MAPK途径在盾壳霉产孢及重寄生作用中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核盘菌(Sclerotinia sclerotiorum (Lib.) de Bary)是一种-世界性分布的病原真菌,能导致多种重要作物的病害。盾壳霉(Coniothyrium minitans)是防治菌核病的一种重要生防菌。盾壳霉分生孢子的形成对其完成自身的生活史及重寄生作用非常重要。关于盾壳霉的产孢机理已有一些报道,但盾壳霉产孢是一个非常复杂的过程,分生孢子形成的调控网络目前尚不清晰。本论文主要以白盾壳霉T-DNA插入体库中筛选到的一株产孢缺陷型突变体ZS-1T1000为研究对象,通过TAIL-PCR等技术获得了T-DNA的侧翼序列,并以此展开研究了盾壳霉中与细胞壁完整性相关的MAPK途径(CWI-MAPK)在盾壳霉重寄生、产孢及其维系自身细胞壁稳定过程中的作用。同时也研究了与酵母中的另一MAPK途径,FUS3/KSS1MAPK途径中STE7的同源物CmSTE7在盾壳霉寄生核盘菌菌核中的作用,主要研究结果如下:
     1)突变体ZS-1T1000丧失产孢能力系由T-DNA单拷贝插入破坏所致,T-DNA插入破坏了一个编码蛋白激酶激酶激酶的CmBCK1基因。CmBCK1基因的3’临近末端处含有一个内含子,基因编码区序列(CDS, coding sequence)为5361bp,编码大小为1786aa的蛋白质。T-DNA插入在该基因的5100bp位点,破坏了该蛋白质的蛋白激酶催化保守结构域.CmBCK1基因在盾壳霉基因组中为单拷贝基因,T-DNA的插入导致CmBCK1功能缺失,致使ZS-1T1000不能形成分生孢子器及分生孢子,寄生菌核能力显著下降,对细胞壁合成抑制剂及细胞壁降解酶敏感,菌落中央气生菌丝发生自溶,产色素能力显著下降。
     2) CmBCK1基因敲除转化子丧失产孢能力,中央的气生菌丝出现自溶现象,产色素能力显著下降,对细胞壁合成抑制剂及细胞壁降解酶敏感,在寄生菌核能力方面存在缺陷,寄生能力显著下降,其表型与突变体ZS-1T1000类似。
     3)根据序列同源性,自盾壳霉中克隆了酵母CWI-MAPK途径中BCK1下游Slt2的同源基因CmSlt2。CmSlt2基因含有5个内含子,CDS为1254bp,编码大小为417aa的蛋白质。与CmBCK1突变体类似,CmSlt2基因的敲除转化了也丧失了产孢能力,寄生核盘菌菌核能力显著下降,增加对细胞壁合成抑制剂及细胞壁降解酶的敏感性,影响色素的形成,菌落中央菌丝自溶。CmSlt2突变体的缺陷表型可被自身的CmSlt2基因互补所恢复。
     4)结合CmBCK1及CmSlt2在盾壳霉中功能,表明CWI-MAPK途径参与调控盾壳霉的产孢、重寄生作用、色素形成及维持细胞壁稳定。
     5)从盾壳霉中克隆了与酵母FUS3/KSS1MAPK途径中STE7同源的CmSTE7。 CmSTE7基因含有3个内含子,CDS为1362bp,编码大小为453aa的蛋白质。CmSTE7突变体菌落白色,不产生色素(后期在培养基基质中产生微量的色素),不能形成分生孢子器,气生菌丝增多,菌丝顶端分支增多,对核盘菌菌核的重寄生能力显著下降。结果表明CmSTE7参与调控盾壳霉的分生孢子器形成、重寄生作用及色素的产生。
     综上所述,MAPK信号途径中的CWI-MAPK途径及FUS3/KSS1MAPK途径在盾壳霉产孢及重寄生过程中起着至关重要的作用,研究结果为阐明盾壳霉产孢及重寄生的作用机制提供了理论基础,丰富了丝状真菌的发育和致病相关的分子生物学内容,同时也为高效地规模化生产盾壳霉分生孢子提供了理论依据。
Sclerotinia sclerotiorum (Lib.) de Bary is a worldwide fungal pathogen causing serious diseases on many economically important crops. Coniothyrium minitans is an important biocontrol agent against Sclerotinia diseases. The conidiation of C. minitans is very important to its life cycle and mycoparasitism. Previous work had reported about the conidiation of C. minitans, however, the complex network that regulates the conidiation is still not clear. In this thesis, the conidiation deficient mutant ZS-1T1000, screened from T-DNA insertional mutagenesis library of ZS-1, was investigated. The flanking sequence of the T-DNA insertional site was amplified using TAIL-PCR, and based on the conidiation-related gene that blocked in the mutant ZS-1T1000, we investigated the functions of cell wall integrity MAPK pathway (CWI-MAPK) which participates in the mycoparasitism, conidiation and maintaining its cell wall integrity in C. minitans. Furthermore, we also analyzed the functions of CmSTE7, the homolog of STE7in the FUS3/KSS1MAPK pathway of Saccharomyces cerevisiae, in sclerotial mycoparasitism of C. minitans. Results achieved so far were summarized as following:
     a) The conidiation deficient mutant ZS-1T1000was blocked by single copy of T-DNA insertion, and T-DNA inserted in the gene CmBCK1which encode a protein kinase kinase kinase. The CmBCK1contains one intron at the3'terminal end, and the coding sequence (CDS) of CmBCK1is5361bp which encodes a1786aa protein. The T-DNA insertional site exists at5100bp, and destroys the conservative catalytic domain. Only one copy of CmBCK1exists in the genome of C. minitans, and the lost function of CmBCKl leading to the lack of pycnidium and conidiation, significantly reduced the ability of sclerotial parasitization, hypersensitive to the cell wall inhibitor and cell wall lyases, the autolytic aerial mycelia and reduced pigmentation noticeably in the mutant ZS-1T1000.
     b) Targeted disruption of the CmBCK1showed that the ΔCmBCK1mutant was uncapable of conidiation; autolytic mycelia in center of colony, decreased melanin production, hypersensitive to the cell wall inhibitor and cell wall lyases, and defective in the mycoparasitization, these deficiencies were similar to the mutant ZS-1T1000.
     c) From C. minitans, the Slt2homolog CmSlt2which downstream of BCK1in the CWI-MAPK pathway was obtained. The CmSlt2contains5introns, and the CDS of CmSlt2is1254bp which encodes a417aa protein. Similar to the CmBCK1mutant, Cmslt2disruption mutants lost the ability to produce the conidia, significantly decreased in the sclerotial parasitization, increased in the susceptibility to the cell wall inhibitor and cell wall lyases and defective in the pigmentation. These defective phenotypes were restored by the complementation of CmSlt2gene.
     d) Taken together, the results from CmBCK1and Cmslt2suggest that the CWI-MAPK pathway is essential for the conidiation, sclerotial mycoparasitism, pigmentation, and maintenance the stability of cell wall in C. minitans.
     e) CmSTE7, the homolog of STE7from the FUS3/KSS1MAPK pathway of S. cerevisiae, was obtained from C. minitans. The CmSTE7contains3introns, and the CDS of CmSTE7is1362bp which encodes a453aa protein. CmSTE7disruption mutants showed a white colony, failed to produce melanin (slight melanin produced in the PDA medium after long time incubation), failed to form pycnidium, increased the number of aerial hyphae and multibranches, and extremely decreased the ability of sclerotial parasitization. These results suggest that CmSTE7involves in sclerotial mycoparasitism, the formation of pycnidium and melanin production in C. minitans.
     The MAPK pathways involved in the regulation of the various development procedures in mycoparasite fungus C. minitans had been implicated in this thesis, the results suggested that CWI-MAPK and FUS3/KSS1MAPK pathway played critical roles in the conidiation and sclerotial mycoparasitism in C. minitans. These progeny could be a theoretical basis to elucidate the complex progress of the conidiation and sclerotial mycoparasitism in C. minitans, advance our knowledge of filamentous fungal biology and the molecular biology of pathogenicity, and also have important theoretical significance to the commercial usage of C. minitans as the biocontrol agent.
引文
1.高俊明,王双双,刘慧平,韩巨才.菌核重寄生菌盾壳霉生物学特性研究.山西农业大学学报,2002,22:22-25.
    2.宫晓艳.盾壳霉T-DNA插入体库的构建及两个分生孢子形成相关基因的克隆.[博士学位论文].武汉:华中农业大学图书馆,2007.
    3.胡燕梅,杨龙,李国庆.重寄生真菌盾壳霉产生几丁质酶的条件优化.中国生物防治,2010,26:167-173.
    4.姜道宏,李国庆,易先宏,付艳平,工道本.盾壳霉所产抗细菌物质的特性.植物病理学报,1998,28:29-32.
    5.姜道宏,李国庆,易先宏,王道本.影响盾壳霉寄生核盘菌的几个生态因子分析.植物病理学报,1997,27:47-52.
    6.姜道宏.核盘菌寄生菌盾壳霉(Coniothyrium minitans)的生物学及其寄生生态学研究.[硕士学位论文].武汉:华中农业大学图书馆,1995.
    7.李国庆,王道本,张顺和,但汉鸿.菌核寄生菌盾壳霉的研究I.华中农业大学学报,1995,125-129.
    8.李国庆,杨龙,姜道宏,黄俊斌.重寄生菌盾壳霉及其防治核盘菌菌核病的研究进展,湖北植保(创刊20周年特辑).2009,54-58.
    9.李金秀,陈文瑞,秦芸.油菜土壤中与核盘菌菌核存活有关的真菌.四川农业大学学报,1997,15:1-5.
    10.李模孝.盾壳霉T-DNA标记插入突变体库的构建及其质量评估.[硕士学位论文].武汉:华中农业大学图书馆,2004.
    11.罗宽,任新国,周比文,陈道炎,杨健.油菜菌核病菌菌核上寄生真菌的研究.中国油料,1987,3:40-44.
    12.缪华军,李国庆.盾壳霉抗杀菌剂vinclozolin的诱变及突变体的生防潜力.中国生物防治,2006,21:73-77.
    13.王爱琴.以油菜秸秆为主要基质发酵生产盾壳霉分生孢子的工艺改进.[硕士学位论文].武汉:华中农业大学图书馆,2007.
    14.王英超,李国庆,方媛,姜道宏.利用油菜秸秆培养重寄生菌盾壳霉分生孢子.中国生物防治,2006,22:308-312.
    15.韦善君,陈学章,李国庆,蒌道宏,王道本.盾壳霉再油菜花瓣上萌发的影响因子分析.华中农业大学学报,1999.18:554-557.
    16.韦善君.盾壳霉在油菜花瓣上萌发的因子分析和防治核盘菌菌核病的研究.[硕士学位论文].武汉:华中农业大学图书馆,2000.
    17.韦善君,李国庆,姜道宏,王道本.草酸对重寄生真菌盾壳霉分生孢子萌发和菌丝生长的影响.植物病理学报,2004,34:199-203.
    18.杨新美.油菜菌核病菌(Sclerotinia sclerotiorum)在我国的寄主范围及生态特性的研究.植物病理学报,1959,5:110-121.
    19. Abdullah MT, Ali NY, Suleman P. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus Amyloliquefaciens. Crop Prot,2008,27:1354-1359.
    20. Abeysinghe S. The effect of mode of application of Bacillus subtilis CA32r on control of Sclerotium rolfsii on Capsicum annuum. Arch Phytopathol Plant Protection,2009,42:835-846.
    21. Adams PB and Ayers WA. Biological control of Sclerotinia lettuce drop in the field by Sporides-mium sclerotivorum. Phytopathology,1982,72:485-488.
    22. Adams PB and Ayers WA. Ecology of Sclerotinia species. Phytopathology,1979,69:896-899.
    23. Adams PB. Comparison of antagonists of Sclerotinia species. Phytopathology,1989,79:1345-1347.
    24. Adams PB. The potential of mycoparasites for biological control of plant diseases. Annu Rev Phytopathol,1990,28:59-72.
    25. Adams TH, Boylan MT, Timberlake WE. brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell,1988,54:353-362.
    26. Adams TH, Wieser JK, Yu JH. Asexual sporulation in Aspergillus idulans. Microbiol Mol Biol Rev,1998,62:35-54.
    27. Adler A, Park YD, Larsen P, Nagarajan V, Wollenberg K, Qiu J, Myers TG, Williamson PR. A Novel specificity protein 1 (SP1)-like gene regulating protein kinase c-1 (Pkcl)-dependent cell wall integrity and virulence factors in Cryptococcus neoformans. Eukaryot Cell,2012,11:109-118.
    28. Aeron A, Dubey RC, Maheshwari DK, Pandey P, Bajpai VK, Kang SC. Multifarious activity of bioformulated Pseudomonas fluorescens PS1 and biocontrol of Sclerotinia sclerotiorum in Indian rapeseed (Brassica campestris L.). Euro J Plant Pathol,2011,131:81-93.
    29. Ahmed AHM and Tribe HT. Biological control of white rot of onion(Sclerotinia cepivorum) by Coniothyrium minitans. Plant pathol,1977,26:75-78.
    30. Alonso-Monge R, Navarro-Garcia F, Roman E, Negredo Al, Eisman B, Nombela U, Pla J. The Hogl mitogen-activated protein kinase is essential in the oxidative stress response and chlamydo-spore formation in Candida albicans. Eukaryot Cell,2003,2:351-361.
    31. Alonso-Monge R, Roman E, Nombela C, Pla J. The MAP kinase signal transduction network in Candida albicans. Microbiology,2006,152:905-912.
    32. Alspaugh JA, Cavallo LM, Perfect JR, Heitman J. RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol Microbiol,2000,36:352-365.
    33. Alspaugh JA, Perfect JR, Heitman J. Cryptococcus neoformans mating and virulence are regu-lated by the G-protein alpha subunit GPA1 and cAMP. Gene Dev,1997,11:3206-3217.
    34. Altomare C, Norvelli WA, Bjorkman T, Harman GE. Solubilization of phosphates and micro-nutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol,1999,65:2926-2933.
    35. Alvarez F, Castro M, Principe A, Borioli G, Fischer S, Mori G, Jofre E. The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of roducing the cyclic lipo-peptides iturin or surfactin and fengycin are effective in biocontrol of Sclerotinia stem rot disease. J Appl Microbiol,2012,112:159-174.
    36. Angeli D, Maurhofer M, Gessler C, Pertot I. Existence of different physiological forms within genetically diverse strains of Ampelomyces quisqualis. Phytoparasitica,2012,40:37-51.
    37. Angeli D, Pellegrini E, Pertot I. Occurrence of Erysiphe necator chasmothecia and their natural parasitism by Ampelomyces quisqualis. Phytopathology,2009,99:704-710.
    38. Arana DM, Nombela C, Alonso-Monge R, Pla J. The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans. Microbiology,2005,151: 1033-1049.
    39. Araujo FF, Henning AA, Hungria M. Phytohormones and antibiotics produced by Bacillus sub-tilis and their effects on seed pathogenic fungi and on soybean root development. World J Microb Biot,2005,21:1639-1645.
    40. Ashish K, Scher K, Mukherjee M, Pardovitz-Kedmi E, Sible GV, Singh US, Kale SP, Mukherjee PK, Horwitz BA. Overlapping and distinct functions of two Trichoderma virens MAP kinases in cell-wall integrity, antagonistic properties and repression of conidiation. Biochem Bioph Res Co, 2010,398:765-770.
