes in footshock avoidance acquisition and retention in senescence accelerated mouse(SAM).Neurobiol.Aging 14,153-157.
    [29]Farr S A,Pooh H F,Dogrukol-Ak D,et al.2003.The antioxidantsalpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice.J.Neurochem.84,1173-1183.
    [30]Harman D.1956.Aging:a theory based on free radical and radiation chemsitry.J.Gerontol.11,298-300.
    [31]Okatani Y,Wakatsuki A,Reiter R J,et al.2002.Melatonin reduces oxidative damage of neural lipids and proteins in senescenceaccelerated mouse.Neurobiol.Aging 23,639-644.
    [32]Poon H F,Joshi G,Sultana R,et al.2004.Antisense directed at the Abeta region of APP decreases brain oxidative markers in aged senescence accelerated mice.Brain Res.1018,86-96.
    [33]Cheng XR,Zhou WX,Zhang YX,et al.Differential gene expression profiles in the hippocampus of senescence-accelerated mouse.Neurobiol Aging.2007 Apr;28(4):497-506.
    [34]Kumar VB,Franko MW,Farr SA,et al.Identification of age-dependent changes in expression of senescence-accelerated mouse(SAMP8) hippocampal proteins by expression array analysis,Biochem Biophys Res Commun.2000 Jun 16;272(3):657-61.
    [35]Getchell TV,Peng X,Green CP,et al.In silico analysis of gene expression profiles in the olfactory mucosae of aging senescence-accelerated mice.J Neurosci Res.2004 Aug 1;77(3):430-52.
    [36]Robinson MS,Bonifacino JS.Adaptor-related proteins.Curr Opin Cell Biol.2001 Aug;13(4):444-53.
    [37]Wu F,Yao PJ.Clathrin-mediated endocytosis and Alzheimer's disease:an update.Ageing Res Rev.2009 Jul;8(3):147-9.
    [38]Young-Pearse T L,Bai J,Chang R,et al.2007.A critical function for beta-amyloid precursor protein in neuronal migration evealed by in utero RNA interference.J.Neurosci.27,14459-14469.
    [39]Thinakaran G,Koo E H,2008.Amyloid precursor protein trafficking,processing,and function.J.Biol.Chem.283,29615-29619.
    [40]27 Vassar R.,Bennett B D,Babu-Khan S,et al.1999.Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE.Science 286,735-741.
    [41]Lab JJ,Levey AI.2000.Endogenous presenilin-1 targets to endocytic rather than biosynthetic compartments.Mol.Cell Neurosci.16,111-126.
    [42]Koo EH,Squazzo SL,1994.Evidence that production and release of amyloid beta-protein involves the endoeytic pathway.J.Biol.Chem.269,17386-17389.
    [43]Hoffman EP,Kunkel LM(1989) Dystrophin abnormalities in Ducherme/Becker muscular dystrophy.Neuron 2:1019-1029.
    [44]Sekiguchi M.The role of dystrophin in the central nervous system:a mini review.Acta Myol.2005 Oct;24(2):93-7.
    [45]Lidov HG,Byers TJ,Watkins SC,et al.(1990) Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons.Nature 348:725-728.
    [46]Vaillend C,Ungerer A,Billard JM(1999).Facilitated NMDA receptormediated synaptic plasticity in the hippocampal CA1 area of dystrophin-deficient mice.Synapse 33:59-70.
    [47]Waite A,Tinsley CL,Locke M,et al.The neurobiology of the dystrophin-associated glycoprotein complex.Ann Med.2009;41(5):344-59.
    [48]Wang K,Song Y,Chen DB,et al.Protein phosphatase 3 differentially modulates vascular endothelial growth factor-and fibroblast growth factor 2-stimulated cell proliferation and signaling in ovine fetoplacental artery endothelial cells.Biol Reprod.2008 Oct;79(4):704-10.
    [49]Foster T.C.Interaction of rapid signal transduction cascades and gene expression in mediating estrogen effects on memory over the life span.Front Neuroendocrinol.2005;26,51-64.
    [50]Takemura R.,Nakata T.,Okada Y.,Yamazaki H.,Zhang Z.and Hirokawa N.(1996).mRNA expression of KIF1A,KIF1B,KIF2,KIF3A,KIF3B,KIF4,KIF5,and cytoplasmic dynein during axonal regeneration.J.Neurosci.16,31-5.
    [51]9 Nangaku M.,Sato-Yoshitake R.,Okada Y.et al.(1994).KIF1B,a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria.Cell.79,1209-20.
    [52]Conforti L.,Dell'Agnello C.,Calvaresi N.et al.(2003).KiflBbeta isoform is enriched in motor neurons but does not change in a mouse model of amyotrophic lateral sclerosis.J.Neurosci.Res.71,732-9.
    [53]Hermey G,Keat SJ,Madsen P,et al.(2003).Characterization of sorCS1,an alternatively spliced receptor with completely different cytoplasmic domains that mediate different trafficking in cells.J.Biol.Chem.278,7390-6.
    [54]Munck Petersen C.,Nielsen M.S.,Jacobsen C.et al.(1999).Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding.EMBO J.18,595-604.
    [55]Nykjaer A.,Lee R.,Teng K.K.et al.(2004).Sortilin is essential for proNGF-induced neuronal cell death.Nature.427,843-8.
    [56]Irvine RF,McNulty TJ,and Schell MJ.(1999).Inositol 1,3,4,5-tetrakisphosphate as a second messenger--a special role in neurones? Chem.Phys.Lipids 98,49-57.
    [57]Kim IH,Park SK,Sun W,et al.(2004).Spatial learning enhances the expression of inositol 1,4,5-trisphosphate 3-kinase A in the hippocampal formation of rat.Brain Res.Mol.Brain Res.124,12-19.
    [58]Irvine RF,Lloyd-Burton SM,Yu JC,et al.(2006).The regulation and function of inositol 1,4,5-trisphosphate 3-kinases.Adv.Enzyme Regul.46,314-323.
