以甜菜和红糖为底物的EGSB生物制氢反应器的启动与运行
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢气作为能源对于当今世界的资源短缺和环境恶化是一个理想的解决方案。目前的大规模氢气生产技术存在诸多弊端,且缺乏可持续性,导致氢能源的利用率还很低。发酵法生物制氢技术具有应用于大规模生产的潜力,但仍需在提高产氢效率和寻找廉价原料等重要问题上深入研究。甜菜作为一种含糖量很高的经济作物,价格低廉,种植广泛,理论上非常适合作为发酵产氢的底物。本研究根据已有的生物制氢理论,使用甜菜作为底物,通过与高效的膨胀颗粒污泥床反应器(EGSB)结合进行生物制氢实验。另外选择红糖为底物在同一反应器内进行了对比实验。
     以红糖为底物的实验中,COD范围从2000-8000 mg/L,启动HRT为6h。COD提升到8000 mg/L水平后,HRT依次变为4h、3h、2h,并各持续7d。实验获得了最高为5.73 L/(L·d)的产氢速率,此时氢气含量为48.44%,系统HRT为2h,pH值为4.36,OLR为97.2 kg COD/(m3·d)。平均氢气含量为41.27%,pH范围是4.23-4.55。系统达到稳定后,发酵液中乙醇和乙酸为主要产物,形成了典型的乙醇型发酵。
     使用甜菜为底物时由于条件的限制,甜菜采取提取液的利用形式。OLR控制策略与使用红糖为底物时相似,经过56天的运行,系统在成功实现了乙醇型发酵的情况下,状态稳定。在COD同为8000mg/L水平,HRT分别处于6h、4h、3h和2h情况下,获得的最大产氢速率分别达到3.80、4.63、4.92和5.54 L/(L·d),pH值范围是3.46-3.86。整个运行阶段产氢速率最高为5.54 L/(L·d),此时氢气含量为49.63%,系统HRT为2h,pH值为3.57,OLR为97.9 kg COD/(m3·d)。
     通过与使用红糖为底物的实验进行对比,认为甜菜作为底物进行发酵法生物制氢是可行的,但在产氢效果和利用率上仍存在不足,底物的合理制备方式也需要继续深入研究。
Hydrogen energy is an ideal solution to the global energy crises and environmental degradation.The current industrial hydrogen production technology has many disadvantages and unsustainability, which cause the utilization rate of hydrogen energy still very low. Fermentative biohydrogen production has an enormous potential to the large scale industrial production, but still need us to pay great attention to raise the production rate and find cheap raw materials. Sugarbeet is a cash crop with high sucrose content which had low price and been grown widely. It is theoretically fit for being the substrate of fermentative hydrogen production. This study chose sugarbeet as substrate for biohydrogen production using an expanded granular sludge bed reactor (EGSB).Brown sugar was also selected as a comparing fermentative substrate.
     In the experiment which substrate was brown sugar, COD was increased from 2000 to 8 000 mg/L gradually, the starting HRT was 6h.When the COD was increased at the level of 8 000 mg/L, the HRT began to shorten to 4h,3h and 2h,each kept for 7d.A maximum hydrogen production rate of 5.73 L/(L·d) was achieved, when hydrogen content was 48.44%, HRT was 2h, pH was 4.36 and OLR was 97.2 kg COD/(m3·d). The average hydrogen content of biogas during the experiment was 41.27%, and the pH range was 4.23~4.55.In the steady operation period, the dominant liquid end products were ethanol and acetic acid, which represented ethanol-type fermentation.
     Because of the technical problem in the bench scale study, water extract of sugarbeet was used as substrate instead of sugarbeet pulp.The same OLR control strategy which has been used in former study was employed here. The system was stable within 56d operation and Ethanol-type fermentation was formed.When the COD was around 8000 mg/L,HRT was 6h, 4h,3h and 2h, the maximum hydrogen production rates were 3.80,4.63,4.92 and 5.54 L/(L-d), respectively. pH range was 3.46-3.86.The maximum hydrogen production rate during this experiment was 5.54 L/(L·d), when hydrogen content was 49.63%,HRT was 2h, pH was 3.57 and OLR was 97.9 kg COD/(m3·d).
     The results of the two experiments verified the feasibility of fermentative hydrogen production from sugarbeet, but the hydrogen production rate and utilization rate of substrate were still improvable. It was also need to pay more attention to the feeding form of sugarbeet.