    41. Athukorala SNP, Fernando WGD, Rashid KY, de Kievit T. The role of volatile and non volatile antibiotics produced by Pseudomonas chlororaphis strain PA23 in its root colonization and control of Sclerotinia sclerotiorum. Biocontrol Sci Techn,2010,20:875-890.
    42. Ayers WA and Adams PB. Mycoparasitism of sclerotia of Sclerotinia and Sclerotium species by Sporidesmium sclerotivorum. Can J Microb,1979,25:17-23.
    43. Bae YS and Knudsen GR. Influence of a fungus-feeding nematode on growth and biocontrol efficacy of Trichoderma harzianum. Phytopathology,2001,91:301-306.
    44. Baharlouei A, Sharifi-Sirchi GR, Bonjar GHS. Biological control of Sclerotinia sclerotiorum (oilseed rape isolate) by an effective antagonist Streptomyces. African J Biotech,2011,10:5785-5794.
    45. Bahn YS, Kojima K, Cox GM, Heitman J. A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Mol Biol Cell,2006,17:3122-3135.
    46. Bahn YS, Kojima K, Cox GM, Heitman J. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. Mol Biol Cell,2005,16:2285-2300.
    47. Bailey-Shrode L and Ebbole DJ. The fluffy gene of Neurospora crassa encodes a Gal4p-type C6 zinc cluster protein required for conidial development. Genetics,1998,48:1813-1820.
    48. Bailey-Shrode L and Ebbole DJ. The fluffy Gene of Neurospora crassa is necessary and sufficient to induce conidiophore development genetics. Genetics,2004,166:1741-1749.
    49. Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G. White collar-1, a central re-gulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J,1996,15:1650-1657.
    50. Banno S, Noguchi R, Yamashita K, Fukumori F, Kimura M, Yamaguchi I, Fujimura M. Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa. Curr Genet,2007,51:197-208.
    51. Barahona E, Navazo A, Martinez-Granero F, Zea-Bonilla T, Perez-Jimenez RM, Martin M, Rivilla R. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl Environ Microb,2011,77: 5412-5419.
    52. Barba-Ostria C, Lledias F, Georgellis D. The Neurospora crassa DCC-1 protein, a putative histi-dine kinase, is required for normal sexual and asexual development and carotenogenesis. Eukar-yot Cell,2011,10:1733-1739.
    53. Bardin D and Huang HC. Research on biology and control of Selerorinia diseases in Canada. Can J Plant Pathol,2001,23:88-98.
    54. Bardwell L. A walk-through of the yeast mating pheromone response pathway. Peptides.2004,25: 1465-1476.
    55. Basse CW and Steinberg G. Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity. Mol Plant Pathol,2004,5:83-92.
    56. Belgrove A, Steinberg C, Viljoen A. Evaluation of nonpathogenic Fusarium oxysporum and Pse-udomonas fluorescens for panama disease control. Plant Dis,2011,95:951-959.
    57. Bennett AJ, Leifert C, Whipps JM. Survival of Coniothyrium minitans associated with sclerotia of Sclerotinia sclerotiorum in soils. Soil Biol Biochem,2006,38:164-172.
    58. Bennett AJ, Leifert C, Whipps JM. Survival of the biocontrol agents Coniothyrium minitans and Bacillus subtilis MBI 600 introduced into pasteurised, sterilised and non-sterile soils. Soil Biol Biochem,2003,35:1565-1573.
    59. Bennett RJ and Johnson AD. Mating in Candida albicans and the search for a sexual cycle. Annu Rev Microbiol,2005,59:233-255.
    60. Benson DR and Silvester WB. Biology of Frankia strains, actinomycete symbionts of actinor-hizai plants. Microbiol Rev,1993,57:293-319.
    61. Berry C, Fernando WGD, Loewen PC, de Kievit TR. Lipopeptides are essential for Pseudomonas sp. DF41 biocontrol of Sclerotinia sclerotiorum. Biol Control,2010,55:211-218.
    62. Bhattacharyya RP, Remenyi A, Good MC, Bashor CJ, Falick AM, Lim WA. The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Science,2006,311:822-826.
    63. Biswas K and Morschhauser J. The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol Microbiol,2005,56:649-669.
    64. Boland GJ and Hall R. Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol,1994, 16:93-108.
    65. Bolton MD, Thomma BP, Nelson BD. Sclerotinia sclerotiorum (Lib.) de Bary:biology and mole-cular traits of a cosmopolitan pathogen. Mol Plant Pathol,2006,7:1-16.
    66. Bolwerk A, Lagopodi AL,Wijfjes AHM, Lamers GEM, Chin-A-Woeng TFC, Lugtenberg BJJ, Bloemberg GV. Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant-Microbe Interact,2003,16:983-993.
    67. Boukaew S, Chuenchit S, Petcharat V. Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili pepper. Biocontrol,2011,56:365-374.
    68. Brachmann A, Schirawski J, Muller P and Kahmann R. An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis. EMBO J,2003,22:2199-2210.
    69. Braun BR and Johnson AD. TUP1, CPHI and EFG1 make independent contributions to filament-tation in Candida albicans. Genetics,2000,155:57-67.
    70. Brefort T, Muller P, Kahmann R. The high-mobility-group domain transcription factor Ropl is a direct regulator of prfl in Ustilago maydis. Eukaryot Cell,2005,4:379-391.
    71. Bremer E, Huang HC, Selinger LJ, Davis JS. Competence of Coniothyrium minitans in preven-ting infection of bean leaves by Sclerotinia sclerotiorum. Plant Pathol Bull,2000,9:69-74.
    72. Brunner K, Peterbauer CK, Mach RL, Lorito M, Zeilinger S, Kubicek CP. The Nag1 N-acetyl-glucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr Genet,2003,43:289-295.
    73. Bruno KS, Tenjo F, Li L, Hamer JE, Xu JR. Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryot Cell,2004,3:1525-1532.
    74. Budge SP and Whipps JM. Glasshouse trials of Coniothyrium minitans and Trichoderma species for the biological control of Sclerotinia sclerotiorum in celery and lettuce. Plant Pathol,1991,40: 59-66.
    75. Budge SP and Whipps JM. Potential for integrated control of Sclerotinia sclerotiorum in glass-house lettuce using Coniothyrium minitans and reduced fungicide application. Phytopathology, 2001,91:221-227.
    76. Bulat SA, Lubeck M, Mironenko N, Jensen DF, Lubeck PS. UP-PCR analysis and ITS1 ribo-typing of strains of Trichoderma and Gliocladium. Mycol Res,1998,102:933-943.
    77. Bussink HJ and Osmani SA. A mitogen-activated protein kinase (MPKA) is involved in polarized growth in the filamentous fungus Aspergillus nidulans. FEMS Microbiol Lett,1999,173:117-125.
    78. Campbell WA. A new species of Coniothyrium minitans parasitic on sclerotia. Mycologia,1947, 39:190-195.
    79. Cao L, Qiu Z, You J, Tan H, Zhou S. Isolation and characterization of endophytic Streptomyces strains from surface-sterilized tomato (Lycopersicon esculentum) roots. Lett Appl Microb,2004, 39:425-430.
    80. Cao Y, Zhang ZH, Ling N, Yuan YJ, Zheng XY, Shen B, Shen QR. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fert Soils,2011,47:495-506.
    81. Carbo N and Perez-Martin J. Activation of the cell wall integrity pathway promotes escape from G2 in the fungus Ustilago maydis. PLoS Genet,2010,6:e1001009.
    82. Cazorla FM, Duckett SB, Bergstrom ET, Noreen S, Odijk R, Lugtenberg BJ, Thomas-Oates JE, Bloemberg GV. Biocontrol of avocado Dematophora root rot by the antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol Plant-Microbe Interact,2006,19:418-428.
    83. Chandanie WA, Kubota M, Hyakumachi M. Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant Soil,2006,286:209-217.
    84. Chang YC and Penoyer LA. Properties of various RHO1 mutant alleles of Cryptococcus neofor-mans. J Bacteriol,2000,182:4987-4991.
    85. Chang YC, Miller GF, Kwon-Chung KJ. Importance of a developmentally regulated pheromone receptor of Cryptococcus neoformans for virulence. Infect Immun,2003,71:4953-4960.
    86. Chang YC, Timberlake WE. Identification of Aspergillus brlA response elements (BREs) by genetic selection in yeast. Genetics,1992,133:29-38.
    87. Chauhan N, Inglis D, Roman E, Pla J, Li D, Calera JA, Calderone R. Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Eukaryot Cell,2003,2:1018-1024.
    88. Chen CB, Harel A, Gorovoits R, Yarden O, Dickman MB. MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and cAMP sensing. Mol Plant-Microbe Interact,2004,17:404-413.
    89. Chen CH, DeMay BS, Gladfelter A, Dunlap JC, Loros JJ. Physical interaction between VIVID and white collar complex regulates photoadaptation in Neurospora. Proc Natl Acad Sci USA, 2010,107:16715-16720.
    90. Chen JS, Zheng W, Zheng SQ, Zhang DM, Sang WJ, Chen X, Li GP, Lu GD, Wang ZH. Racl is required for pathogenicity and Chm1-dependent conidiogenesis in rice fungal pathogen Magna-porthe grisea. PLoS Pathog,2008,4:e1000202.
    91. Chen JY, Chen J, Lane S, Liu HP. A conserved mitogen-activated protein kinase pathway is required for mating in Candida albicans. Mol Microbiol,2002,46:1335-1344.
    92. Chen RE and Thorner J. Function and regulation in MAPK signaling pathways:lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta,2007,1773:1311-1340.
    93. Chen XH, Scholz R, Borriss M, Junge H, Moegel G, Kunz S, Borriss R. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J Biotech,2009,140:38-44.
    94. Cheng JS, Jiang DH, Yi XH, Fu YP, Li GQ, Whipps JM. Production, survival and efficacy of Coniothyrium minitans conidia produced in shaken liquid culture. FEMS Microbiol Lett,2003, 227:127-131.
    95. Cheng P, Yang Y, Liu Y. Interlocked feedback loops contribute to the robustness of the Neuro-spora circadian clock. Proc Natl Acad Sci USA,2001,98:7408-7413.
    96. Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ. Root coloni-zation is essential for biocontrol of tomato foot and root rot by the phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391. Mol Plant-Microbe Interact,2000,13: 1340-1345.
    97. Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift KMGM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, Tichy HV, de Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ. Biocontrol by henazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant-Microbe Interact,1998,11:1069-1077.
    98. Chitrampalam P, Figuili PJ, Matheron ME, Subbarao KV, Pryor BM. Biocontrol of lettuce drop caused by Sclerotinia sclerotiorum and S. minor in desert agroecosystems. Plant Dis,2008,92: 1625-1634.
    99. Cho Y, Cramer RA, Kim K, Davis J, Mitchell TK, Figuli P, Pryor BA, Lemasters E, Lawrence CB. The Fus3/Kssl MAP kinase homolog Amkl regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola. Fungal Genet Biol,2007,44:543-553.
    100. Choi J, Kim Y, Kim S, Park J, Lee YH. MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genet Biol,2009,46:243-254.
    101. Choi W and Dean RA. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell,1997,9:1973-1983.
    102. Chou S, Lane S, Liu HP. Regulation of mating and filamentation genes by two distinct Stel2 complexes in Saccharomyces cerevisiae. Mol Cell Biol,2006,26:4794-4805.
    103. Clarke DL, Woodlee GL, McClelland CM, Seymour TS, Wickes BL. The Cryptococcus neofor-mans STE11 alpha gene is similar to other fungal mitogen-activated protein kinase kinase kinase (MAPKKK) genes but is mating type specific. Mol Microbiol,2001,40:200-213.
    104. Cosano IC, Martin H, Flandez M, Nombela C, Molina M. Piml, a MAP kinase involved in cell wall integrity in Pichia pastoris. Mol Genet Genomics,2001,265:604-614.
    105. Cousin A, Mehrabi R, Guilleroux M, Dufresne M, Van der Lee T, Waalwijk C, Langin T, Kema GHJ. The MAP kinase-encoding gene MgFus3 of the non-appressorium phytopathogen Myco-sphaerella graminicola is required for penetration and in vitro pycnidia formation. Mol Plant Pathol,2006,7:269-278.
    106. Cunha W, Tinoco MLP, Pancoti HL, RibeiroRE, Aragao FJL. High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylase gene. Plant Pathol,2010,59:654-660.
    107. Dandurand LM, Mosher RD, Knudsen GR. Combined effects of Brassica napus seed meal and Trichoderma harzianum on two soilborne plant pathogens. Can J Microbiol,2000,46:1051-1057.
    108. Davidson RC, Nichols CB, Cox GM, Perfect JR, Heitman J. A MAP kinase cascade composed of cell type specific and non-specific elements controls mating and differentiation of the fungal pathogen Cryptococcus neoformans. Mol Microbiol,2003,49:469-485.
    109. De Bruijn I, de Kock MJD, Yang M, de Waard P, van Beek TA, Raaijmakers JM. Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudo- monas species. Mol Microbiol,2007,63:417-428.
    110. De Weert S, Kuiper I, Lagendijk EL, Lamers GEM, Lugtenberg BJJ. Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseu-domonas fluorescens WCS365. Mol Plant-Microbe Interact,2003,16:1185-1191.
    111. Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan HQ, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li WX, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature,2005,434:980-986.
    112. del Rio LE, Martinson CA, Yang XB. Biological control of Sclerotinia stem rot of soybean with Sporidesmium sclerotivorum. Plant Dis,2002,999-1004.
    113. Delgado-Jarana JS, Martinez-Rocha AL, Roldan-Rodriguez R, Roncero MIG, Di Pietro A. Fusa-rium oxysporum G-protein beta subunit Fgbl regulates hyphal growth, development, and virul-ence through multiple signaling pathways. Fungal Genet Biol,2005,42:61-72.
    114. Demyttenaere JC and De Pooter HL. Biotransformation of geraniol and nerol by spores of Peni-cillium italicum. Phytochemistry,1996,41:1079-1082.
    115. Deng YZ and Naqvi NI. A vacuolar glucoamylase, Sgal, participates in glycogen autophagy for proper asexual differentiation in Magnaporthe oryzae. Autophagy,2010,6:455-461.
    116. Deng YZ, Qu Z, He Y, NI Naqvi. Sorting nexin Snx41 is essential for conidiation and mediates glutathione-based antioxidant defense during invasive growth in Magnaporthe oryzae. Autophagy, 2012,8:(in press).
    117. Deng YZ, Ramos-Pamplona M, Naqvi NI. Autophagy-assisted glycogen catabolism regulates asexual differentiation in Magnaporthe oryzae. Autophagy,2009,5:33-43.
    118. DeZwaan TM, Carroll AM, Valent B, Sweigard JA. Magnaporthe grisea Pthllp is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell,1999,11:2013-2030.
    119. Di Pietro A, Garcia-Maceira FI, Meglecz E, Roncero MIG. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol Microbiol, 2001,39:1140-1152.
    120. Diamantopoulous A, Litkei J, Skopa C, Christias C. Effects of inhibitors of sclerotium formation on the sclerotial mycoparasite Coniothyrium minitans and its host Sclerotinia sclerotiorum. Mycol Res,2000,104:1449-1452.