    [59]Szinyei C,Behnisch T,Reiser G,et al.(1999).Inositol 1,3,4,5-tetraldsphosphate enhances long-term potentiation by regulating Ca2 entry in rat hippocampus.J.Physiol.516(Pt 3),855-868.
    [60]Johnson HW,Schell MJ.Neuronal IP3 3-kinase is an F-actin-bundling protein:role in dendritic targeting and regulation of spine morphology.Mol Biol Cell.2009Dec;20(24):5166-80.
    [61]M Yoshida,E Muneyuki,T Hisabori.ATP synthase - a marvellous rotary engine of the cell,Nat.Rev.Mol.Cell Biol.2(2001) 669-677.
    [62]M Futai,H Omote,Y Sambongi,et al.Synthase(H(+) ATPase):coupling between catalysis,mechanical work,and proton translocation,Biochim.Biophys.Acta 1458(2000)276-288.
    [1]DeKosky ST.Epidemiology and pathophysiology of Alzheimer's disease.Clin Cornerstone.2001;3(4):15-26.
    [2]Serretti A,Artioli P,Quartesan R,et al.Genes involved in Alzheimer's disease,a survey of possiblec andidates.J Alzheimers Dis.2005 Aug;7(4):331-53.
    [3]Lu T,Pan Y,Kao SY,et al.Gene regulation and DNA damage in the ageing human brain.Nature.2004 Jun 24;429(6994):883-91.
    [4]曹亚.实用分子生物学操作指南.人民卫生出版社.2003.北京.
    [5]王力先,王永飞.三种同源基因的辨析.生命的化学.2006,26(4):369-371.
    [6]Fitch WM.Homology a personal view on some of the problems.Trends Genet.2000May;16(5):227-31.
    [7]Benjamin Lewin编著,余龙等主译.基因Ⅷ.科学出版社,2005
    [8]Koonin EV.Orthologs,paralogs,and evolutionary genomics.Annu Rev Genet.2005;39:309-38.
    [9]Mirny LA,Gelfand MS.Using orthologous and paralogous proteins to identify specificity determining residues.Genome Biol.2002;3(3):PREPRINT0002.Epub 2002 Feb 19.
    [10]Koonin EV.Paralogs and mutational robustness linked through transcriptional reprogramming.Bioessays.2005 Sep;27(9):865-8.
    [11]King DC,Taylor J,Zhang Y,Cheng Y,Lawson HA,Mar-tin J,Chiaromonte F,Miller W,Hardison RC.Finding cis-regulatory elements using comparative genomics:some lessons from ENCODE data.Genome Res,2007,17(06):775-786
    [12]Miller W,Makova KD,Nekrutenko A,Hardison RC.Comparative genomics.Annu Rev Genomics Hum Genet,2004,5:15-56
    [13]Nobrega MA,Pennacchio LA.Comparative genomic analysis as a tool for biological discovery.Physiological Soc,2004,554(Pt 1):31-39
    [14]Tatusov RL,Galperin MY,Natale DA,Koonin EV.The COG database:a tool for genome-scale analysis of protein functions and evolution.Nucleic Acids Res,2000,28(1):33-36
    [15]Dewey CN,Pachter L.Evolution at the nucleotide level:the problem of multiple wholegenome alignment.Hum Mol Genet,2006,15(1):51-56.
    [16]Balaji J,Crouch JH,Petite PV,Hoisington DA.A database of annotated tentative orthologs from crop abiotic stress transcripts.Bioinformation,2006,1(6):225-227.
    [17]Wu F,Mueller LA,Crouzillat D,Petiard V,Tanksley SD.Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes(COSII) for comparative,evolutionary and systematic studies:a test case in the euasterid plant clade.Genetics,2006,174(3):1407-1420.
    [18]朱天慧,秦刚,张立冬,等.Dlmo基因编码一个32 kDa的蛋白.遗传(HEREDITAS,Beijing)2001,23(1):23-24
    [19]潘增祥,许丹,张金璧,等.基于直向同源序列的比较基因组学研究.遗传(HEREDITAS,Beijing) 2009,31(5):457--463
    [20]Makalowski W,Boguski MS.Evolutionary parameters of the transcribed mammalian genome:An analysis of 2,820 orthologous rodent and human sequences.Proc Natl Acad Sci USA,1998,95(16):9407-9412
    [21]Lu T,Pan Y,Kao SY,et al.Gene regulation and DNA damage in the ageing human brain.Nature.2004 Jun 24;429(6994):883-91.
    [22]Foster T.C.Interaction of rapid signal transduction cascades and gene expression in mediating estrogen effects on memory over the life span.Front Neuroendocrinol.2005;26,51-64.
    [23]Gilman AG.G proteins:transducer of receptor-generated signals.Annu Rev Biochem,1987;56:615-649
    [24]盛祖杭.神经元突触传递的细胞和分子生物学.M.上海科学技术出版社.上海,2008.
    [25]Itoh H,Toyama R,Kozasa T,et al.Presence of three distinct molecular species of Gi protein alpha subunit.J Biol Chem,1988,263:6656-6664.
    [26]Yang X,Lee FY St,Wang GS.Increased expression of Gs(alpha) enhances activation of adenylyl cyclase signal transduction cascade.Mol Endocrinol,1997,11:1053-1061.
    [27]Dhanasekarar.N,Heasley LE,Johnson GL.Gprotein2coupled receptor systems involved in cell growth and oncogenesis.Endocr Rev,1995,16:259-270.
    [28]吕朝晖,罗国春,陆菊明,等.G蛋白α亚基mRNA在不同甲状腺疾病的表达.中华内科杂志.2002,42(2):103-105
    [29]Smrcka AV,Hepler JR,Brown KO,et al.Regulation of polyphosphoinositidespecific phospholipase C activity by purified Gq.Science,1991 251:804-807.
    [30]Zhang GR,Liu M,Cao H,et.Improved spatial learning in aged rats by genetic activation of protein kinase C in small groups of hippocampal neurons.Hippocampus.2009May;19(5):413-23.
    [31]Dong Q.,Shenker A.,Way J.et al.Molecular cloning of human G alpha q cDNA and chromosomal localization of the G alpha q gene(GNAQ) and a processed pseudogene.Genomics.1995;30,470-75.
    [32]Scheiderer CL,Smith CC,McCutchen E.et al.(2008).Coactivation of M(1) muscarinic and alphal adrenergic receptors stimulates extracellular signal-regulated protein kinase and induces long-term depression at CA3-CA1 synapses in rat hippocampus.J.Neurosci.28, 5350-8.
    