引文
[1]尹爱国,林汉森.生物制氢的研究现状及前景.安徽农学通报,2007,13(2):51-53
    [2]张明,史家梁.光合细菌光合产氢机理研究进展.应用与环境生物学报,1999,5:25-29
    [3]Hawkes F. R.,Dinsdale R.,Hawkes D.L.,et al.Sustainable fermentative hydrogen production:challenges for process optimization. Int. J.Hydrogen Energy,2002, 27:1339-1347
    [4]Hallenbeck P. C.,Benemann J.R.. Biological hydrogen production:fundamentals and limiting process.Int. J. Hydrogen Energy,2002,27:1185-1193
    [5]Fernando A. Lopes Pinto,Olga Troshina, Peter Lindblad.A brief look at three decades of research on cyanobacterial hydrogen evolution. Int. J. Hydrogen Energy,2002, 27:1209-1215
    [6]P. M. Redd, H. Spiller, S.L. Albrecht, et al. Photodissimilation of fructose to H2 and CO2 by a dinitrogen-fixing cyanobacteriun, anabaena variabilis.Appl. Environ. Microbiol., 1996,62(4):1220-1226
    [7]R. R. Lichtl, M. J. Bazin, D.O.Hall.The biotechnology of hydrogen production by nostoc flagelliforme grown under chemostat conditions. Appl. Microbiol.Biotechnol.,1997, 47:701-707
    [8]S.Kumazawa, A.Mitsui.Characterization and optimization of hydrogen photoproduction by a saltwater blue-green alga, Oscillatoria sp. Miami BG7.Ⅰ.Enhancement through limiting the supply of nitrogen nutrients. Int. J.Hydrogen Energy,1981,6(4):339-348
    [9]E.N. Kondratieva, I.N.Gogotov. Production of molecular hydrogen in microor-ganisms. Adv. Biochem.Eng. Biotechnol.,1983,28:139-191
    [10]D.Das, T. N. Veziroglu.Hydrogen production by biological processes:a survey of literature. Int. J.Hydrogen Energy,2001,26:13-28
    [11]G. Y.Jung, J.R.Kim, J. Y.Park, et al.Hydrogen production by a new chemoheterotrophic bacterium Citrobacter sp.Y19.Int. J.Hydrogen Energy,2002,27:601-610
    [12]N. Kumar, D.Das.Enhancement of hydrogen production by Enterobacter Cloacae ⅡT-BT08.Process Biochemistry,2000,35:589-593
    [13]C. Y. Lin, R.C.Chang. Fermentative hydrogen production at ambient temperature.Int. J. Hydrogen Energy,2004,29:715-720
    [14]D.Evvyernie, A.Yamazaki,K.Morimoto,et al.Identification and characterization of Clostridium paraputrificum M-21,a chitinolytic mesophilic and hydrogen-producing bacterium. J.Biosci. Bioeng,2000,89(6):596-601
    [15]F. Taguchi,J.D.Chang, S.Takiguchi, et al.Efficient hydrogen production from starch by a bacterium isolated from termites. J. Ferment. Bioeng,1992,73:244-245
    [16]F. Taguchi,N. Mizukami, T. S.Taki,et al.Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp strain No2.Can.J. Microbiol., 1995,41(6):536-540
    [17]N.Kataoka, A Miya, K. Kiriyama. Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Wat. Sci. Tech.,1997,36(6-7):41-47
    [18]H.Yokoi,T. Tokushige, J.Hirose,et al.H2 production from starch by a mixed culture of Clostridium butyricum on Porous Glass Beads.Biotechnology Techniques,1997, 11(6):431-433
    [19]N.Q.Ren, B.Z. Wang, J.C.Huang. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol Bioeng.1997,54:428-433
    [20]王勇,任南琪.乙醇型发酵与丁酸型发酵产氢机理及能力分析.太阳能学报,2002,23(3):366-373
    [21]Y. Ueno, S.Otsuka, M.Morimoto.Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J.Ferment. Bioeng.,1996,82(2):194-197
    [22]A. Majizat, Y. Mitsunori,W. Mitsunori,et al.Hydrogen gas production from glucose and its microbial kinetics in anaerobic system.Wat. Sci.Tech.,1997,36(6-7):279-286