    121.Dias BBA, Cunha WG, Morais LS, Vianna GR, Rech EL, de Capdeville G, Aragao FJ Expression of an oxalate decarboxylase gene from Flammulina sp in transgenic lettuce (Lactuca sativa) plants and resistance to Sclerotinia sclerotiorum. Plant Pathol,2006,55:187-193.
    122. Diez-Orejas R, Molero G, Navarro-Garcia F, Pla J, Nombela C, Sanchez-Perez M. Reduced virulence of Candida albicans MKC1 mutants:a role for mitogen-activated protein kinase in pathogenesis. Infect Immun,1997,65:833-837.
    123. Dixon KP, Xu JR, Smirnoff N, Talbot NJ. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell,1999,11:2045-2058.
    124. Dong XB, Ji RQ, Guo XL, Foster SJ, Chen H, Dong CH, Liu YY, Hu Q, Liu SY. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta,2008,228:331-340.
    125. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukh-erjee PK, Zeilinger S, Grigoriev IV, Kubicek CP. Trichoderma:the genomics of opportunestic success. Nat Rev Microb,2011,9:749-759.
    126. Du C, Sarfati J, Latge JP, Calderone R. The role of the sakA (Hog1) and tcsB (Slnl) genes in the oxidant adaptation of Aspergillus fumigatus. Med Mycol,2006,44:211-218.
    127. Dunlap CA, Schisler DA, Price NP, Vaughn SF.Cyclic lipopeptide profile of three Bacillus sub-tilis strains; antagonists of Fusarium head blight. J Microb,2011,49:603-609.
    128. Ebbole DJ. Morphogenesis and vegetative differentiation in filamentous fungi. J Genet,1996,75: 361-374.
    129. Eisman B, Alonso-Monge R, Roman E, Arana D, Nombela C, Pla J. The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryot Cell,2006,5:347-358.
    130. Elad Y. Trichoderma harzianum T39 preparation for biocontrol of plant disease-control of Botry-tis cinerea, Sclerotinia sclerotiorum and Cladosporium flavum. Biocontrol Sci Techn,2000,10: 499-507.
    131. Eliahu N, Igbaria A, Rose MS, Horwitz BA, Lev S. Melanin biosynthesis in the maize pathogen Cochliobolus heterostrophus depends on two mitogen-activated protein kinases, Chk1 and Mps1, and the transcription factor Cmr1. Eukaryot Cell,2007,6:421-429.
    132. Emmert EA, Klimowicz AK, Thomas MG, Handelsman J. Genetics of zwittermicin A production by Bacillus cereus. Appl Environ Microbiol,2004,70:104-113.
    133. Errakhi R, Bouteau F, Lebrihi A, Barakate M. Evidences of biological control capacities of Streptomyces spp. against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L.). World J Microb Biotech,2007,23:1503-1509.
    134. Etxebeste O, Herrero-Garcia E, Araujo-Bazan L, Rodriguez-Urra AB, Garzia A, Ugalde U, Espeso EA. The bZIP-type transcription factor FlbB regulates distinct morphogenetic stages of colony formation in Aspergillus nidulans. Mol Microbiol,2009,73:775-789.
    135. Evans HC. Biological control of weeds. In mycota Ⅺ agricultural applications (Kemken F, ed.), Springer-Verlag,2002.
    136. Fernando WGD, Nakkeeran S, Zhang Y, Savchuk S. Biological control of Sclerotinia sclerotio-rum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot,2007,26: 100-107.
    137. Fogliano V, Ballio A, Gallo M, Woo S, Scala F, Lorito M. Pseudomonas lipodesipeptides and fungal cell well-degrading enzymes act synergistically in biological control. Mol Plant-Microbe Interact,2002,15:323-333.
    138. Fojtova M, Peska V, Dobsakova, Z, Mozgova I, Fajkus J, Sykorova E. Molecular analysis of T-DNA insertion mutants identified putative regulatory elements in the AtTERT gene. J Exp Bot, 2011, DOI:10.1093/jxb/err235.
    139. Fravel DR, Connick WJ, Grimm CC, Lloyd SW. Volatile compounds emitted by sclerotia of Sclerotinia minor, Sclerotinia sclerotiorum, and Sclerotium rolfsii. J Agr Food Chem,2002,50: 3761-3764.
    140. Froehlich AC, Liu Y, Loros JJ, Dunlap JC. White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science,2002,297:815-819.
    141. Fujioka T, Mizutani O, Furukawa K, Sato N, Yoshimi A, Yamagata Y, Nakajima T, Abe K. MpkA-dependent and -independent cell wall integrity signaling in Aspergillus nidulans. Eukaryot Cell,2007,6:1497-1510.
    142. Furukawa K, Hoshi Y, Maeda T, Nakajima T, Abe K. Aspergillus nidulans HOG pathway is acti-veted only by two-component signaling pathway in response to osmotic stress. Mol Microbiol, 2005,56:1246-1261.
    143. Gal-Hemed I, Atanasova L, Komon-Zelazowska M, Druzhinina IS, Viterbo A, Yarden O. Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl Environ Microb,2011,77:5100-5109.
    144. Ganem S, Lu SW, Lee B, Chou D, Hadar R, Turgeon BG, Horwitz BA. G-protein beta subunit of Cochliobolus heterostrophus in volved in virulence, asexual and sexual reproductive ability, and morphogenesis. Eukaryot Cell,2004,3:1653-1663.
    145. Gao S and Nuss DL. Distinct roles for two G protein subunits in fungal virulence, morphology, and reproduction revealed by targeted gene disruption. Proc Natl Acad Sci USA 1996,93:14122-14127.
    146. Garg H and Li H. The infection processes of Sclerotinia sclerotiorum in cotyledon tissue of a resistant and a susceptible genotype of Brassica napus. Ann Bot,2010,106:897-908.
    147. Garg H, Atri C, Sandhu PS, Kaur B, Renton M, Banga SK, Singh H, Singh C, Barbetti MJ, Banga SS. High level of resistance to Sclerotinia sclerotiorum in introgression lanes derived from hybri-dization between wild crucifers and the crop Brassica species B. napus and B. juncea. Field Crop Res,2010,117:51-58.
    148. Garrido E, Voss U, Muller P, Castillo-Lluva S, Kahmann R, Perez-Martin J. The induction of sexual development and virulence in the smut fungus Ustilago maydis depends on Crkl, a novel MAPK protein. Gene Dev,2004,18:3117-3130.
    149. Gerik KJ, Donlin MJ, Soto CE, Banks AM, Banks IR, Maligie MA, Selitrennikoff CP, Lodge JK. Cell wall integrity is dependent on the PKC1 signal transduction pathway in Cryptococcus neofo-rmans. Mol Microbiol,2005,58:393-408.
    150. Gerlagh M, Goossen-van de Geijn HM, Hoogland AE, Vereijken PFG. Quantitative aspects of infection of Sclerotinia sclerotiorum sclerotia by Coniothyrium minitans-timing of application, concentration and quality of conidial suspension of the mycoparasite. Eur J Plant Pathol,2003, 109:489-502.
    151. Gerlagh M, Goossen-van de Gejin HM, Fokkema NJ, Verreijken PFG. Long-term biosanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorum-infected crops. Phytopath-ology,1999,89:141-147.
    152. Ghabrial S and Suzuki N. Viruses of plant pathogenic fungi. Annu Rev Phytopathol,2009,47: 353-384.
    153. Giczey G, Kernyi Z, Fulop L, Hornok L. Expression of cmgl, an exo-β-Glucanase gene from Coniothyrium minitans, increase during sclerotial parasitism. App Environ Microb,2001,67: 865-871.
    154. Gilardi G, Gullino ML, Garibaldi A. Effect of fungicides and of biocontrol agents against powd-ery mildew of turnip. Commun Agric Appl Biol Sci,2008,73:21-29.
    155. Girlanda M, Perotto S, Moennel-Loccoz Y, Bergero R, Lazzari A, Defago G, Bonfante P, Luppi AM. Impact of biocontrol of Pseudomonas fluorescens CHA0 and a genetically modified derivative on the diversity of cultivable fungi in the cucumber rhizosphere. Appl Environ Microb, 2001,67:1851-1864.
    156. Glick BR, Cheng Z, Czarny J, Duan J. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol,2007,119:329-339.
    157. Goh J, Kim KS, Park J, Jeon J, Park SY, Lee YH. The cell cycle gene MoCDC15 regulates hyphal growth, asexual development and plant infection in the rice blast pathogen Magnaporthe oryzae. Fungal Genet Biol,2011,48:784-792.
    158. Gong XY, Fu YP, Jiang DH, Li GQ, Yi XH, Peng YL. L-arginine is essential for conidiation in the filamentous fungus Coniothyrium minitans. Fungal Genet Biol,2007,44:1368-1379.
    159. Gopalakrishnan C and Valluvaparidasan V. Management of okra powdery mildew using Ampelo-myces quisqualis. J Biol Control,2009,23:325-327.
    160. Gubbins S and Gilligan CA. Biological control in a disturbed environment. Phil Trans R Soc Lond B,1997,352:1935-1949.
    161. Guo J, Dai XW, Xu JR, Wang YL, Bai PF, Liu FR, Duan YH, Zhang H, Huang LL, Kang ZS. Molecular characterization of a Fus3/Kss1 type MAPK from Puccinia striiformis f. sp. tritici, PsMAPK1. PLoS One,2011a,6:e21895.
    162. Guo M, Chen Y, Du Y, Dong YH, Guo W, Zhai S, Zhang HF, Dong SM, Zhang ZG, Wang YC, Wang P, Zheng XB. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog,2011b, 7:e1001302.
    163. Gupta CP, Kumar B, Dubey RC, Maheshwari DK. Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing stem rot of peanut. BioControl,2006,51:821-835.
    164. Gupta CP, Dubey RC, Kang SC, Maheshwari DK. Antibiosis-mediated necrotrophic effect of Pseudomonas GRC2 against two fungal plant pathogens. Curr Sci,2001,81:91-94.
    165. Gustin MC, Albertyn J, Alexander M, and Davenport K. MAP kinase pathways in the yeast Sac-charomyces cerevisiae. Microbiol Mol Biol Rev,1998,62:1264-1300.
    166. Haas D and Keel C. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol,2003,41:117-153.
    167. Hamel LP, Nicole MC, Duplessis S, Ellis BE.Mitogen-activated protein kinase signaling in plant-interacting fungi:distinct messages from conserved messengers. Plant Cell,2012, DOI:10.1105/ tpc.112.096156.
    168. Han KH and Prade RA. Osmotic stress-coupled maintenance of polar growth in Aspergillus nidu-lans. Mol Microbiol,2002,43:1065-1078.
    169. Han YC, Li GQ, Yang L, Jiang DH. Molecular cloning, characterization and expression analysis of a pacC homolog in the mycoparasite Coniothyrium minitans. World J Microb Biot,2011,27: 381-391.
    170. Hanks SK, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily:kinase (catalytic) domain structure and classification. FASEB J,1995,9:576-596.
    171. Hansen JN. Antibiotics synthesized by posttranslational modification. Annu Rev Microbiol,1993, 47:535-564.
    172. Harman GE, Howel CH, Viterbo A, Chet I, LoritoM. Trichoderma species-opportunistic, avirul-ent plant symbionts. Nat Rev Microbiol,2004a,2:43-56.
    173. Harman GE, Lorito M, Lynch JM. Uses of Trichoderma spp. to alleviate or remediate soil and water pollution. Adv Appl Microbiol,2004b,56:313-330.
    174. Harman GE, Petzoldt R, Comis A, Chen J. Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo 17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology,2004c,94:147-153.
    175. Harris AR and Lumsden RD. Interactions of Gliocladium virens with Rhizoctonia solani and Pythium ultimum in non-sterile potting medium. Biocontrol Sci Techn,1997,7:77-82.
    176. Hawker LE and Madelin MF. The dormant spore. In the fungal spore:form and function. (Weber DJ and Hess WM, eds.), Wiley,1974.
    177. He QY and Liu Y. Molecular mechanism of light responses in Neurospora:from light-induced transcription to photoadaptation. Gene Dev,2005,19:2888-2899.
    178. Heidari-Tajabadi F, Ahmadzadeh M, Sharifi R. Evaluation of biocontrol efficiency of Pseudo-monas fluorescens utpf61 in different nitrogen sources. J Plant Path,2011,93:195-198.
    179. Heiniger U and Rigling D. Biological control of chestnut blight in Europe. Ann Rev Phytopathol, 1994,32:581-599.
    180. Heinisch JJ. Baker's yeast as a tool for the development of antifungal kinase inhibitors-targeting protein kinase C and the cell integrity pathway. Biochim Biophys Acta,2005,1754:171-182.
    181. Heller J, Ruhnke N, Espino J, Massaroli M, Collado IG, Tudzynski P. The MAP kinase BcSakl of Botrytis cinerea is required for pathogenic development and has broad regulatory functions beyond stress response. Mol Plant-Microbe Interact,2012,25:802-816.
    182. Heung LJ, Luberto C, Plowden A, Hannun YA, Del Poeta M. The sphingolipid pathway regulates Pkcl through the formation of diacylglycerol in Cryptococcus neoformans. J Biol Chem,2004, 279:21144-21153.
    183. Hiltunen LH, Ojanpera T, Kortemaa H, Richter E, Lehtonen MJ, Valkonen JPT. Interactions and biocontrol of pathogenic Streptomyces strains co-occurring in potato scab lesions. J Appl Microb, 2009,106:199-212.
    184. Hoes JA and Huang HC. Sclerotinia sclerotiorum:viability and separation of sclerotia from soil. Phytopathology,1975,65:1431-1432.
    185. Hof C, Eisfeld K, Antelo L, Foster AJ, Anke H. Siderophore synthesis in Magnaporthe grisea is essential for vegetative growth, conidiation and resistance to oxidative stress. Fungal Genet Biol, 2009,46:321-332.
    186. Hou XW, Boyetchko SM, Brkic M, Olson D, Ross A, Hegedus D. Characterization of the anti-fungal activity of a Bacillus spp. associated with sclerotia from Sclerotinia scleroliorum. Appl Microbiol Biot,2006,72:644-653.
    187. Hou ZM, Xue CY, Peng YL, Katan T, Kistler HC, Xu JR. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol Plant-Microbe Interact,2002,15:1119-1127.
    188. Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS. Induction of terpenoid syntheis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopath-ology,2000,90:248-252.
    189. Howell CR. Cotton seedling preemergence damping-off incited by Rhizopus oryzae and Pythium spp. and its biological control with Trichoderma spp. Phytopathology,2002,92:177-180.
    190. Hu G, Kamp A, Linning R, Naik S, Bakkeren G. Complementation of Ustilago maydis MAPK mutants by a wheat leaf rust, Puccinia triticina homolog:potential for functional analyses of rust genes. Mol Plant-Microbe Interact,2007,20:637-647.
    191. Hu XJ, Roberts DP, Jiang ML, Zhang YB. Decreased incidence of disease caused by Sclerotinia sclerotiorum and improved plant vigor of oilseed rape with Bacillus subtilis Tu-100. Appl Micro-biol Biot,2005,68:802-807.
    192. Hu XJ, Roberts DP, Maul JE, Emche SE, Liao X, Guo XL, Liu YY, McKenna LF, Buyer JS, Liu SY. Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations. Can J Microbiol,2011,57:539-546.