    [33] Terry R. D. Alzheimer's disease and the aging brain. J Geriatr Psychiatry Neurol. 2006;19, 125-8.
    
    [34] Chen H., Yao W., Jin D. et al. (2008). Cloning, expression pattern, chromosomal localization, and evolution analysis of Porcine gnaq, gnall, and gnal4. Biochem. Genet. 46,398-405.
    
    [35] Takemura R, Nakata T, Okada Y, et al. mRNA expression of KIF1A, KIF1B, KIF2,KIF3A, KIF3B, KIF4, KIF5, and cytoplasmic dynein during axonal regeneration. J Neurosci.1996,16:31-35.
    
    [36] Nangaku M., Sato-Yoshitake R, Okada Y. et al. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell. 1994, 79:1209-1220.
    
    [37] Gong TW, Winnicki RS, Kohrman DC, et al. A novel mouse kinesin of the UNC-104/KIF1 subfamily encoded by the Kiflb gene. Gene. 1999, 239: 117-127.
    
    [38] Conforti L, Dell'Agnello C, Calvaresi N, et al. Kif1Bbeta isoform is enriched in motor neurons but does not change in a mouse model of amyotrophic lateral sclerosis. J Neurosci Res. 2003,71: 732-739.
    
    [39] Conforti L, Buckmaster EA, Tarlton A, et al. The major brain isoform of kiflb lacks the putative mitochondria-binding domain. Mamm Genome. 1999,10: 617-622.
    
    [40] Zhao C, Takita J, Tanaka Y, et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIFlBbeta. Cell. 2001,105: 587-597.
    
    [41] Jacobsen L, Madsen P, Jacobsen C, et al. Activation and functional characterization of the mosaic receptor SorLA/LRll. J Biol Chem. 2001,276: 22788-96.
    
    [42] Hermey G, Keat SJ, Madsen P, et al. Characterization of sorCS1, an alternatively spliced receptor with completely different cytoplasmic domains that mediate different trafficking in cells. J Biol Chem. 2003, 278: 7390-6.
    
    [43] Mazella J, Zsurger N, Navarro V, et al. The 100-kDa neurotensin receptor is gp95/sortilin,a non-G-protein-coupled receptor. J Biol Chem. 1998,273: 26273-6.
    
    [44] Munck Petersen C, Nielsen MS, Jacobsen C, et al. Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding. EMBO J. 1999, 18: 595-604.
    
    [45] Nykjaer A, Lee R, Teng KK, et al. Sortilin is essential for proNGF- induced neuronal cell death. Nature. 2004, 427: 843-8.
    
    [46] Al-Shawi R, Hafner A, Olson J. et al. Neurotoxic and neurotrophic roles of proNGF and the receptor sortilin in the adult and ageing nervous system. Eur J Neurosci. 2008, 27:2103-14.
    
    [47] Jansen P, K Giehl, et al. Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat Neurosci. 2007, 10(11): 1449-57.
    
    [48] Reichlin S. Somatostatin. N Engl J Med. 1983, 309: 1495-501.
    [49] Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol. 1999, 20: 157-98
    
    [50] Patzelt C, Neilsen D, Carroll R, et al. Studies on the biosynthesis of the other peptide hormones of the rat islets of Langerhans. Biochem Soc Trans. 1980, 8: 411-3.
    
    [51] Schindler M, Humphrey PP, Emson PC. Somatostatin receptors in the central nervous system. Prog Neurobiol. 1996, 50: 9-47.
    
    [52] Bohlen P, Brazeau P, Benoit R, et al. Isolation and amino acid composition of two somatostatin-like peptides from ovine hypothalamus: somatostatin-28 and somatostatin-25.Biochem Biophys Res Commun. 1980, 96: 725-34.
    
    [53] Tostivint H, Joly L, Lihrmann I, et al. Chromosomal localization of three somatostatin genes in zebrafish. Evidence that the [Pro2]-somatostatin-14 isoform and cortistatin areencoded by orthologous genes. J Mol Endocrinol. 2004, 33: Rl-8.
    