    [23]J. J.Lay, Y J.Lee, T. Noike. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol.Bioeng.,2000,68(3):269-278
    [24]H.H. P. Fang, H.Liu. Hydrogen production from wastewater by acidogenic granular sludge. W at.Sci. Tech,2003,47(1):153-158
    [25]J.S. Chang, K, S.Lee, P. J.Lin. Biohydrogen production with fixed-bed bioreactors.Int. J. Hydrogen Energy,2002,27:1167-1174
    [26]K. S.Lee, Y. S.Lo, Y.C.Lo, et al.H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors.Biotechnology Letters,2003,25:133-138
    [27]杨占春.餐厨垃圾生物法制高浓度氢气的研究.南京工业大学硕士论文,2006:49-50
    [28]陈丽琼,黄兵,施娟娟等.冰淇淋生产废水厌氧生物发酵制氢试验研究.工业用水与废水,2009,40(6):47-52
    [29]包红旭,王爱杰,任南琪.预处理方法对细菌降解玉米秸秆产氢能力的影响.大连海事大学学报,2008,34(2):41-52
    [30]Li Dong, Yuan Zhenhong, Sun Yongming, et al.Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation.Int. J. Hydrogen Energy,2009,34:812-820
    [31]Gustavo Davila-Vazquez, Ciria Berenice Cota-Navarro, Luis Manuel Rosales-Colunga, et al.Continuous biohydrogen production using cheese whey:Improving the hydrogen production rate,International Journal of Hydrogen Energy,2009,34(10):4296-4304
    [32]Juan Wei,Zuotao Liu, Xin Zhang. Biohydrogen production from starch wastewater and application in fuel cell.International Journal of Hydrogen Energy,2010,35(7):2949-2952
    [33]S.Venkata Mohan, G.Mohanakrishna,S.Veer Raghavulu, et al.Enhancing biohydrogen production from chemical wastewater treatment in anaerobic sequencing batch biofilm reactor (AnSBBR) by bioaugmenting with selectively enriched kanamycin resistant anaerobic mixed consortia. International Journal of Hydrogen Energy,2007, 32(15):3284-3292
    [34]Maolin Zhang, Yaoting Fan, Yan Xing, et al.Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures.Biomass and Bioenergy,2007,31:250-254
    [35]Meiling Chong, Vikineswary Sabaratnam, Yoshihito Shirai, et al.Biohydrogen production from biomass and industrial wastes by dark fermentation. International Journal of Hydrogen Energy,2009,34(8):3277-3287
    [36]O. Mizuno, R.Dinsdale, F. R. Hawkes, et al.Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresource Technology,2000,73(1):59-65
    [37]C. Y. Lin, C.H.Lay. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int.J.Hydrogen Energy,2004,29:41-45
    [38]秦智.生物制氢反应器发酵类型控制对策及生物强化作用研究.哈尔滨工业大学博士论文.2003:12-13
    [39]郝小龙.有机废水在UASB反应器中的厌氧发酵产氢的试验研究.合肥工业大学硕士论文.2003:77
    [40]H.Q.Yu, Z. H.Zhu, H.S.Zhang. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic culture. Int. J.Hydrogen Energy,2002, 27:1359-1365
    [41]朱葛夫,李建政,吕炳南等.大豆蛋白废水处理系统的产氢性能分析.武汉理工大学学报,2006,28(专辑Ⅱ):196-201
    [42]李建政,蒋凡,郑国臣.ABR发酵产氢系统的控制运行及产氢效能.环境科学学报,2010,30(1):79-87
    [43]E. L. C.de Amorima,A.R.Barrosb,M. H. R. Z.Damianovic,et al.Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose. Int. J.Hydrogen Energy,2009,34:783-790
    [44]王相晶.发酵产氢细菌B49生理特性及其固定化应用研究。哈尔滨工业大学博士论文.2003:31-33
    [45]左剑恶,王妍春,陈浩.膨胀颗粒污泥床(EGSB)反应器的研究进展.中国沼气,2000,18(4):3-8
    [46]王伟,阮文权,邹华等.EGSB反应器处理高浓硫酸盐废水.食品与生物技术学报, 2006,25(6):23-28
    [47]董春娟,吕炳南,赵庆良.EGSB反应器处理啤酒废水运行影响因素研究.给水排水,2007,33(5):170-173
    [48]Libing Chu, Fenglin Yang, Xingwen Zhang. Anaerobic treatment of domestic wastewater in a membrane-coupled expended granular sludge bed (EGSB)reactor under moderate to low temperature. Process Biochemistry,2005,40:1063-1070