    193. Huang HC and Erickson RS. Overwintering of Coniothyrium minitans, a mycoparasite of Sclero-tinia sclerotiorum, on Canadian Parires. Australas Plant Path,2002,31:291-293.
    194. Huang HC and Erickson RS. Soil treatment with fungal agents for control of apothecia of Sclero-tinia sclerotiorum in bean and pea crops. Plant Pathol Bull,2000,9:53-58.
    195. Huang HC and Kokko EG. Penetration of hyphae of Sclerotinia sclerotiorum by Coniothyrium minitans without the formation of appressoria. J Phytopathol,1988,123:133-139.
    196. Huang HC and Kokko EG. Ultrastructure of hyperparasitism of Coniothyrium minitans on sclerotia of Sclerotinia sclerotiorum. Can J Bot,1987,65:2483-2489.
    197. Huang HC and Kozub GC. Monocropping to sunflower and decline of Sclerotinia wilt. Botanical Bulletin of Academia Sinica,1991,32:163-170.
    198. Huang HC, Bremer E, Hynes RK, Erickson RS. Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum. Biol control,2000,18: 270-276.
    199. Huang HC. Control of sclerotinia wilt of sunflower by hypoparasites. Can J Plant Pathol,1980,2: 26-32.
    200. Huang HC. Distribution of Coniothyrium minitans in Manitoba sunflower fields. Can J Plant Pathol,1981,3:219-222.
    201. Huang HC. Importance of Coniothyrium minitans in survival of Sclerotinia sclerotiorum in wilted sunflowers. Can J Bot,1977,55:289-295.
    202. Huang XQ, Chen LH, Ran W, Shen QR, Yang XM. Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism. Appl Microbiol Biot,201 la,91:741-755.
    203. Huang YB, Xie XL, Yang L, Zhang J, Li GQ, Jiang DH. Susceptibility of Sclerotinia sclerotio-rum strains different in oxalate production to infection by the mycoparasite Coniothyrium mini-tans. World J Microb Biot,2011b,27:2799-2805.
    204. Hunt SM, Elvin M, Crosthwaite SK, Heintzen C. The PAS/LOV protein VIVID controls tempera-ture compensation of circadian clock phase and development in Neurospora crassa. Gene Dev, 2007,21:1964-1974.
    205. Hunt SM, Thompson S, Elvin M, Heintzen C. VIVID interacts with the WHITE COLLAR complex and FREQUENCY-interacting RNA helicase to alter light and clock responses in Neurospora. Proc Natl Acad Sci USA,2010,107:16709-16714.
    206. Ihrmark K, Asmail N, Ubhayasekera W, Melin P, Stenlid J, Karlsson M. Comparative molecular evolution of Trichoderma chitinases in response to mycoparasitic interactions. Evol Bioinform, 2010,6:1-26.
    207. Ikeda S, Shimizu A, Shimizu M, Takahashi H, Takenaka S. Biocontrol of black scurf on potato by seed tuber treatment with Pythium oligandrum. Biol Control,2012,60:297-304.
    208. Jackson MA. Method for producing desiccation tolerant Paecilomyces fumosoroseus spores. United States Department of Agriculture patents,1999.
    209. Jain A, Singh S, Sarma BK, Singh HB. Microbial consortium-mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. J Appl Microbiol, 2012,112:537-550.
    210. Jain R, Valiante V, Remme N, Docimo T, Heinekamp T, Hertweck C, Gershenzon J, Haas H, Brakhage AA. The MAP kinase MpkA controls cell wall integrity, oxidative stress response, gliotoxin production and iron adaptation in Aspergillus fumigates. Mol Microbiol,2011,82:39-53.
    211. Jain S, Akiyama K, Mae K, Ohguchi T, Takata R. Targeted disruption of a G protein a subunit gene results in reduced pathogenicity in Fusarium oxysporum. Curr Genet,2002,41:407-413.
    212. Jain S, Akiyama K, Takata R, Ohguchi T. Signaling via the G protein a subunit FGA2 is necess-ary for pathogenicity in Fusarium oxysporum. FEMS Microb Lett,2005,243:165-172.
    213. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ. Multiple sequence alignment with Clustal X. Trends Biochem Sci,1998,23:403-405.
    214. Jeger MJ, Termorshuizen AJ, Nagtzaam MPM, Van den Bosch F. The effect of spatial distribu-tions of mycoparasites on biocontrol efficacy:a modelling approach. Biocontrol Sci Techn,2004, 14:359-373.
    215. Jenczmionka NJ and Schafer W. The Gpmkl MAP kinase of Fusarium graminearum regulates the induction of specific secreted enzymes. Curr Genet,2005,47:29-36.
    216. Jenczmionka NJ, Maier FJ, Losch AP, Schafer W. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmkl. Curr Genet,2003,43:87-95.
    217. Jeon J, Goh J, Yoo S, Chi MH, Choi J, Rho HS, Park J, Han SS, Kim BR, Park SY, Kim S, Lee YH. A putative MAP kinase kinase kinase, MCK1, is required for cell wall integrity and pathoge-nicity of the rice blast fungus, Magnaporthe oryzae. Mol Plant-Microbe Interact,2008,21:525-534.
    218. Jones CA, Greer-Phillips SE, Borkovich KA. The response regulator RRG-1 functions upstream of a mitogen-activated protein kinase pathway impacting asexual development, female fertility, osmotic stress, and fungicide resistance in Neurospora crassa. Mol Biol Cell,2007,18:2123-2136.
    219. Jones D and Watson D. Parasitism and lysis by soil fungi of Sclerotinia sclerotiorum (Lib) deBary, a phytopathogenic fungus. Nature,1969,22:287-288.
    220. Jones E, Carpenter M, Fong A, Goldstein A, Thrush A, Crowhurst R, Stewward A. Cotransforma-tion of the sclerotial mycoparasite Coniothyrium minitans with hygromycin B resistance and β-glucuronidase markers. Mycol Res,1999,103:929-937.
    221. Jones EE, Mead A, Whipps JM. Evaluation of different Coniothyrium minitans inoculum sources and application rates on apothecial production and infection of Sclerotinia sclerotiorum sclerotia. Soil Biol Biochem,2003,35:409-419.
    222. Jones J and Dangl J. The plant immune system. Nature,2006,444:323-329.
    223. Joubert A, Bataille-Simoneau N, Campion C, Guillemette T, Hudhomme P, lacomi-Vasilescu B, Leroy T, Pochon S, Poupard P, Simoneau P. Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of Alternaria brassicicola to cell wall stress caused by brassicaceous indolic phytoalexins. Cell Microbiol,2011,13:62-80.
    224. Jung US, Sobering AK, Romeo MJ, Levin DE. Regulation of the yeast Rlm1 transcription factor by the Mpkl cell wall integrity MAP kinase. Mol Microbiol,2002,46:781-789.
    225. Jung WJ, Park RD, Mabood F, Souleimanov A, Smith DL. Effects of Pseudomonas aureofaciens 63-28 on defense responses in soybean plants infected by Rhizoctonia solani. J Microb Biotech, 2011,21:379-386.
    226. Kadosh D and Johnson AD. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression:a genome-wide analysis. Mol Biol Cell,2005,16:2903-2912.
    227. Kaffarnik F, Muller P, Leibundgut M, Kahmann R, Feldbrugge M. PKA and MAPK phosphory-lation of Prfl allows promoter discrimination in Ustilago maydis. EMBO J,2003,22:5817-5826.
    228. Kahmann R and Kamper J. Ustilago maydis:how its biology relates to pathogenic development. New Phytol,2004,164:31-42.
    229. Kamilova F, Kravchenko LV, Shaposhnikov AI, MakarovaN, Lugtenberg BJJ. Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol Plant-Microbe Interact,2006,19:1121-1126.
    230. Kamilova F, Lamers G, Lugtenberg B. Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores. Environ Microbiol,2008,10:2455-2461.
    231. Kamilova F, Leveau JHJ, Lugtenberg B. Collimonas fungivorans, an unpredicted in vitro but efficient in vivo biocontrol agent for the suppression of tomato foot and root rot. Environ Microbiol,2007,9:1597-1603.
    232. Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B. Enrichment for enhanced compete-tive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol, 2005,7:1809-1817.
    233. Kang BR, Biocontrol of tomato Fusarium wilt by a novel genotype of 2,4-Diacetylphloro-glucinol-producing Pseudomonas sp NJ134. Plant Pathol J,2012,28:93-100.
    234. Katz E and Demain AL. The peptide antibiotics of Bacillus:chemistry, biogensis and possible functions. Bacteriol Rev,1977,41:449-474.
    235. Kaur R, Macleod J, Foley W, Nayudu M. Gluconic acid, an antifungal agent produced by Pseudomonas species in biological control of take-all. Phytochemistry,2006,67:595-604.
    236. Kawamura C, Tsujimoto T, Tsuge T. Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Mol Plant-Microbe Interact,1999,12:59-63.
    237. Kawasaki L, Sanchez O, Shiozaki K, Aguirre J. SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol Microbiol, 2002,45:1153-1163.
    238. Kicka S, Bonnet C, Sobering AK, Ganesan L P, Silar P. A mitotically inheritable unit containing a MAP kinase module. Proc Natl Acad Sci USA,2006,103:13445-13450.
    239. Kim HJ, Lee SH, Kim CS, Lim EK, Choi KH, Kong HG, Kim DW, Lee SW, Moon BJ. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheni-formis Nl formulation. J Microb Biotech,2007,17:438-444.
    240. Kim JH, Campbell BC, Mahoney N, Chan KL, May GS. Targeting antioxidative signal trans-duction and stress response system:control of pathogenic Aspergillus with phenolics that inhibit mitochondrial function. J Appl Microbiol,2006,101:181-189.
    241. Kim MJ, Choi JW, Park SM, Cha BJ, Yang MS, Kim DH. Characterization of a fungal protein kinase from Cryphonectria parasitica and its transcriptional upregulation by hypovirus. Mol Microb,2002,45:933-941.
    242. Kim S, Park S Y, Kim K S, Rho HS, Chi MH, Choi J, Park J, Kong S, Park J, Goh J, Lee YH. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. PLoS Genet,2009,5:e1000757.
    243. Kinane J and Oliver RP. Evidence that the appressorial development in barley powdery mildew is controlled by MAP kinase activity in conjunction with the cAMP pathway. Fungal Genet Biol, 2003,39:94-102.
    244. Kirchrath L, Lorberg A, Schmitz HP, Gengenbacher U, Heinisch JJ. Comparative genetic and physiological studies of the MAP kinase Mpk1p from Kluyveromyces lactis and Saccharomyces cerevisiae. J Mol Biol,2000,300:743-758.
    245. Kirner S, Hammer PE, Hill DS, Altmann A, Fischer I, Weislo LJ, Lanahan M, van Pee KH, Ligon JM. Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J Bacteriol,1998,180:1939-1944.
    246. Kiss L, Pintye A, Kovacs GM, Jankovics T, Fontaine, MC, Harvey N, Xu XM, Nicot PC, Bardin M, Shykoff JA, Giraud T. Temporal isolation explains host-related genetic differentiation in a group of widespread mycoparasitic fungi. Mol Ecol,2011,20:1492-1507.
    247. Kiss L, Pintye A, Zseli G, Jankovics T, Szentivanyi O, Hafez YM, Cook RTA. Microcyclic conidiogenesis in powdery mildews and its association with intracellular parasitism by Ampelo-myces. Eur J Plant Pathol,2010,126:445-451.
    248. Kiss L, Russell JC, Szentivanyi O, Xu XM, Jeffries P. Biology and biocontrol potential of Ampel-omyces mycoparasites, natural antagonists of powdery mildew fungi. Biocontrol Sci Techn,2004, 14:635-651.
    249. Kiss L. Graminicolous powdery mildew fungi as new natural hosts of Ampelomyces mycopara-sites. Mycol Res,1997,101:1073-1080.
    250. Kloepper JW, Ryu CM, Zhang S. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology,2004,94:1259-1266.
    251. Knox OGG, Killham K, Leifert C. Effects of increased nitrate availability on the control of plant pathogenic fungi by the soil bacterium Bacillus subtilis. Appl Soil Ecol,2000,15:227-231.
    252. Knudsen GR, Eschen DJ, Dandurand LM, Bin L. Potential for biocontrol of Sclerolinia sclerotio- rum through colonization of sclerotia by Trichoderma harzianum. Plant Dis,1991,75:466-470.
    253. Kobayashi YO, Kobayashi A, Maeda M, Takenaka S. Isolation of antagonistic Streptomyces sp against a potato scab pathogen from a field cultivated with wild oat. J Gen Plant Pathol,2012,78: 62-72.
    254. Kojima K, Bahn YS, Heitman J. Calcineurin, Mpkl and Hogl MAPK pathways independently control fludioxonil antifungal sensitivity in Cryptococcus neoformans. Microbiology,2006,152: 591-604.
    255. Kojima K, Kikuchi T, Takano Y, Oshiro E, Okuno T. The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium. Mol Plant-Microbe Interact,2002,15:1268-1276.
    256. Kojima K, Takano Y, Yoshimi A, Tanaka C, Kikuchi T, Okuno T. Fungicide activity through activation of a fungal signaling pathway. Mol Microbiol,2004,53:1785-1796.
    257. Kong LA, Yang J, Li GT, Qi LL, Zhang YJ, Wang CF, Zhao WS, Xu JR, Peng YL. Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLoS Pathog,2012,8:e1002526.
    258. Kortemaa H, Pennanen T, Smolander A, Haahtela K. Distribution of antagonistic Streptomyces griseoviridis in rhtzosphere and non-rhizosphere sand. J Phytopathol,1997,145:137-143.
    259. Kothe GO and Free SJ. The isolation and characterization of NRC-1 and NRC-2, two genes encoding protein kinases that control growth and development in Neurospora crassa. Genetics, 1998,149:117-130.
    260. Kraus PR, Fox DS, Cox GM, Heitman J. The Cryptococcus neoformans MAP kinase Mpkl regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Mol Microbiol,2003,48:1377-1387.
    261. Krid S, Triki M A, Gargouri A, Rhouma, A. Biocontrol of olive knot disease by Bacillus subtilis isolated from olive leaves. Ann Microbiol,2012,62:149-154.
    262. Kruppa M and Calderone R. Two-component signal transduction in human fungal pathogens. FEMS Yeast Res,2006,6:149-159.
    263. Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels,2009,1:2-19.
    264. Kuiper I, BloembergGV, Lugtenberg BJJ. Selection of a plant-bacteriumpair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant-Microbe Interact,2001,14:1197-1205.
    265. Kulkarni RD, Thon MR, Pan HQ, Dean RA. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol,2005,6:R24.
    266. Kumamoto CA. A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc Natl Acad Sci USA,2005,102:5576-5581.
    267. Kwon NJ, Garzia A, Espeso EA, Ugalde U, Yu JH. F1bC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans, Mol Microbiol,2010a,77:1203-1219.
    268. Kwon NJ, Shin KS, Yu JH. Characterization of the developmental regulator F1bE in Aspergillus fumigates and Aspergillus nidulans. Fungal Genet Biol,2010b,47:981-993.