    [54] Adrio F, Anadon R, Rodriguez-Moldes I. Distribution of somatostatin immunoreactive neurons and fibres in the central nervous system of a chondrostean, the Siberian sturgeon (Acipenser baeri). Brain. Res. 2008, 1209: 92-104.
    
    [55] Esquifino Al, Cano P, Jimenez V, et al. Changes of prolactin regulatory mechanisms in aging: 24-h rhythms of serum prolactin and median eminence and adenohypophysial concentration of 'iopamine, serotonin, gamma-aminobutyric acid, taurine and somatostatin in young and aged rats. Exp Gerontol. 2004, 39: 45-52.
    [1]杨世林,兰进,徐锦堂.天麻的研究进展[J].中草药,2000,31(1):66-69.
    [2]ZHAO Y K,CAO Q E,XIANG Y Q,et al.Identification and determination of active components in Gastrodia elata B1.by capillary electrophoresis[J].Journal of Chromatography A,1999,8(4):277-283.
    [3]Xu X,Lu Y,Bie X.Protective effects of gastrodin on hypoxia-induced toxicity in primary cultures of rat cortical neurons[J].Planta Med,2007,73:650-4.
    [4]TAGUCHI H,YOSIOKA I,YAMASAKI K,et al.Studies on the constituents of Gastrodia elata Blume[J].Chem Pharm Bull,1981,29(1):55-62.
    [5]Wang Q,Chen G,Zeng S.Distribution and metabolism of gastrodin in rat brain.J Pharm Biomed Anal.2008 Jan 22;46(2):399-404.
    [6]陈颖,常琪,刘新民.天麻对中枢神经系统作用的研究进展.中草药.2007,38(6):附4-6
    [7]An SJ,Park SK,Hwang IK,et al.Gastrodin decreases immunoreactivities of gamma aminobutyric acid shunt enzymes in the hippocampus of seizure-sensitive gerbils[J].J Neurosci Res.2003,15,71(4):534-543.
    [8]Ha JH,Shin SM,Lee SK,et al.In v itro effects of hydroxybenzaldehydes from Gastrodia elata and their analogues on GABA-ergic neurotransmission,and a structure-activity corelation[J].P lanta Med.2001,67(9):877-880.
    [9]Lee YS,Ha JH,Yong CS,et al.Inh ibitory effects ofconstituents of Gastrodia elata B11 on glutamate-induced apoptosis in IMR232 human neuroblastoma cells[J].Arch Pharm Res.1999,22(4):404-409.
    [10]Okuma Y,Nomura Y.Senescence-accelerated mouse(SAM) as an animal model of senile dementia:pharmacological,neurochemical and molecular biological approach[J].J Pharmacol,1998,78:399-404.
    [11]Iqbal K,Grundke-Igbal L.Alzheimer disease is multifactorial and heterogeneous[J].Neurobiology of Aging,2000,21:9012-9021
    [12]Patel YC.Somatostatin and its receptor family.Front Neuroendocrinol.1999 Jul;20(3):157-98.
    [13]Cappon GD,Bush B,Newgreen D.Tolterodine does not affect memory assessed by passive-avoidance response test in mice[J].Eur J Pharmacol,2008,579:225-228.
    [14]Akbari E,Motamedi F,Naghdi N.The effect of antagonization of orexin 1 receptors in CA1 and dentate gyms regions on memory processing in passive avoidance task[J].Behav Brain Res,2008,187:172-177.
    [15]Xu X,Lu Y,Bie X.Protective effects of gastrodin on hypoxia-induced toxicity in primary cultures of rat cortical neurons[J].Planta Med,2007,73:650-654.
    [16]张乐多,龚晓健,胡苗苗,等.天麻素抗血管性痴呆作用及其机理[J].中国天然药物,2008,6:130-134
    [17]王昭君,习杨彦彬,刘佳,等.天麻素对快速衰老小鼠大脑组织衰老相关基因表达的影响[J].解剖科学进展,2007,13:353-357
    [18]Yong W,Xing TR,Wang S,et al.Protective Effects of Gastrodin on Lead-Induced Synaptic Plasticity Deficits in Rat Hippocampus[J].Planta Med,2009,75:1112-1117
    [19]Lv H,Li A,Liu F,et al.Effects of gastrodin on the dopamine system of Tourette's syndrome rat models.Biosci Trends.2009 Apr;3(2):58-62.
    [20]Yong W,Xing TR,Wang S,et al.Protective effects of gastrodin on lead-induced synaptic plasticity deficits in rat hippocampus.Planta Med.2009 Aug;75(10):1112-7.
    [21]Xu X,Lu Y,Bie X.Protective effects of gastrodin on hypoxia-induced toxicity in primary cultures of rat cortical neurons.Planta Med.2007 Jun;73(7):650-4.
    [22]张春燕,李玉平,李茂绪,等.天麻素治疗血管性痴呆疗效观察.中国中医急症.2009,18(8):1220-1221
    [23]刘中华,胡海涛,冯改丰,等.天麻素对Aβ 25-35诱导的Alzheimer病细胞模型的保护作用.四川大学学报(医学版).2005;36(4):537-540
    [24]盛祖杭.神经元突触传递的细胞和分子生物学.上海科学技术出版社.2008,上海.
    [25]Rabow LE,Russek SJ,Farb DH.From ion currents to genomic analysis:recent advances in GABAA receptor research.Synapse,1995,21(3):189