    [49]Richard M.Dinsdale, Freda R. Hawkes,Dennis L. Hawkes. Anaerobic digestion of short chain organic acids in an expanded granular sludge bed reactor. Water Research,2000,34(9):2433-2438
    [50]马兴冠,崔伟,刘知远等.EGSB-好氧组合工艺处理极压剂离型剂混合废水的研究.辽宁化工,2010,39(2):147-149
    [51]张代钧,阎青,祖波.EGSB-BAF集成系统实现厌氧氨氧化、甲烷化和短程硝化反硝化.环境科学研究,2009,22(4):467-472
    [52]王春,李秀芬,华兆哲等.FOP-EGSB-MBR组合工艺处理2-萘酚生产废水.环境工程学报,2008,2(8):1036-1039
    [53]张勇,龚敏,赵九旭等.EGSB-SBR组合工艺对城市污水脱氮除磷试验研究.环境科学与技术,2007,30(5):68-71
    [54]颜智勇,胡勇有,田静等.厌氧颗粒污泥膨胀床(EGSB)-稳定塘工艺处理木薯淀粉废水.给水排水,2004,30(1):53-55
    [55]Nanqi Ren, Wanqian Guo, Xiangjing Wang, et al.Hydrogen energy recovery from high strength organic wastewater with ethanol type fermentation using acidogenic EGSB reactor. Journal of Harbin Institute of Technology (New Series),2005,12(6):603-607
    [56]Wanqian Guo, Nanqi Ren.Zhaobo Chen, et al.Simultaneous biohydrogen production and starch wastewater treatment in an acidogenic expanded granular sludge bed reactor by mixed culture for long-term operation.Int. J.Hydrogen Energy,2008,33:7397-7404
    [57]http://www.ndcnc.gov.cn/datalib/2003/AgroKnowledge/DL/DL-461362/
    [58]蔡葆,张文彬,黄彩云.开发能源甜菜产业势在必行.中国糖科,2009,(1):76-80
    [59]I.Hussy, F. R. Hawkes, R. Dinsdale, et al. Continuous fermentative hydrogen production from surose and sugarbeet. Int. J. Hydrogen Energy,2005,30:471-483
    [60]N. Martinez-Pereza, S.J.Cherryman, G. C.Premier, et al.The potential for hydrogen-enriched biogas production from crops:Scenarios in the UK. Biomass and Bioenergy,2007, 31:95-104
    [61]国家环保总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)(增补版).北京:中国环境科学出版社,2002:211-213
    [62]G.Dinopoulou, T. Rudd.J.Lester. Anaerobic acidogensis of a complex wastewater:I. The influence of operational parameters on reactor performance.Bioech.& Bioeng.,1988, 31:958-968
    [63]M.Dohnayos,B.Kosova, J.Zabranska, P. Grau. Production and utilization of volatile fatty acids in various types of anaerobic reactors.Wat. Sci.Tech.,1985,17:191-205
    [64]A.M. Breure, J.G. van Andel.Hydrolysis and acidogenic fennentation of a protein, gelatin, in an anaerobic continuous culture. Appl.Microbiol. Biotechnol.,1984,20:40-45
    [65]H.J.Gijzen, Kor B.Zwart, F. J.M. Verhagen, et al.High-rate two-phase process for the anaerobic degradation of cellulose, employing rumen microorganisms for an efficient acidogenesis.Biotech.& Bioeng.,1988,31:418-425
    [66]A. Cohen, J.M. Gemert, R. J.Zoetemeyer, et al.Main characteristics and stoichiometric aspects of acidogenesis of soluble carbohydrate containing wastewater. Proc. Biochem., 1984,19(6):228-232
    [67]R. J.Zoetemeyer, P. Arnoldy, A.Cohen, et al.Influence of temperature on the anaerobic acidification of glucose in a mixed culture forming part of a two-stage digestion process. Water Research,1982,16(3):313-321
    [68]任南琪,王宝贞.有机废水发酵法生物制氢技术.黑龙江:黑龙江科学技术出版社,1994:32-35
    [69]任南琪,王爱杰,马放.产酸发酵微生物生理生态学.北京:科学出版社,2005:56-58
    [70]http://baike.baidu.com/view/281988.htm?fr=ala0_1_1
    [71]张全国,尤希凤,张军合.生物制氢技术研究现状及其进展.生物质化学工程,2006,40(1):27-31
    [72]刘一威,王爱杰,陈瑛.糖蜜废水生物制氢研究进展.中国甜菜糖业,2007,(3):30-34
    [73]王宝泉,方正.厌氧酸化法的启动及控制因素的探讨.西安建筑科技大学学报,1997,29(2):142-146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700