    269. Lan HY, Wang CH, Zhang LH, Liu GZ, Wan LL, Chen ZH, Tian YC. Studies on transgenic oil-seed rape (Brassica napus) plants transformed with β-1,3-Glucanase and chitinase genes and its resistance to Sclerotinia scleroliorium. Chinese J Biotechn,2000,16:142-146.
    270. Lane S, Birse C, Zhou S, Matson R, Liu HP. DNA array studies demonstrate convergent regula-tion of virulence factors by Cph1, Cph2, and Efgl in Candida albicans. J Biol Chem,2001,276: 48988-48996.
    271.Lanver D, Mendoza-Mendoza A, Brachmann A, Kahmann R. Shol and Msb2-related proteins regulate appressorium development in the smut fungus Ustilago maydis. Plant Cell,2010,22: 2085-2101.
    272. Lara-Rojas F, Sanchez O, Kawasaki L, Jesus A. Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions. Mol Microbiol,2011,80:436-454.
    273. LaRonde-LeBlanc N, Wlodawer A. Crystal structure of A. fulgidus Rio2 defines a new family of serine protein kinases. Structure,2004,12:1585-1594.
    274. Larralde-Corona CP, Santiago-Mena MR, Sifuentes-Rincon AM, Rodriguez-Luna IC, Rodriguez-Perez MA, Shira Ki, Narvaez-Zapata JA. Biocontrol potential and polyphasic characterization of novel native Trichoderma strains against Macrophomina phaseolina isolated from sorghum and common bean. Appl Microbiol Biot,2008,80:167-177.
    275. Lee BN and Adams TH.fluG and flbA function interdependently to initiate conidiophore develop-ment in Aspergillus nidulans through brlA beta activation. EMBO J,1996,15:299-309.
    276. Lee BN and Adams TH. Overexpression of flbA, an early regulator of Aspergillus asexual sporu-lation, leads to activation of brlA and premature initiation of development. Mol Microbiol,1994a, 14:323-334.
    277. Lee BN and Adams TH. The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Gene Dev, 1994b,8:641-651.
    278. Lee K, Dunlap JC, Loros JJ. Roles for WHITE COLLAR-1 in circadian and general photopercep-tion in Neurospora crassa. Genetics,2003,163:103-114.
    279. Lengeler KB, Davidson R, D'Souza CA, Harashima T, Shen W, Wang P, Pan XW, Waugh MS, Heitman J. Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev,2000,64:746-785.
    280. Lev S and Horwitz BA. A mitogen-activated protein kinase pathway modulates the expression of two cellulase genes in Cochliobolus heterostrophus during plant infection. Plant Cell,2003,15: 835-844.
    281. Lev S, Sharon A, Hadar R, Ma H, Horwitz BA. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity:diverse roles for mitogen-activated protein kinase homologs in foliar patho-gens. Proc Natl Acad Sci USA,1999,96:13542-13547.
    282. Li B, Fu YP, Jiang DH, Xie JT, Cheng JS, Li GQ, Hamid MI, Yi XH. Cyclic GMP as a second messenger in the nitric oxide-mediated conidiation of the mycoparasite Coniothyrium minitans. Appl Environ Microb,2010,76:2830-2836.
    283. Li D, Bobrowicz P, Wilkinson HH, Ebbole DJ. A mitogen-activated protein kinase pathway essential for mating and contributing to vegetative growth in Neurospora crassa. Genetics,2005a, 170:1091-1104.
    284. Li DC, Shu C, Lu J. Purification and partial characterization of two chitinases from the myco-parasitic fungus Talaromyces flavus. Mycopathologia,2005b,159:223-229.
    285. Li GQ, Huang HC, Acharya SN, Erickson RS. Biological control of blossom blight of alfalfa caused by Botrytis cinerea under environmentally controlled and field conditions. Plant Dis, 2004a,88:1246-1251.
    286. Li GQ, Huang HC, Acharya SN. Importance of pollen and senescent petals in the suppression of Sclerotinia sclerotiorum by Coniothyrium minitans. Biocontrol Sci Techn,2003,13:495-505.
    287. Li GQ, Huang HC, Acharya SN. Sensitivity of Ulocladium atrum, Coniothyrium minitans, and Sclerotinia sclerotiorum to benomyl and vinclozolin. Can J Bot,2002,80:892-898.
    288. Li GQ, Huang HC, Miao HJ, Erickson RS, Jiang DH, Xiao YN. Biological control of Sclerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans. Eur J Plant Pathol,2006,114:345-355.
    289. Li GT, Zhou XY, Kong LA, Wang YL, Zhang HF, Zhu H, Mitchell TK, Dean RA, Xu JR. MoSfll is important for virulence and heat tolerance in Magnaporthe oryzae. PLoS ONE,201 la, 6:e19951.
    290. Li H, Li H B, Bai Y, Wang J, Nie M, Li B, Xiao M. The use of Pseudomonas fluorescens P13 to control sclerotinia stem rot (Sclerotinia sclerotiorum) of oilseed rape. J Microb.2011b,49:884-889.
    291. Li L, Xue CY, Bruno K, Nishimura M, Xu JR. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea. Mol Plant-Microbe Interact,2004b,17:547-556.
    292. Li LH, Ma JC, Li Y, Wang ZY, Gao TT, Wang Q. Screening and partial characterization of Bacillus with potential applications in biocontrol of cucumber Fusarium wilt. Crop Prot,2012a, 35:29-35.
    293. Li MX, Gong XY, Zheng J, Jiang DH, Fu YP, Hou MS. Transformation of Coniothyrium mini-tans, a parasite of Sclerotinia sclerotiorum, with Agrobacterium tumefaciens. FEMS Micro-biol Lett,2005c,243:323-329.
    294. Li QL, Jiang YH, Ning P, Zheng L, Huang JB, Li GQ, Jiang DH, Hsiang T. Suppression of Mag-naporthe oryzae by culture filtrates of Streptomyces globisporus JK-1. Biol Control,2011c,58: 139-148.
    295. Li QL, Ning P, Zheng L, Huang JB, Li GQ, Hsiang T. Effects of volatile substances of Strepto-myces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biol Control,2012b,61: 112-120.
    296. Li YM, Wang CF, Liu WD, Wang GH, Kang ZS, Kistler HC, Xu JR. The HDF1 histone deacety-lase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium grami-nearum. Mol Plant-Microbe Interact,2011d,24:487-496.
    297. Liang C, Yang JR, Kovacs GM, Szentivanyi O, Li BD, Xu XM, Kiss L.Genetic diversity of Amp-elomyces mycoparasites isolated from different powdery mildew species in China inferred from analyses of rDNA ITS sequences. Fungal Divers,2007,24:225-240.
    298. Ligin JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ. Genetic modification of Pseudomonas that enhance biological disease control. Acta Horticulture,1999,54:53-60.
    299. Lin YH, Xu JL, Hu JY, Wang LH, Ong SL, Leadbetter JR, Zhang LH. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes.2003, Mol Microbiol,47:849-860.
    300. Linden H, Ballario P, Macino G. Blue light regulation in Neurospora crassa. Fungal Genet Biol, 1997,22:141-150.
    301. Lindsey DL and Baker R. Effect of certain fungi on dwarf tomatoes grown under gnotobiotic conditions. Phytopathology,1967,57:1262-1263.
    302. Liu B, Qiao HP, Huang LL, Buchenauer H, Han QM, Kang ZS, Gong YF. Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biol Control, 2009,49:277-285.
    303. Liu H, Suresh A, Willard FS, Siderovski DP, Lu S, Naqvi NI. Rgsl regulates multiple Ga sub-units in Magnaporthe pathogenesis, asexual growth and thigmotropism. EMBO J,2007a,26: 690-700.
    304. Liu S and Dean RA. G protein alpha subunit genes control growth, development, and pathogenic-ity of Magnaporthe grisea. Mol Plant-Microbe Interact,1997,10:1075-1086.
    305. Liu TB, Liu XH, Lu JP, Zhang L, Min H, Lin FC. The cysteine protease MoAtg4 interacts with MoAtg8 and is required for differentiation and pathogenesis in Magnaporthe oryzae. Autophagy, 2010,6:74-85.
    306. Liu WD, Zhou XY, Li GT, Li L, Kong LA, Wang CF, Zhang HF, Xu JR. Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog,2011,7:e1001261.
    307. Liu XH, Lu JP, Lin FC. Autophagy during conidiation, conidial germination and turgor genera-tion in Magnaporthe grisea. Autophagy,2007b,3:472-473.
    308. Liu Y and Bell-Pedersen D. Crcadian rhythms in Neurospora crassa and other filamentous fungi. Eukaryot Cell,2006,5:1184-1193.
    309. Liu Y, He Q, Cheng P. Photoreception in Neurospora:a tale of two White Collar proteins. Cell Mol Life Sci,2003,60:2131-2138.
    310. Liu Y. Molecular mechanisms of entrainment in the Neurospra circadian clock. J Biol Rhythms, 2003,18:195-205.
    311. Liu YF, Chen ZY, Ng TB, Zhang J, Zhou MG, Song FP, Lu F, Liu YZ. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides,2007c,28:553-559.
    312. Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous Candida albicans mutants are avirulent. Cell,1997,90:939-949.
    313. Loganathan M, Sible GV, Maruthasalam S, Saravanakumar D, Raguchander T, Sivakumar M, Samiyappan R. Trichoderma and chitin mixture based bioformulation for the management of head rot(Sclerotinia sclerotiorum (Lib.) deBary)-root-knot (Meloidogyne incognita Kofoid and White; Chitwood) complex diseases of cabbage. Arch Phytopathol Plant Prot,2010,43:1011-1024.
    314. Lorito M, Harman GE, Hayes CK, Broadway RM, Tronsmo A, Woo SL, Di Pietro. Chitinolytic enzymes produced by Trichoderma harzianum-antifungal activity of purified endochitinase and chitobiosidase. Phytopathology,1993,83:302-307.
    315. Lorito M, Hayes CK, Di Pietro A, Woo SL, Harman GE. Purification, characterization, and syne-rgistic activity of a glucan 1,3-beta-glucosidase and an N-acetyl-beta-glucosaminidase from Tric-hoderma harzianum. Phytopathology,1994a,84:398-405.
    316. Lorito M, Peterbauer C, Hayes CK, Harman GE. Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiology,1994b,140:623-629.
    317. Lorito M, Woo SL, D'Ambrosio M, Harman GE, Hayes CK, Kubicek CP, Scala F. Synergistic interaction between cell wall degrading enzymes and membrane affecting compounds. Mol Plant-Microbe Interact,1996,9:206-213.
    318. Loros JJ and Dunlap JC. Genetic and molecular analysis of circadian rhythms in Neurospora. Annu Rev Physiol,2001,63:757-794.
    319. Lu JP, LiuXH, Feng XX, Min H, Lin FC. An autophagy gene, MgATG5, is required for cell diff-erentiation and pathogenesis in Magnaporthe oryzae. Curr Genet,2009,55:461-473.
    320. Lynch JM and Moffat AJ. Bioremediation:prospects for the future application of innovative applied biological research. Ann Appl Biol,2005,146:217-221.
    321. Mahato SB and Majumdar I. Current trends in microbial steroid biotransformation. Phytochemis-try,1993,34:883-898.
    322. Manning G, Plowman GD, Hunter T, Sudarsanam S. Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci,2002a,27:14-520.
    323. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science,2002b,298:1912-1934.
    324. Manuel J, Selin C, Fernando WGD, de Kievit. Stringent response mutants of Pseudomonas chlor-oraphis PA23 exhibit enhanced antifungal activity against Sclerotinia sclerotiorum in vitro. Mic-robiology,2012,158:207-216.
    325. Marques JM, Rodrigues RJ, de Magalhaes-Sant'Ana AC, Goncalves T. Saccharomyces cere-visiae Hogl protein phosphorylation upon exposure to bacterial endotoxin. J Biol Chem,2006, 281:24687-24694.
    326. Martin DMA, Miranda-Saavedra D, Barton GJ. Kinomer v.1.0:a database of systematically classified eukaryotic protein kinases. Nucleic Acids Res,2009,37:D244-D250.
    327. Martin H, Castellanos MC, Cenamor R, Sanchez M, Molina M, Nombela C. Molecular and functional characterization of a mutant allele of the mitogen-activated protein-kinase gene SLT2 (MPK1) rescued from yeast autolytic mutants. Curr Genet,1996,29:516-522.
    328. Martinez-Espinoza AD, Ruiz-Herrera J, Leon-Ramirez CG, Gold SE. MAP kinase and cAMP signaling pathways modulate the pH-induced yeast-to-mycelium dimorphic transition in the corn smut fungus Ustilago maydis. Curr Microbiol,2004,49:274-281.
    329. Masunaka A, Nakaho K, Sakai M, Takahashi H, Takenaka S. Visualization of Ralstonia solanac-earum cells during biocontrol of bacterial wilt disease in tomato with Pythium oligandrum. J Gen Plant Pathol,2009,75:281-287.
    330. Matarese F, Sarrocco S, Gruber S, Seidl-Seiboth V, Vannacci G. Biocontrol of Fusarium head blight:interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology,2012,158: 98-106.
    331. Mavrodi DV, BlankenfeldtW, Thomashow LS. Phenazine compounds in fluorescent Pseudomo-nas spp.:biosynthesis and regulation. Annu Rev Phytopathol,2006,44:417-445.
    332. Mayorga ME and Gold SE. The uhc2 gene of Ustilago maydis encodes a putative novel adaptor protein required for filamentous growth, pheromone response and virulence. Mol Microbiol,2001, 41:1365-1379.
    333. McLaren DL, Huang HC, Kozub GC, Rimmer S R. Biological control of Sclerotinia wilt of sunflower with Talaromyces flavus and Coniothyrium minitans. Plant Dis,1994,78:231-235.
    334. McLaren DL, Huang HC, Rimmer SR, Kokko EG. Ultrastructural studies on infection of sclerotia of Sclerotinia sclerotiorum by Talaromyces flavus. Can J Botany,1989,67:2199-2205.
    335. McLaren DL, Huang HC, Rimmer SR. Control of apothecial production of Sclerotinia sclerotio-rum by Coniothyrium minitans and Talaromyces flavus. Plant Dis,1996,80:1373-1378.
    336. McLoughlin TJ, Quinn JP; Bettermann A; Bookland R. Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Appl Environ Microb,1992,58:1760-1763.
    337. McQuilken MP and Whipps JM. Production, survival and evaluation of solid substrate inocula of Coniothyrium minitans against Sclerotinia sclerotiorum. Eur J Plant Pathol,1995,101:101-110.
    338. McQuilken MP, Budge SP, Whipps JM. Effects of culture media and environmental factors on conidial germination, pycnidial production and hyphal extension of Coniothyrium minitans. Mycol Res,1997,101:11-17.
    339. McQuilken MP, Gemmell J, Hill RA, Whipps JM. Production of macrosphelide A by the myco-parasite Coniothyrium minitans. FEMS Microbiol Lett,2003,219:27-31.
    340. McQuilken MP, Gemmell J, Whipps JM. Some nutritional factors affecting production of biomass and antifungal metabolites of Coniothyrium minitans. Biocontrol Sci Techn,2002,12: 443-454.
    341. McQuilken MP, Mitchell SJ, Budge SP, Whipps JM, Fenlon J S, Archer S A. Effect of Conio-thyrium minitans on sclerotial survival and apothecial production of Sclerotinia sclerotiorum in field-grown oilseed rape. Plant Pathol,1995,44:885-896.