    [26]Ha JH,Shin SM,Lee SK,et all.In v itro effects of hydroxybenzaldehydes from Gastrod ia elata and their analogues on GABA ergic neuro transm ission,and a structure-activity corelation[J].P lanta Med,2001,67(9):877-880.
    [27]Takeda T,Hosokawa M,Takeshita S,et al.A new murine model of accelerated senescence[J].Mec Aging.1981,17:183 - 194
    [28]Miyamoto M.Characteristics of age-related behavioral changes in senescence -accelerated mouse SAMP8 and SAMP10[J].Exp Gerontol.1997,32:139-148.
    [29]赵万红,于建春,吉新彩,等.快速老化小鼠的学习记忆缺陷及其生化机制[J].西安交通大学学报(医学版).2008,29:289-293
    [30]Lamirault L,Guillou JL,Micheau J,et al.Intrahippocampal injections of somatostatin dissociate acquisition from the flexible use of place responses[J].Eur J Neurosci,2001,14:567-570.
    [31]王鹏,李积胜,单云官.血管性痴呆小鼠海马结构SS及CCK蛋白表达的改变[J].解剖学杂志,2007,30:211-214
    [32]郝春光,习杨彦彬,刘佳,等.SCN2b mRNA在快速老化小鼠额叶和海马中的表达及变化[J].神经解剖学杂志,2007,23:662-665
    [33]Chen SC,Lu G,Chan CY,et al.Microarray Profile of Brain Aging-Related Genes in the Frontal Cortex of SAMP8[J].J Mol Neurosci.2009 Oct 17.[Epub ahead of print]
    [34]陈颖,常琪,刘新民.天麻对中枢神经系统作用的研究进展.中草药.2007,38(6):附4-6
    [35]Lee YS,Ha JH,Yong CS,et al.Inhibitory effects of constituents of Gastrodia elata Bl1on glutamate-induced apoptosis in IMR232 human neuroblastoma cells[J].Arch Pharm Res.1999,22(4):404-409.
    [36]Gahete MD,Rubio A,Duran-Prado M,et al.Expression of Somatostatin,Cortistatin,and Their Receptors,as well as Dopamine Receptors,but not of Neprilysin,are Reduced in the Temporal Lobe of Alzheimer's Disease Patients.J Alzheimers Dis.2010 Feb 17.[Epub ahead of print]
    [37]P Davies,R Katzman,RD Terry,Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer's disease and Alzheimer senile dementia,Nature.1980,288:279-280.
    [38]W Gsell,I Strein,P Riederer.The neurochemistry of Alzheimer type,vascular type and mixed type dementias compared.J Neural Transm.1996,47:73-101,_Suppl.
    [39]MN Rossor,PC Emson,CQ Mountjoy,et al.Reduced amounts of immunoreactive somatostatin in the temporal cortex in senile dementia of Alzheimer type.Neurosci Lett 1980,20:373-377.
    [40]Reichlin S.(1983).Somatostatin.N.Engl.J.Med.309,1495-501.
    [41]Brazeau P,Vale W,Burgus R,et al.Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone.Science.1973,179(68):77-79.
    [42]杨蓬勃,王唯析,王文娟,等.Meynert核毁损后大鼠海马结构内生长抑素阳性神经元的变化[J].解剖学报,2009,40:78-82.
    [43]S Hendry,E Jones,P Emson.Morphology,distribution and synaptic relations of somatostatin and neuropeptide Y immunoreactive neurons in rat and monkey neocortex,J.Neurosci.1984,(4):2497-2517.
    [44]N Matsuoka,M Yamazaki,I Yamaguchi.Changes in brain somatostatin in memory-deficient rats:comparison with cholinergic markers.Neuroscience 1995,66:617-626.
    [45]Rostampour M,Fathollahi Y,Semnanian S,et al.The ability of hippocampal CA1 area for induction of long2term potentiation is persistently reduced by prior treatment with cysteamine:an in vitro study[J].Neuropeptides,2002,36:263-270.
    [46]Ruan HZh,Huang H.The function of somatostatin in learning and memory[J].Foreign Medical Science Section of Pathophysiology and Clinical Medicine,1999,19:464-466.
    [47]Zhang ZJ,Lappi DA,Wrewn CC,et al.Seletive lesion of the cholinergic basal forebrain causes a loss of cortical neuropeptide Y and somatostatin neurons[J].Brain Res,1998,800:198-206.
    [48]Matsuoka N,Maeda N,Yamaguchil,et al.Possible involvement of brain somatostatin in the memory formation of rats and the cognitive enhancing action of FR121196 in passive avoidance task[J].Brain Res,1994,642:11-19.
    [49]Patel YC.Somatostatin and its receptor family.Front Neuroendocrinol.1999 Jul;20(3):157-98.
    [50]Epelbaum J,Guillou JL,Gastambide F,et al.Somatostatin,Alzheimer's disease and cognition:an old story coming of age? Prog Neurobiol.2009 Oct;89(2):153-61.
    [51] Einstein EB, Patterson CA, Hon BJ, et al. Somatostatin signaling in neuronal cilia is critical for object recognition memory. J Neurosci. 2010 Mar 24; 30(12):4306-14.
    
    [52] Montminy MR, Goodman RH, Horovitch SJ, et al. Primary structure of the gene encoding rat preprosomatostatin. Proc Natl Acad Sci USA 1984; 81: 3337-3340.
    
    [53] Patel YC. Somatostatin and its receptor family. Front Neuroendocnnol. 1999 Jul; 20(3):157-98.
    
    [54] Kowk RPS, Lundblad JR, Chrivia JC, et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature.1994; 370: 223-226.
    [1]Lu T,Pan Y,Kao SY,et al.Gene regulation and DNA damage in the ageing human brain.Nature.2004 Jun 24;429(6994):883-91.
    [2]Kandel,E.R.The molecular biology of memory storage:a dialog between genes and synapses.Science,294,1030-1038(2001).
    [3]Malinow,R.& Malenka,R.C.AMPA receptor trafficking and synaptic plasticity.Annu.Rev.Neurosci.25,103-126(2002).
    [4]盛祖杭.神经元突触传递的细胞和分子生物学[M].上海科学技术出版社.上海,2008.12
    [5]Chi P,Greengard P,Ryan TA.Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies.Neuron.2003 Apr 10;38(1):69-78.
    [6]Koushika SP,Richmond JE,Hadwiger G,et al.A post-docking role for active zone protein Rim.Nat Neurosci.2001 Oct;4(10):997-1005.
    [7]Jacobsen L.,Madsen P.,Jacobsen C.,et al.Activation and functional characterization of the mosaic receptor SorLA/LR11.J.Biol.Chem.276,22788-96.
    [8]Hermey G.,Keat S.J.,Madsen P.,et al.Characterization of sorCS1,an alternatively spliced receptor with completely different cytoplasmic domains that mediate different trafficking in cells.J.Biol.Chem.278,7390-6.
    [9]Mazella J.,Zsurger N.,Navarro V.et al.The 100-kDa neurotensin receptor is gp95/sortilin,a non-G-protein-coupled receptor.J.Biol.Chem.273,26273-6
    [10]Munck Petersen C.,Nielsen M.S.,Jacobsen C.et al.Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding.EMBO J.18,595-604.
    [11]Nykjaer A.,Lee R.,Teng K.K.et al.Sortilin is essential for proNGF-induced neuronal cell death.Nature.427,843-8.
    [12]Al-Shawi R.,Hafner A.,Olson J.et al.(2008).Neurotoxic and neurotrophic roles of proNGF and the receptor sortilin in the adult and ageing nervous system.Eur.J.Neurosci.27,2103-14.
    [13]Jansen P,Giehl K,Nyengaard JR,et al.Roles for the pro-neurotrophin receptor sortilin in neuronal development,aging and brain injury.Nat Neurosci.2007 Nov;10(11):1449-57.
    [14] Dehmelt L, Halpain S. Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol. 2004 Jan;58(1):18-33.
    
    [15] Gonzalez-Billault C, Engelke M, Jimenez-Mateos EM, et al. Participation of structural microtubule-associated proteins (MAPs) in the development of neuronal polarity. J Neurosci Res. 2002 Mar 15;67(6):713-9.
    
    [16] Gamblin TC, Nachmanoff K, Halpain S, et al. Recombinant microtubule- associated protein 2c reduces the dynamic instability of individual microtubules. Biochemistry. 1996 Sep 24;35(38):12576-86.
    
    [17] Al-Bassam J, Ozer RS, Safer D, et al. MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments. J Cell Biol. 2002 Jun 24; 157(7): 1187-96.
    
    [18] Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science. 1998 Jan 23;279(5350):519-26.
    
    [19] Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science. 1998 Jan 23;279(5350):519-26.
    
    [20] Su Q, Cai Q, Gerwin C, et al. Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nat Cell Biol. 2004 Oct;6(10):941-53.
    
    [21] Okada Y, Yamazaki H, Sekine-Aizawa Y, et al. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell. 1995 Jun2;81(5):769-80.
    
    [22] Morfini G, Quiroga S, Rosa A, et al. Suppression of KIF2 in PC12 cells alters the distribution of a growth cone nonsynaptic membrane receptor and inhibits neurite extension. J Cell Biol. 1997 Aug ll;138(3):657-69.
    
    [23] Nangaku M., Sato-Yoshitake R., Okada Y. et al. (1994). KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell. 79, 1209-20.
    
    [24] Gong T. W., Winnicki R. S., Kohrman D. C. and Lomax M. I. (1999). A novel mouse kinesin of the UNC-104/KIF1 subfamily encoded by the Kiflb gene. Gene. 239,117-27.
    
    [25] Conforti L., Dell'Agnello C, Calvaresi N. et al. (2003). KiflBbeta isoform is enriched in motor neurons but does not change in a mouse model of amyotrophic lateral sclerosis. J. Neurosci. Res. 71,732-9.
    
    [26] Conforti L., Buckmaster E. A., Tarlton A. et al. (1999). The major brain isoform of kiflb lacks the putative mitochondria-binding domain. Mamm. Genome. 10, 617-22.
    [27] Zhao C., Takita J., Tanaka Y. et al. (2001). Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIFlBbeta. Cell. 105, 587-97.
    
    [28] Stokin GB, Goldstein LS. Axonal transport and Alzheimer's disease. Annu Rev Biochem.2006;75:607-27.
    
    [29] Treisman R. DNA-binding proteins. Inside the MADS box. Nature. 1995 Aug 10; 376(6540): 468-9
    
    [30] Pollock R, Treisman R. Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev. 1991 Dec;5(12A):2327-41.
    
    [31] Leifer D, Krainc D, Yu YT, et al. MEF2C, a MADS/MEF2-family transcription factor expressed in a laminar distribution in cerebral cortex. Proc NatI Acad Sci USA. 1993 Feb 15 ;90(4):1546-50.
    
    [32] Martin JF, Schwarz JJ, Olson EN. Myocyte enhancer factor (MEF) 2C: a tissue-restricted member of the MEF-2 family of transcription factors. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5282-6.
    
    [33] Martin JF, Miano JM, Hustad CM, et al. A Mef2 gene that generates a muscle-specific isoform via alternative mRNA splicing. Mol Cell Biol. 1994 Mar; 14(3): 1647-56.
    