    342. Mehrabi R, Ding SL, Xu JR. MADS-Box transcription factor Migl is required for infectious growth in Magnaporthe grisea. Eukaryot Cell,2008,7:791-799.
    343. Mehrabi R, van der Lee T, Waalwijk C, Kema GHJ. MgSlt2, a cellular integrity MAP kinase gene of the fungal wheat pathogen Mycosphaerella graminicola, is dispensable for penetration but essential for invasive growth. Mol Plant-Microbe Interact,2006a,19:389-398.
    344. Mehrabi R, Zwiers LH, de Waard MA, Kema GHJ. MgHogl regulates dimorphism and pathogen-icity in the fungal wheat pathogen Mycosphaerella graminicola. Mol Plant-Microbe Interact, 2006b,19:1262-1269.
    345. Mendoza-Mendoza A, Pozo MJ, Grzegorski D, Martinez P, Garcia JM, Olmedo-Monfil V, Cortes C, Kenerley C, Herrera-Estrella A. Enhanced biocontrol activity of Trichoderma through inactiv-etion of a mitogen-activated protein kinase. Proc Natl Acad Sci USA,2003,100:15965-15970.
    346. Menendez AB and Godeas A. Biological control of Sclerotinia sclerotiorum attacking soybean plants. Degradation of the cell walls of this pathogen by Trichoderma harzianum (BAFC 742). Mycopathologia,1998,142:153-160.
    347. Menon V, Li DM, Chauhan N, Rajnarayanan R, Dubrovska A, West AH, Calderone R. Function-al studies of the Ssklp response regulator protein of Candida albicans as determined by phenol-typic analysis of receiver domain point mutants. Mol Microbiol,2006,62:997-1013.
    348. Menotta M, Pierleoni R, Amicucci A, Sisti D, Cerasi A, Millo E, Chiarantini L, Stocchi V. Characterization and complementation of a Fus3/Kssl type MAPK from Tuber borchii, TBMK. Mol Genet Genomics,2006,276:126-134.
    349. Meschke H, Walter S, Schrempf H. Characterization and localization of prodiginines from Streptomyces lividans suppressing Verticillium dahlia in the absence or presence of Arabidopsis thaliana. Environ Microb,2012,14:940-952.
    350. Mey G, Held K, Scheffer J, Tenberge KB, Tudzynski P. CPMK2, an SLT2-homologous mitogen-activated protein (MAP) kinase, is essential for pathogenesis of Claviceps purpurea on rye: evidence for a second conserved pathogenesis-related MAP kinase cascade in phytopathogenic fungi. Mol Microbiol,2002a,46:305-318.
    351. Mey G, Oeser B, Lebrun MH, Tudzynski P. The biotrophic, non-appressorium-forming grass pathogen Claviceps purpurea needs a Fus3/Pmkl homologous mitogen-activated protein kinase for colonization of rye ovarian tissue. Mol Plant-Microbe Interact,2002b,15:303-312.
    352. Milgroom MG and Cortesi P. Biological control of chestnut blight with hypovirulence:a critical analysis. Annu Rev Phytopathol,2004,42:311-338.
    353. Miller MG and Johnson AD. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell,2002,110:293-302.
    354. Milner J, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J. Production of kanosamine by Baci-llus cereus UW85. Appl Environ Microbiol,1996,62:3061-3065.
    355. Miranda-Saavedra D, Barton GJ. Classification and functional annotation of eukaryotic protein kinases. Proteins-Struct Func Bioinformat,2007,68:893-914.
    356. Mishra S and Arora NK. Management of black rot in cabbage by rhizospheric Pseudomonas species and analysis of 2,4-diacetylphloroglucinol by qRT-PCR. Biol Control,2012,61:32-39.
    357. Mishra S, Srivastava R, Singh A, Sarma BK, Singh UP. Assessment of Bacillus licheniformis (vbr-1) against phytopathogenic fungi and its plant growth-promoting effect on wheat. Proceedings of the National Academy of Sciences India Section B-Biological Sciences,2009,79: 180-184.
    358. Mitchell TK Dean RA. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell,1995,7:1869-1878.
    359. Mohamed HALA and Haggag WM. Genetic improvement of the antifungal activity and antibiotic production by Gliocladium strains. Bulletin of the National Research Centre (Cairo),2005,30: 231-253.
    360. Mohamed N, Lherminier J, Farmer M, Fromentin J, Beno N, Houot V, Milat M, Blein J. Pythium oligandrum-or oligandrin-induced grapevine protection against Botrytis cinerea. Phytopathology, 2006,96:S80-S80.
    361. Molero G, Guillen MV, Martinez-Solano L, Gil C, Pla J, Nombela C, Sanchez-Perez M, Diez-Orejas R. The importance of the phagocytes'innate response in resolution of the infection induced by a low virulent Candida albicans mutant. Scand J Immunol,2005,62:224-233.
    362. Mollapour M and Piper PW. Hoglp mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res,2006,6:1274-1280.
    363. Moriwaki A, Kihara J, Mori C, Arase S. A MAP kinase gene, BMK1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae. Microbiol Res,2007,162:108-114.
    364. Moriwaki A, Kubo E, Arase S, Kihara J. Disruption of SRM1, a mitogen-activated protein kinase gene, affects sensitivity to osmotic and ultraviolet stressors in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol Lett,2006,257:253-261.
    365. Motoyama T, Kadokura K, Ohira T, Ichiishi A, Fujimura M, Yamaguchi I, Kudo T. A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action. Fungal Genet Biol,2005,42:200-212.
    366. Muller P, Weinzierl G, Brachmann A, Feldbrugge M, Kahmann R. Mating and pathogenic development of the smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascade. Eukaryot Cell,2003,2:1187-1199.
    367. Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S. Agrobacterium-mediated trans-formation of Fusarium oxysporum:an efficient tool for insertional mutagenesis and gene transfer. Phytopathology,2001,91:173-180.
    368. Muthumeenakshi S, Goldstein AL, Stewart A. Molecular studies on intraspecific diversity and phylogenetic position of Coniothyrium minitans. Mycol Res,2001,105:1065-1074.
    369. Muthumeenakshi S, Sreenivasaprasad S, Rogers CW, Challen MP, Whipps JM. Analysis of cDNA transcripts from Coniothyrium minitans reveals a diverse array of genes involved in key processes during sclerotial mycoparasitism. Fungal Genet Biol,2007,44:1262-1284.
    370. Navarro-Garcia F, Alonso-Monge R, Rico H, Pla J, Sentandreu R, Nombela C. A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans. Microbiology,1998,144:411-424.
    371. Navarro-Garcia F, Eisman B, Fiuza SM, Nombela C, Pla J. The MAP kinase Mkclp is activated under different stress conditions in Candida albicans. Microbiology,2005,151:2737-2749.
    372. Navarro-Garcia F, Sanchez M, Pla J, Nombela C. Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein-kinase homolog related to cell integrity. Mol Cell Biol,1995,15:2197-2206.
    373. Nishida E and Gotoh Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci,1993,18:128-131.
    374. Nishimura M, Fukada J, Moriwaki A, Fujikawa T, Ohashi M, Hibi T, Hayashi N. Mstul, an APSES transcription factor, is required for appressorium-mediated infection in Magnaporthe grisea. Biosci Biotechnol Biochem,2009,73:1779-1786.
    375. Nishimura M, Park G, Xu JR. The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Mol Microbiol,2003,50:231-243.
    376. Noguchi R, Banno S, Ichikawa R, Fukumori F, Ichiishi A, Kimura M, Yamaguchi I, Fujimura M. Identification of OS-2 MAP kinase-dependent genes induced in response to osmotic stress, antifungal agent fludioxonil, and heat shock in Neurospora crassa. Fungal Genet Biol,2007,44: 208-218.
    377. Nosanchuk JD and Casadevall A. The contribution of melanin to microbial pathogenesis. Cell Microbiol,2003,5:203-223.
    378. Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE. Characterization of the pyoluteo-rin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol,1999,181:2166-2174.
    379. Nuss DL. Hypovirulence:mycoviruses at the fungal-plant interface. Nature Rev Microbiol,2005, 3:632-642.
    380. Oh BT, Hur H, Lee KJ, Shanthi K, Soh BY, Lee WJ, Myung H, Kamala-Kannan, S. Suppression of Phytophthora blight on pepper(Capsicum annuum L.) by bacilli isolated from brackish environment. Biocontrol Sci Techn,2011,21:1297-1311.
    381.Ohara T and Tsuge T. FoSTUA, Encoding a Basic Helix-Loop-Helix protein, differentially regulates development of three kinds of asexual spores, macroconidia, microconidia, and chlamy-dospores, in the fungal plant pathogen Fusarium oxysporum. Eukayot Cell,2004,3:1412-1422.
    382. Ohara T, Inoue I, Namiki F, Kunoh H, Tsuge T. REN1 is required for development of micro-conidia and macroconidia, but not of chlamydospores, in the plant pathogenic fungus Fusarium oxysporum. Genetics,2004,166:113-124.
    383.Ojaghian MR. Potential of Trichoderma spp. and Talaromyces flavus for biological control of potato stem rot caused by Sclerotinia sclerotiorum. Phytoparasitica,2011,39:185-193.
    384. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol,2007,9:1084-1090.
    385. Ooijkaas LP, Wilkinson EC, Tramper J, Buitelaar RM. Medium optimization for spore production of Coniothyrium minitans using statistically-based experimental designs. Biotechnol Bioeng,1999,64:92-100.
    386. Oostra J, Tramper J, Rinzema A. Model-based bioreactor selection for large-scale solid-state cul-tivation of Coniothyrium minitans spores on oats. Enzyme Microb Tech,2000,27:652-663.
    387. Paavanen-Huhtala S, Avikainen H, Yli-Mattila T. Development of strain-specific primers for a strain of Gliocladium catenulatum used in biological control. Eur J Plant Pathol,2000,106:187-198.
    388. Palaniyandi SA, Yang SH, Cheng JH, Meng L, Suh JW. Biological control of anthracnose (Colletotrichum gloeosporioides) in yam by Streptomyces sp. MJM5763. J Appl Microb,2011, 111:443-455
    389. Pan XW and Heitman J. Protein kinase A operates a molecular switch that governs yeast pseudo-hyphal differentiation. Mol Cell Biol,2002,22:3981-3993.
    390. Panadero J, Pallotti C, Rodriguez-Vargas S, Randez-Gil F, Prieto JA. A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. J Biol Chem,2006,281:4638-4645.
    391. Pandey A, Roca MG, Read ND, Glass NL. Role of mitogen-activated protein kinase pathway during conidial germination and hyphal fusion in Neurospora crassa. Eukaryot Cell,2004,3: 348-358.
    392. Park G, Servin J A, Turner GE, Altamirano L, Colot HV, Collopy P, Litvinkova L, Li L, Jones CA, Diala FG, Dunlap JC, Borkovich KA. Global analysis of serine-threonine protein kinase genes in Neurospora crassa. Eukaryotic Cell,2011,10:1553-1564.
    393. Park G, Bruno KS, Staiger CJ, Talbot NJ, Xu JR. Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus. Mol Microbiol,2004a,53:1695-1707.
    394. Park G, Xue CY, Zhao XH, Kim Y, Orbach M, Xu JR. Multiple upstream signals converge on an adaptor protein Mst50 to activate the PMK1 pathway in Magnaporthe grisea. Plant Cell,2006,18: 2822-2835.
    395. Park SH, Choi ES, Kim MJ, Cha BJ, Yang MS, Kim DH. Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Mol Microbiol,2004b,51:1267-1277.
    396. Patkar RN, Suresh A, Naqvi NI. MoTea4-mediated polarized growth is essential for proper asex-ual development and pathogenesis in Magnaporthe oryzae. Eukaryot Cell,2010,9:1029-1038.
    397. Paulitz TC and Belanger RR. Biological control in greenhouse systems. Annu Rev Phytopathol, 2001,39:103-133.
    398. Paynter Q, Waipara N, Peterson P, Hona S, Fowler S, Gianotti A, Wilkie P. The impact of two introduced biocontrol agents, Phytomyza vitalbae and Phoma clematidina, on Clematis vitalba in New Zealand. Biol Control,2006,36:350-357.
    399. Peng G, McGregor L, Lahlali R, Gossen BD, Hwang SF, Adhikari KK, Strelkov SE, McDonald MR. Potential biological control of clubroot on canola and crucifer vegetable crops. Plant Pathol, 2011,60:566-574.
    400. Perez-Nadales E and Di Pietro A. The membrane mucin Msb2 regulates invasive growth and plant infection in Fusarium oxysporum. Plant Cell,2011,23:1171-1185.
    401. Pertot I, Zasso R, Amsalem L, Baldessari M, Angeli G, Elad Y. Integrating biocontrol agents in strawberry powdery mildew control strategies in high tunnel growing systems. Crop Protect,2008, 27:622-631.
    402. Picard K, Tirilly Y, Benhamou N. Cytological effects of cellulases in the parasitism of Phytopht-hora parasitica by Pythium oligandrum. Appl Environ Microb,2000,66:4305-4314.
    403. Pliego C, De Weert S, Lamers G, De Vicente A, Bloemberg G, Cazorla FM, Ramos C. Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strate-gies of avocado roots and Rosellinia neatrix hyphae. Environ Microbiol,2008,10:3295-3304.
    404. Poritsanos N, Selin C, Fernando WGD, Nakkeeran S, de Kievit TR. A GacS deficiency does not affect Pseudomonas chlororaphis PA23 fitness when growing on canola, in aged batch culture or as a biofilm. Can J Microbiol,2006,52:1177-1188.
    405. Pott GB, Miller TK, Bartlett JA, Palas JS, Selitrennikoff CP. The isolation of FOS-1, a gene encoding a putative two-component histidine kinase from Aspergillus fumigatus. Fungal Genet Biol,2000,31:55-67.
    406. Prados-Rosales RC, Serena C, Delgado-Jarana JS, Guarro J, Di Pietro A. Distinct signalling pathways coordinately contribute to virulence of Fusarium oxysporum on mammalian hosts. Microbes Infect,2006,8:2825-2831.
    407. Prapagdee B, Kuekulvong C, Mongkolsuk S. Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Internat J Biol Sci,2008, 4:330-337.
    408. Qin L, Gong XY, Xie JT, Jiang DH, Cheng JS, Li GQ, Huang JB, Fu YP. Phosphoribosylamido-transferase, the first enzyme for purine de novo synthesis, is required for conidiation in the sclerotial mycoparasite Coniothyrium minitans. Fungal Genet Biol,2011,48:956-965.
    409. Quecine MC, Araujo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA. Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microb,2008,47: 486-491.
    410. Rabeendran N, Jones EE, Moot DJ, Stewart A. Biocontrol of Sclerotinia lettuce drop by Conioth-yrium minitans and Trichoderma hamatum. Biol Control,2006,39:352-362.
    411. Raffaello T, Keri S, Asiegbu FO. Role of the HaHOG1 MAP Kinase in response of the conifer root and but rot pathogen(Heterobasidion annosum) to Osmotic and oxidative stress. PLoS One, 2012,7:e31186.
    412. Raj SN, Shetty NP, Shetty HS. Synergistic effects of Trichoshield on enhancement of growth and resistance to downy mildew in pearl millet. Biocontrol,2005,50:493-509.