    [34] Molkentin JD, Firulli AB, Black BL, et al. MEF2B is a potent transactivator expressed in early myogenic lineages. Mol Cell Biol. 1996 Jul;16(7):3814-24.
    
    [35] McDermott JC, Cardoso MC, Yu YT, et al. hMEF2C gene encodes skeletal muscle- and brain-specific transcription factors. Mol Cell Biol. 1993 Apr;13(4):2564-77.
    
    [36] Lin Q, Schwarz J, Bucana C, et al. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science. 1997 May 30;276(5317): 1404-7.
    
    [37] Ornatsky OI, Andreucci JJ, McDermott JC. A dominant-negative form of transcription factor MEF2 inhibits myogenesis. J Biol Chem. 1997 Dec 26;272(52):33271-8.
    
    [38] Lyons GE, Micales BK, Schwarz J, et al. Expression of mef2 genes in the mouse central nervous system suggests a role in neuronal maturation. J Neurosci. 1995 Aug;15(8):5727-38.
    
    [39] Leifer D, Golden J, Kowall NW. Myocyte-specific enhancer binding factor 2C expression in human brain development. Neuroscience. 1994 Dec;63(4): 1067-79.
    
    [40] Lin X, Shah S, Bulleit RF. The expression of MEF2 genes is implicated in CNS neuronal differentiation. Brain Res Mol Brain Res. 1996 Dec;42(2):307-16.
    [41]Jan YN,Jan LY.HLH proteins,fly neurogenesis,and vertebrate myogenesis.Cell.1993Dec 3;75(5):827-30.
    [42]Mao Z,Nadal-Ginard B.Functional and physical interactions between mammalian achaete-scute homolog 1 and myocyte enhancer factor 2A.J Biol Chem.1996 Jun 14;271(24):14371-5
    [43]Black BL,Ligon KL,Zhang Y,et al.Cooperative transcriptional activation by the neurogenic basic helix-loop-helix protein MASH1 and members of the myocyte enhancer factor-2(MEF2) family.J Biol Chem.1996 Oct 25;271(43):26659-63
    [44]Okamoto,S.,Krainc,D.,Sherman,K.& Lipton,S.A.Antiapoptotic role of the p38mitogen-activated protein kinase-myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation.Proc.Natl Acad.Sci.2000,97:7561-7566.
    [45]Pdtossa F.A new puffing pattern induced by heat shock and DNP in drosophila.Experimentia.1962;18:571-3
    [46]1赵志颖,董碧蓉,林苹,等.HSP70反义寡脱氧核苷酸促进MRC-5细胞衰老的研究.中国老年学杂志.2006,26(10):
    [47]Zhang HJ,Drake VJ,Morrison JP,et.Selected contribution:Differential expression of stress-related genes with aging and hyperthermia.J Appl Physiol.2002 Apr;92(4):1762-9
    [48]Witt SN.Hsp70 molecular chaperones and Parkinson's disease.Biopolymers.2010 Mar;93(3):218-28.
    [49]M.Ramos-Casals,P.Brito-Zeron,S.Munoz,N.Soria,D.Galiana,L.Bertolaccini,M.J.Cuadrado,M.A.Khamashta,Autoimmune diseases induced by TNF-targeted therapies:analysis of 233 cases,Medicine(Baltimore) 86(2007) 242-251.
    [50]Tweedie D,Sambamurti K,Greig NH.TNF-alpha inhibition as a treatment strategy for neurodegenerative disorders:new drug candidates and targets.Curr Alzheimer Res.2007Sep;4(4):378-85.
    [51]Giuliani F,Vernay A,Leuba G,et.Decreased behavioral impairments in an Alzheimer mice model by interfering with TNF-alpha metabolism.Brain Res Bull.2009 Oct 28;80(4-5):302-8.
    [52]Medeiros R,Figueiredo CP,Pandolfo P,et.The role of TNF-alpha signaling pathway on COX-2 upregulation and cognitive decline induced by beta-amyloid peptide.Behav Brain Res.2010 Feb 1.[Epub ahead of print]
    [53] Reichlin S. (1983). Somatostatin. N. Engl. J. Med. 309,1495-501.
    
    [54] Brazeau, P., Vale, W., Burgus, R., Ling, N., Butcher, M., Rivier, J., Guillemin, R., 1973.Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179 (68), 77-79.
    
    [55] Pradayrol, L., Chayvialle, J.A., Carlquist, M., Mutt, V., 1978. Isolation of a porcine intestinal peptide with C-terminal somatostatin. Biochem. Biophys. Res. Commun. 85 (2),701-708.
    
    [56] Patel Y. C. (1999). Somatostatin and its receptor family. Front Neuroendocrinol. 20,157-98
    
    [57] Tostivint H., Joly L., Lihrmann I., Ekker M. and Vaudry H. (2004). Chromosomal localization of three somatostatin genes in zebrafish. Evidence that the [Pro2]-somatostatin-14 isoform and cortistatin are encoded by orthologous genes. J. Mol. Endocrinol. 33, R1-8.
    
    [58] Adrio F., Anadon R. and Rodriguez-Moldes I. (2008). Distribution of somatostatin immunoreactive neurons and fibres in the central nervous system of a chondrostean, the Siberian sturgeon (Acipenser baeri). Brain. Res. 1209, 92-104.
    
    [59] Esquifino A. I., Cano P., Jimenez V., Reyes Toso C. F. and Cardinali D. P. (2004).Changes of prolactin regulatory mechanisms in aging: 24-h rhythms of serum prolactin and median eminence and adenohypophysial concentration of dopamine, serotonin, gamma-aminobutyric acid, taurine and somatostatin in young and aged rats. Exp. Gerontol.39, 45-52
    
    [60] De Lecea, L., Criado, J.R., Prospero-Garcia, O., Gautvik, K.M., Schweitzer, P.,Danielson, P.E., Dunlop, C.L., Siggins, G.R., Henriksen, S.J., Sutcliffe, J.G., 1996. A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nature 381 (6579),242-245.
    
    [61] Rubio, A., Avila, J., de Lecea, L., 2007. Cortistatin as a therapeutic target in inflammation. Expert Opin. Ther. Targets 11 (1), 1-9.
    
    [62] Broglio, F., Grottoli, S., Arvat, E., Ghigo, E., 2008. Endocrine actions of cortistatin: In vivo studies. Mol. Cell Endocrinol. 286 (1-2), 123-127.
    
    [63] Tostivint, H., Joly, L., Lihrmann, I., Parmentier, C, Lebon, A., Morisson, M., Calas, A.,Ekker, M., Vaudry, H., 2006. Comparative genomics provides evidence for close evolutionary relationships between the urotensin II and somatostatin gene families. Proc. Natl. Acad. Sci. U.S.A. 103 (7), 2237-2242.
    
    [64] Reichlin, S., 1983a. Somatostatin. N. Engl. J. Med. 309 (24), 1495-1501.
    [65] Reichlin, S., 1983b. Somatostatin (second of two parts). N. Engl. J. Med. 309 (25),1556-1563.
    
    [66] Epelbaum, J., 1986. Somatostatin in the central nervous system: physiology and pathological modifications. Prog. Neurobiol. (27), 63-100.
    
    [67] Patel, Y.C., 1999. Somatostatin and its receptor family. Front. Neuroendocrinol. 20 (3),157-198.
    
    [68] Rubio, A., Avila, J., de Lecea, L., 2007. Cortistatin as a therapeutic target in inflammation. Expert Opin. Ther. Targets 11 (1), 1-9.
    
    [69] Gonzalez-Rey, E., Delgado, M., 2008. Emergence of cortistatin as a new immunomodulatory factor with therapeutic potential in immune disorders. Molecular and Cellular Endocrinology 286, 135-140.
    
    [70] Hoyer, D., Bell, G.I., Berelowitz, M., Epelbaum, J., Feniuk, W., Humphrey, P.P.,O'Carroll, A.M., Patel, Y.C., Schonbrunn, A., Taylor, J.E., Reisine, T., 1995. Classification and nomenclature of somatostatin receptors. Trends Pharmacol. Sci. 16(3), 86-88.
    
    [71] Olias, G., Viollet, C., Kusserow, H., Epelbaum, J., Meyerhof, W., 2004. Regulation and function of somatostatin receptors. J. Neurochem. 89 (5), 1057-1091.
    
    [72] Siehler, S., Nunn, C, Hannon, J., Feuerbach, D., Hoyer, D., 2008. Pharmacological profile of somatostatin and cortistatin receptors. Mol. Cell. Endocrinol. 286 (1-2), 26-34.
    
    [73] Robas, N., Mead, E., Fidock, M., 2003. MrgX2 is a high potency cortistatin receptor expressed in dorsal root ganglion. J. Biol. Chem. 278 (45), 44400-44404.
    
    [74] Epelbaum J, Guillou JL, Gastambide F, et. Somatostatin, Alzheimer's disease and cognition: an old story coming of age? Prog Neurobiol. 2009 Oct;89(2): 153-61.
    
    [75] Pardon, M.C., Rattray, I, 2008. What do we know about the long-term consequences of stress on ageing and the progression of age-related neurodegenerative disorders? Neurosci. Biobehav. Rev. 32 (6), 1103-1120.
    
    [76] Bissette, G., Myers, B., 1992. Somatostatin in Alzheimer's disease and depression. Life Sci 51, 1389-1410.
    
    [77] Gabriel, S.M., Davidson, M., Haroutunian, V., Powchik, P., Bierer, L.M., Purohit, D.P.,Perl, D.P., Davis, K.L., 1996. Neuropeptide deficits in schizophrenia vs Alzheimer's disease cerebral cortex. Biol. Psychiatry 39, 82-91.
    [78] Hashimoto, T., Arion, D., Unger, T., Maldonado-Aviles, J.G., Morris, H.M., Volk, D.W.,Mimics, K., Lewis, D.A., 2008. Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol. Psychiatry 13 (2),147-161.
    
    [79] Morris, H.M., Hashimoto, T., Lewis, D.A., 2008. Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. Cereb. Cortex 18 (7), 1575-1587.
    
    [80] Lewis, D.A., Gonza' lez-Burgos, G., 2008. Neuroplasticity of neocortical circuits in schizophrenia. Neuropsychopharmacology 33 (1), 141-165.
    
    [80] Freude S, Schilbach K, Schubert M. The role of IGF-1 receptor and insulin receptor signaling for the pathogenesis of Alzheimer's disease: from model organisms to human disease. Curr Alzheimer Res. 2009 Jun;6(3):213-23.
    
    [81] Cohen E, Bieschke J, Perciavalle RM, et. Opposing activities protect against age-onset proteotoxicity. Science. 2006 Sep 15;313(5793): 1604-10.
    
    [82] DeKosky ST. Epidemiology and pathophysiology of Alzheimer's disease. Clin Cornerstone. 2001;3(4):15-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700