    413. Ramamoorthy V, Zhao XH, Snyder A, Xu JR, Shah DM. Two mitogen-activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium grami-nearum. Cell Microbiol,2007,9:1491-1506.
    414. Ramanujam R and Naqvi NI. PdeH, a high-affinity cAMP phosphodiesterase, is a key regulator of asexual and pathogenic differentiation in Magnaporthe oryzae. PLoS Pathog,2010,6:e1000-897.
    415. Ramarathnam R, Bo S, Chen Y, Fernando WGD, Gao XW, de Kievit T. Molecular and biochemi-cal detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol,2007,53:901-911.
    416. Rauyaree P, Ospina-Giraldo MD, Kang S, Bhat RG, Subbarao KV, Grant SJ, Dobinson KF. Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in Verticillium dahliae. Curr Genet,2005,48:109-116.
    417. Reithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, Krska R, Zeilinger S. The G protein a subunit Tgal of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol,2004,42:749-760.
    418. Ren L, Li GQ, Han YC, Jiang DH, Huang HC. Degradation of oxalic acid by Coniothyrium mini-tans and its effects on production and activity of (3-1,3-gIucanase of this mycoparasite. Biol Control,2007,43:1-11.
    419. Ren L, Li GQ, Jiang DH. Characterization of some culture factors affecting oxalate degradation by the mycoparasite Coniothyrium minitans. J Appl Microbiol,2010,108:173-180.
    420. Reyes G, Romans A, Nguyen CK, May GS. Novel mitogen-activated protein kinase MpkC of Aspergillus fumigatus is required for utilization of polyalcohol sugars. Eukaryot Cell,2006,5: 1934-1940.
    421. Ridgway HJ and Stewart A. Molecular marker assisted detection of the mycoparasite Coniothyri-um minitans A69 in soil. New Zeal Plant Prot,2000,53:114-117.
    422. Rispail N and Di Pietro A. Fusarium oxysporum Stel2 controls invasive growth and virulence downstream of the Fmkl MAPK cascade. Mole Plant-Microbe Interact,2009,22:830-839.
    423. Rispail N, Soanes DM, Ant C, Czajkowski R, Grunler A, Huguet R, Perez-Nadales E, Poli A, Sartorel E, Valiante V, Yang M, Beffa R, Brakhage AA, Gow NAR, Kahmann R, Lebrun MH, Lenasi H, Perez-Martin J, Talbot NJ, Wendland J, Di Pietro A. Comparative genomics of MAP kinase and calcium-calcineurin signaling components in plant and human pathogenic fungi. Fungal Genet Biol,2009,46:287-298.
    424. Rogers CW, Challen MP, Green JR, Whipps JM. Use of REMI and Agrobacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus, Coniothyrium minitans. FEMS Microbiol Lett,2004,241:207-214.
    425. Rogers CW, Challen MP, Muthumeenakshi S, Sreenivasaprasad S, Whipps JM. Disruption of the Coniothyrium minitans PIF1 DNA helicase gene impairs growth and capacity for sclerotial mycoparasitism. Microbiology,2008,154:1628-1636.
    426. Roman E, Nombela C, Pla J. The Shol adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans. Mol Cell Biol,2005,25: 10611-10627.
    427. Romero D, Rivera ME, Cazorla FM, de Vicente A, Perez-Garcia A. Effect of mycoparasitic fungi on the development of Sphaerothecafusca in melon leaves. Mycol Res,2003,107:64-71.
    428. Romero D; de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Garcia A. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact, 2007,20:430-440.
    429. Rose S, Parker M, Punja ZK. Efficacy of biological and chemical treatments for control of Fusa-rium root and stem rot on greenhouse cucumber. Plant Dis,2003,87:1462-1470.
    430. Rosen S, Yu JH, Adams TH. The Aspergillus nidulans sfaD gene encodes a G protein b subunit that is required for normal growth and repression of sporulation. EMBO J,1999,18:5592-5600.
    431. Rotem Y, Yarden O, Sztejnberg A. The mycoparasite Ampelomyces quisqualis expresses exgA encoding an exo-β-1,3-Glucanase in culture and during mycoparasitism. Phytopathology,1999, 89:631-638.
    432. Rottmann M, Dieter S, Brunner H, Rupp S. A screen in Saccharomyces cerevisiae identified CaMCM1, an essential gene in Candida albicans crucial for morphogenesis. Mol Microbiol,2003, 47:943-959.
    433. Rui O and Hahn M. The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Mol Plant Pathol,2007,8:173-184.
    434. Ruiz-Roldan MC, Maier FJ, Schaefer W. PTK1, a mitogen-activated-protein kinase gene, is required for conidiation, appressorium formation, and pathogenicity of Pyrenophora teres on barley. Mol Plant-Microbe Interact.2001,14:116-125.
    435. Ruocco M, Lanzuise S, Vinale F, Marra R, Turra D, Woo SL, Lorito M. Identification of a new biocontrol gene in Trichoderma atroviride:the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Mol Plant-Microbe Interact,2009,22:291-301.
    436. Ryder LS, Harris BD, Soanes DM, Kershaw MJ, Talbot NJ, Thornton CR. Saprotrophic competi-tiveness and biocontrol fitness of a genetically modified strain of the plant-growth-promoting fungus Trichoderma hamatum GD12. Microbiology,2012,158:84-97.
    437. Ryu CM, Farag MA, Hu CH, Reddy MS,Wie HX, Pare PW, Kloepper JW. Bacterial volatiles promote growth of Arabidopsis. Proc Natl Acad Sci USA,2003,100:4927-4932.
    438. Sambrook J and Russell DW. Molecular Cloning:A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.2001.
    439. Sands-Winsch C, Whipps JM, Gerlagh M, Kruse M. World distribution of the sclerotial myco-parasite Coniothyrium minitans. Mycol Res.1993,94:607-612.
    440. Sanz L, Montero M, Grondona I, Vizcaino J, Llobell A, Hermosa R, Monte E. Cell wall-degrading isoenzyme profiles of Trichoderma biocontrol strains show correlation with rDNA taxonomic species. Curr Genet,2004,46:277-286.
    441. Sarangi NP, Athukorala WG, Dilantha F, Khalid YR. Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can J Microbiol,2009,55:1021-1032.
    442. Savchuk S and Fernando WGD. Effect of timing of application and population dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists. FEMS Microb Ecol,2004,49:379-388.
    443. Scheffer J, Chen CB, Heidrich P, Dickman MB, Tudzynski P. A CDC42 homologue in Claviceps purpurea is involved in vegetative differentiation and is essential for pathogenicity. Eukaryot Cell, 2005,4:1228-1238.
    444. Schippers B, Bakker AW, Bakker PAHM. Interactions of deleterious and beneficial micro-organisms and the effect on cropping practices. Annu Rev Phytopathol,1987,25:339-358.
    445. Schirmbock M, Lorito M, Wang YL, Hayes CK, Arisan-Atac I, Scala f, Harman GE, Kubicek CP. Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopatho-genic fungi. Appl Environ Microbiol,1994,60:4364-4370.
    446. Schumacher J, de Larrinoa IF, Tudzynski B. Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryot Cell,2008,7:584-601.
    447. Schwartz M A and Madhani H D. Principles of map kinase signaling specificity in Saccharo-myces cerevisiae. Annu Rev Genet.2004,38:725-748.
    448. Segarra G, Casanova E, Aviles M, Trillas I. Trichoderma asperellum strain T34 controls Fusa-rium wilt disease in tomato plants in soilless culture through competition for iron. Microb Ecol, 2010,59:141-149.
    449. Segers GC, Regier JC, Nuss DL. Evidence for a role of the regulator of G-Protein rignaling protein CPRGS-1 in G Subunit CPG-1-mediated regulation of fungal virulence, conidiation, and hydrophobin synthesis in the chestnut blight fungus Cryphonectria parasitica. Eukayot Cell,2004, 3:1454-1463.
    450. Segmuller N, Ellendorf U, Tudzynski B, Tudzynski P. BcSakl, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot Cell.2007,6:211-221.
    451. Selin C, Habibian R, Poritsanos N, Athukorala SNP, Fernando D, de Kievit TR. Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum, but do play a role in biofilm formation. FEMS Microbiol Ecol,2010,71:73-83.
    452. Selitrennikoff CP, Nelson RE, Siegel RW. Phase-specific genes for macroconidiation in Neurospora crassa. Genetics,1974,78:679-690.
    453. Seo DJ, Nguyen DMC, Song YS, Jung WJ. Induction of defense response against Rhizoctonia solani in cucumber plants by endophytic bacterium Bacillus thuringiensis GS1. J Microb Biotech, 2012,22:407-415.
    454. Seo JA, Guan Y, Yu JH. FluG-dependent asexual development in Aspergillus nidulans occurs via derepression. Genetics,2006,172:1535-1544.
    455. Shephard RW and Lindow S. Two dissimilar N-acyl-homoserine lactone acylases of Pseudomo-nas syringae influence colony and biofilm morphology. Appl Environ Microbiol,2008,74:6663-6671.
    456. Shoresh M, Harman GE, Mastouri F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol,2010,48:21-43.
    457. Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJJ. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant-Microbe Interact,1996,9:600-607.
    458. Singhai PK, Sarma BK, Srivastava JS. Biological management of common scab of potato through Pseudomonas species and vermicompost. Biol Control,2011,57:150-157.
    459. Smith DG, Garcia-Pedrajas MD, Hong W, Yu ZY, Gold SE, Perlin MH. An Ste20 homologue in Ustilago maydis plays a role in mating and pathogenicity. Eukaryot Cell,2004,3:180-189.
    460. Solomon PS, Waters ODC, Simmonds J, Cooper RM, Oliver RP. The Mak2 MAP kinase signal transduction pathway is required for pathogenicity in Stagonospora nodorum. Curr Genet,2005, 48:60-68.
    461. Sotaro C, Salaipeth L, Lin YH, Sasaki A, Kanematsu S, Suzuki N. A novel bipartite double-stranded RNA mycovirus from the white root rot fungus Rosellinia necatrix:molecular and biological characterization, taxonomic considerations, and potential for biological control. J Virol, 2009,83:12801-12812.
    462. Spaink HP, Kondorosi A, Hooykaas PJJ. The Rhizobiaeceae. Dordrecht, The Netherlands: Kluwer Acad,1998.
    463. Springer ML and Yanofsky C. A morphological and genetic analysis of conidiophore develop-ment in Neurospora crassa. Gene Dev,1989,3:559-571.
    464. Springer ML. Genetic control of fungal differentiation:the three sporulation pathways of Neuro-spora crassa. Bio Essays,1993,15:365-374.
    465. Steadman JR. Control of Plant diseases caused by Sclerotinta species. Phytopathology,1979,69: 904-907.
    466. Sullivan RF and White Jr JF. Phoma glomerata as a mycoparasite of powdery mildew. Appl Environ Microb,2000,66:425-427.
    467. Suresh S and Prasad MS. Extracellular proease from Pseudomonas spp. (CL1457) active against Xanthomonas campestris. Process Biochem,2002,37:611-621.
    468. Susi P, Aktuganov G, Himanen J, Korpela T. Biological control of wood decay against fungal infection. J Environ Manage,2011,92:1681-1689.
    469. Sussman A, Huss K, Chio LC, Heidler S, Shaw M, Ma D, Zhu GX, Campbell RM, Park TS, Kulanthaivel P, Scott JE, Carpenter JW, Strege MA, Belvo MD, Swartling JR, Fischl A, Yeh WK, Shih C, Ye XS. Discovery of cercosporamide, a known antifungal natural product, as a selective Pkcl kinase inhibitor through high-throughput screening. Eukaryot Cell,2004,3:932-943.
    470. Suzuki Y, Kumagai T, Oda Y. Locus of blue and near ultraviolet reversible photoreaction in the stages of conidial development in Botrytis cinerea. J Gen Microb,1977,98:1999-204.
    471. Szafranski-Schneider E, Swidergall M, Cottier F, Tielker D, Roman E, Pla J, Ernst J F. Msb2 shedding protects Candida albicans against antimicrobial peptides. PLoS Pathog,2012,8: e1002501.
    472. Szentivanyi O, Kiss L, Russell JC, Kovacs GM, Varga K, Jankovics T, Lesemann S, Xu XM, Jeffries P. Ampelomyces mycoparasites from apple powdery mildew identified as a distinct group based on single-stranded conformation polymorphism analysis of the rDNA ITS region. Mycol Res,2005,109:429-438.
    473. Takenaka S and Tamagake H. Foliar spray of a cell wall protein fraction from the biocontrol agent Pythium oligandrum induces defence-related genes and increases resistance against Cercospora leaf spot in sugar beet. J Gen Plant Pathol,2009,75:340-348.
    474. Takenaka S, Nakamura Y, Kono Tama, Sekiguchi H, Masunaka A, Takahashi H. Novel elicitin-like proteins isolated from the cell wall of the biocontrol agent Pythium oligandrum induce defence-related genes in sugar beet. Mol Plant Pathol,2006,7:325-339.
    475. Takenaka S, Nishio Z, Nakamura Y. Induction of defense reactions in sugar beet and wheat by treatment with cell wall protein fractions from the mycoparasite Pythium oligandrum. Phyto-pathology,2003,93:1228-1232.
    476. Takenaka S, Sekiguchi H, Nakaho K, Tojo M, Masunaka A, Takahashi H. Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy. Phytopathology,2008,98: 187-195.
    477. Talora C, Franchi L, Linden H, Ballario P, Macino G. Role of a WHITE COLLAR-1-WHITE COLLAR-2 complex in blue-light signal transduction. EMBO J,1999,18:4961-4968.
    478. Tamura K, Dudley J, Nei M, Kumar S. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol,2007,24:1596-1599.
    479. Tan KK. Blue-light inhibition of sporulation in Botrytis cinerea. J Gen Microb,1974,82:191-200.
    480. Tan KK. Light-induced synchronous conidiation in the fungus Botrytis cinerea. J Gen Microb, 1976,93:278-282.
    481.Terefe M, Tefera T, Sakhuja PK. Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery. J Invertebrate Pathol,2009,100:94-99.
    482. Thornton CR. An immunological approach to quantifying the saprotrophic growth dynamics of Trichoderma species during antagonistic interactions with Rhizoctonia solani in a soil-less mix. Environ Microb,2004,6:323-334.
    483. Thorsen M, Di YJ, Tangemo C, Morillas M, Ahmadpour D, Van der Does C, Wagner A, Johansson E, Boman J, Posas F, Wysocki R, Tamas MJ. The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell,2006,17:4400-4410.
    484. Torres L, Martin H, Garciasaez MI, Arroyo J, Molina M, Sanchez M, Nombela C. A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae lyt2 mutants. Mol Microbiol,1991,5:2845-2854.
    485. Tribe HT. On the parasitism of Sclerotinia trifoliorum by Coniothyrium minitans. Trans Br Mycol Soc,1957,40:489-499.
    486. Trutmann P, Keane PJ, Merriman PR, Biological control of Sclerotinia sclerotiorum on aerial parts of plants by the hyperparasite Coniothyrium minitans. Trans Br Mycol Soc,1982,78:521-529.
    487. Tsuji G, Fujii S, Tsuge S, Shiraishi T, Kubo Y. The Colletotrichum lagenarium Ste12-like gene CST1 is essential for appressorium penetration. Mol Plant-Microbe Interact,2003,16:315-325.
    488. Tu JC. Mycoparasitism by Coniothyrium minitans on Sclerotinia sclerotiorum and its effect on sclerotial formation. Phytopathol Z,1984,109:261-268.
    489. Turner GJ and Tribe HT. Preliminary field plot trials on biological control of Sclerotinia trifoliorum by Coniothyrium minitans. Plant Pathol,1975,24:109-113.
    490. Urban M, Mott E, Farley T, Kosack KH. The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Mol Plant Pathol,2003,4:347-359.
    491. Valiante V, Jain R, Heinekamp T, Brakhage AA. The MpkA MAP kinase module regulates cell wall integrity signaling and pyomelanin formation in Aspergillus fumigatus. Fungal Genet Biol, 2009,46:909-918.
    492. Validov SZ, Kamilova F, Lugtenberg BJJ. Pseudomonas putida strain PCL1760 controls tomato foot and root rot in stonewool under industrial conditions in a certified greenhouse. Biol Control, 2009,48:6-11.
    493. Vallim MA, Miller KY, Miller BL. Aspergillus SteA (sterile12-1 ike) is a homeo-domain-C2/H2-
    Zn+2 finger transcription factor required for sexual reproduction. Mol Microbiol,2000,36:290-301.
    494. Van Loon LC. Plant responses to plant growth-promoting bacteria. Eur J Plant Pathol,2007,119: 243-254.
    495. Van Rhijn P and Vanderleyden J. The Rhizobium-plant symbiosis. Microbiol Rev,1995,59:124-142.
    496. Velazquez-Robledo R, Contreras-Cornejo HA, Marcias-Rodriguez L, Hernandez-Morales A, Aguirre J, Casas-Flores S, Lopez-Bucio J, Herrera-Estrella A. Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. Mol Plant-Microbe Interact,2011,24:1459-1471.
    497. Vermal VC, Singh1SK, Prakash S. Bio-control and plant growth promotion potential of sidero-phore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microb,2011, 51:550-556.
    498. Viaud M, Fillinger S, Liu W, Polepalli JS, Le Pecheur P, Kunduru AR, Leroux P, Legendre L. A class Ⅲ histidine kinase acts as a novel virulence factor in Botrytis cinerea. Mol Plant-Microbe Interact,2006,19:1042-1050.
    499. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol,2008,72:80-86.
    500. Voigt CA, Schafer W, Salomon S. A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J,2005,42:364-375.
    501. Walz A, Zingen-Sell I, Loeffler M, Sauer M. Expression of an oxalate oxidase gene in tomato and severity of disease caused by Botrytis cinerea and Sclerotinia sclerotiorum. Plant Pathol,2008, 57:453-458.
    502. Wan MG, Li GQ, Zhang JB, Jiang DH, Huang HC. Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol Control,2008,46:552-559.
    503. Wang CF, Zhang SJ, Hou R, Zhao ZT, Zheng Q, Xu QJ, Zheng DW, Wang GH, Liu HQ, Gao XL, Ma JW, Kistler HC, Kang ZS, Xu JR. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathog,2011,7:e1002460.
    504. Wang J, Huang Y, Lin S, Liu F, Song Q, Peng YL, Zhao L. A strain of Streptomyces griseoruber isolated from rhizospheric soil of Chinese cabbage as antagonist to Plasmodiophora brassicae. Ann Microbiol,2012,62:247-253.
    505. Wang P and Nuss DL, Induction of a Cryphonectria parasitica cellobiohydrolase I gene is suppressed by hypovirus infection and regulated by a GTP-binding-protein linked signaling pathway involved in fungal pathogenesis. Proc Natl Acad Sci USA,1995,92:11529-11533.
    506. Wang P, Perfect JR, Heitman J, Wang P. The G-protein beta subunit GPB1 is required for mating and haploid fruiting in Cryptococcus neoformans. Mol Cell Biol,2000,20:352-362.
    507. Wang XF, Wang HZ, Liu GH, Hu ZL, Zhen YB. Transgenic hybrid parents in Brassica napus transformed with bivalent genes for resistance to Sclerotinia sclerotiorum. Chinese Bull Bot, 2005,22:292-301.
    508. Waugh MS, Nichols CB, DeCesare CM, Cox GM, Heitman J, Alspaugh JA. Ras1 and Ras2 contribute shared and unique roles in physiology and virulence of Cryptococcus neoformans. Microbiology,2002,148:191-201.
    509. Weber FJ, Oostra J, Tramper J, Rinzema A. Validation of a model for process development and scale-up of packed bed solid-state bioreactors. Biotechnol Bioeng,2002,77:381-393.
    510. Weber FJ, Tramper J, Rinzema A. A simplified material and energy balance approach for process development and scale-up of Coniothyrium minitans conidia production by solid-state cultivation in a packed-bed reactor. Biotechnol Bioeng,1999,65:447-458.
    511. Wei WH and Li YC. Development of a novel Sinapis arvensis disomic addition lane in Brassica napus containing the restorer gene for nsa CMS and improved resistance to Sclerotinia sclerotiorum and pod shattering. Theor Appl Genet,2010,120:89-97.
    512. Wei Z, Yang XM, Yin SX, Shen QR, Ran W, Xu YC. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Appl Soil Ecol,2011,48:152-159.
    513. Weiss N, Sztejnberg A, Yarden O. The chsA gene, encoding a class-Ⅰ chitin synthase from Ampelomyces quisqualis. Gene,1996,168:99-102.
    514. Whipps GJ, Grewal SK, van der Goes P. Interactions between Coniothyrium minitans and sclerotia. Mycol Res,1991,95:295-299.
    515. Whipps JM and Gerlagh M. Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycol Res,1992,96:897-907.
    516. Whipps JM, Budge SP, Mitchell SJ. Observations on sclerotial mycoparasites of Sclerotinia sclerotiorum. Mycol Res,1993,97:697-700.
    517. Whipps JM, Sreenivasaprasad S, Muthumeenakshi S, Rogers C, Challen M. Use of Coniothyrium minitans as a biocontrol agent and some molecular aspects of sclerotial mycoparasitism. Eur J Plant Pathol,2008,121:323-330.
    518. Wiederhold NP, Kontoyiannis DP, Prince RA, Lewis RE. Attenuation of the activity of caspofun-gin at high concentrations against Candida albicans:possible role of cell wall integrity and calcineurin pathways. Antimicrob Agents Ch,2005,49:5146-5148.
    519. Wieser J and Adams TH. flbD encodes a Myb-like DNA binding protein that controls initiation of Aspergillus nidulans conidiophore development. Gene Dev,1995,9:491-502.
    520. Wieser J, Lee BN, Fondon JW, Adams TH. Genetic requirements for initiating asexual develop-ment in Aspergillus nidulans. Curr Genet,1994,27:62-69.
    521. Wiest A, Grzegorski D, Xu BW, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C. Identi-fication of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem,2002,277:20862-20868.
    522. Williams RH, Whipps JM, Cooke RC. Role of soil mesofauna in dispersal of Coniothyrium mini-tans:mechanism of transmission. Soil Biol Biochem,1998a,30:1937-1945.
    523. Williams RH, Whipps JM, Cooke RC. Role of soil mesofauna in dispersal of Coniothyrium mini-tans:transmission to sclerotia of Sclerotinia sclerotiorum. Soil Biol Biochem,1998b,30:1929-1935.
    524. Williams RH, Whipps JM, Cooke RC. Splash dispersal of Coniothyrium minitans in glasshouse. Ann Appl Biol,1998c,132,77-90.
    525. Wolken WA and van der Werf MJ. Geraniol biotrans-formation-pathway in spores of digitatum. Appl Microbiol Biot,2001,57:731-737.
    526. Wolken WA, Tramper J, van der Werf MJ. Toxicity of terpenes to spores and mycelium of Peni-cillium digitatum. Biotechnol Bioeng,2002,80:685-690.
    527. Woo JH, Kitamura E, Myouga H, Kamei Y. An antifungal protein from the marine bacterium Streptomyces sp. strain AP77 is specific for Pythium porphyrae, a causative agent of red rot disease in Porphyra spp. Appl Environ Microbiol,2002,68:2666-2675.
    528. Woo SL, Scala F, Ruocco M, Lorito M. The molecular biology of the interactions between Trich-oderma spp., phytopathogenic fungi, and plants. Phytopathology,2006,96:181-185.
    529. Wormley FL, Heinrich G, Miller JL, Perfect JR, Cox GM. Identification and characterization of an SKN7 homologue in Cryptococcus neoformans. Infect Immun,2005,73:5022-5030.
    530. Xie J, Wei DM, Jiang DH, Fu YP, Li GQ, Ghabrial SA, Peng YL. Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. J Gen Virol, 2006,87:241-249.
    531. Xu JR, Staiger CJ, Hamer JE. Inactivation of the mitogen-activated protein kinase MPS1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense res-ponses. Proc Natl Acad Sci USA,1998,95:12713-12718.
    532. Xu JR. MAP kinases in fungal pathogens. Fungal Genet Biol,2000,31:137-152.
    533. Xue CY, Bahn YS, Cox GM, Heitman J. G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. Mol Biol Cell,2006,17:667-679.
    534. Xue CY, Park G, Choi W, Zheng L, Dean RA, Xu JR. Two novel fungal virulence genes specifi-cally expressed in appressoria of the rice blast fungus. Plant Cell,2002,14:2107-2119.
    535. Xue T, Nguyen CK, Romans A, May GS. A mitogen-activated protein kinase that senses nitrogen regulates conidial germination and growth in Aspergillus fumigatus. Eukaryot Cell,2004,3:557-560.
    536. Yago JI, Lin CH, Chung KR. The SLT2 mitogen-activated protein kinase-mediated signalling pathway governs conidiation, morphogenesis, fungal virulence and production of toxin and melanin in the tangerine pathotype of Alternaria alternata. Mol Plant Pathol,2011,12:653-665.
    537. Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell,2001,7:1047-1057.
    538. Yan LY, Yang QQ, Jiang JH, Michailides TJ, Ma ZH. Involvement of a putative response regul-ator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea. Appl Microbiol Biot,2011a,90:215-226.
    539. Yan LY, Yang QQ, Sundin GW, Li HY, Ma ZH. The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Fungal Genet Biol,2010,47:753-760.
    540. Yan X, Ma WB, Li Y, Wang H, Que YW, Ma ZH, Talbot NJ, Wang ZY. A sterol 14a-demethy-lase is required for conidiation, virulence and for mediating sensitivity to sterol demethylation inhibitors by the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol,2011b,48:144-153.
    541. Yanez-Mendizabal V, Zeriouh H, Vinas I, Torres R, Usall J, de Vicente A, Perez-Garcia A, Teixido N. Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Euro J Plant Pathol,2012,132:609-619.
    542. Yang DJ, Wang B, Wang JX, Chen Y, Zhou MG. Activity and efficacy of Bacillus subtilis strain NJ-18 against rice sheath blight and Sclerotinia stem rot of rape. Biol Control,2009a,51:61-65.
    543. Yang L, Li GQ, Jiang DH, Huang HC. Water-assisted dissemination of conidia of the myco-parasite Coniothyrium minitans in soil. Biocontrol Sci Techn,2009b,19:779-796.
    544. Yang L, Li GQ, Long YQ, Hong GP, Jiang DH, Huang HC. Effects of soil temperature and mois-ture on survival of Coniothyrium minitans conidia in central China. Biol Control,2010,55:27-33.
    545. Yang L, Li GQ, Zhang J, Jiang DH, Chen WD. Compatibility of Coniothyrium minitans with compound fertilizer in suppression of Sclerotinia sclerotiorum. Biol Control,2011a,59:221-227.
    546. Yang L, Miao HJ, Li GQ, Yin LM, Huang HC. Survival of the mycoparasite Coniothyrium mini-tans on flower petals of oilseed rape under field conditions in central China. Biol Control,2007a, 40:179-186.
    547. Yang R, Han YC, Li GQ, Jiang DH, Huang HC. Effects of ambient pH and nutritional factors on antifungal activity of the mycoparasite Coniothyrium minitans. Biol Control,2008,44:116-127.
    548. Yang R, Han YC, Li GQ, Jiang DH, Huang HC. Suppression of Sclerotinia sclerotiorum by antifungal substances produced by the mycoparasite Coniothyrium minitans. Eur J Plant Pathol, 2007b,119:411-420.
    549. Yang SY, Park, MR, Kim IS, Kim YC, Yang JW, Ryu CM.2-Aminobenzoic acid of Bacillus sp BS107 as an ISR determinant against Pectobacterium carotovorum subsp carotovotrum SCC1 in tobacco. Euro J Plant Pathol,2011b,129:371-378.
    550. Yedidia 1, Benhamou N, Chet I. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microb,1999,65: 1061-1070.
    551. Yi M, Chi MH, Khang CH, Park SY, Kang S, Valent B, Leea YH. The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzea. Plant Cell,2009,21:681-695.
    552. Yli-Mattila T, Kalko G, Hannukkala A, Paavanen-Huhtala S, Hakala K. Prevalence, species composition, genetic variation and pathogenicity of clover rot(Sclerotinia trifoliorum) and Fusarium spp. in red clover in Finland. Eur J Plant Pathol,2010,126:13-27.
    553. Yu JH, Mah JH, Seo JA. Growth and developmental control in the model and pathogenic aspergilli. Eukaryot Cell,2006,5:1577-1584.
    554. Yu JH, Wieser J, Adams TH. The Aspergillus FlbA RGS domain protein antagonizes G-protein signaling to block proliferation and allow evelopment. EMBO J,1996,15:5184-5190.
    555. Yu X, Li B, Fu YP, Jiang DH, Ghabrial SA, Li GQ, Peng YL, Xie JT, Cheng JS, Huang JB, Yi XH. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc Natl Acad Sci USA,2010,107:8387-8392.
    556. Yu YH, Dong WB, Altimus C, Tang XJ, Griffith J, Morello M, Dudek L, Arnold J, Schiittler HB. A genetic network for the clock of Neurospora crassa. Proc Natl Acad Sci USA,2007,104: 2809-2814.
    557. Yue CL, Cavallo LM, Alspaugh JA, Wang P, Cox GM, Perfect JR, Heitman J. The STE12 alpha homolog is required for haploid filamentation but largely dispensable for mating and virulence in Cryptococcus neoformans. Genetics,1999,153:1601-1615.
    558. Zakharchenko NS, Kochetkov VV, Buryanov YI, Boronin AM. Effect of rhizosphere bacteria Pseudomonas aureofaciens on the resistance of micropropagated plants to phytopathogens. Appl Biochem Microbiol,2011,47:661-666.
    559. Zeilinger S, Galhaup C, Payer K, Woo SL, Mach RL, Fekete C, Lorito M, Kubicek CP. Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet Biol,1999,26:131-140.
    560. Zeilinger S, Reithner B, Scala V, Peissl I, Lorito M, Mach RL. Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride. Appl Environ Microbiol,2005,71: 1591-1597.
    561. Zeng FY, Gong XY, Hamid MI, Fu YP, Xie JT, Cheng JS, Li GQ, Jiang DH. A fungal cell wall integrity-associated MAP kinase cascade in Coniothyrium minitans is required for conidiation and mycoparasitism. Fungal Genet Biol,2012a,49:347-357.
    562. Zeng WT, Kirk W, Hao JJ. Field management of Sclerotinia stem rot of soybean using biological control agents. Biological Control,2012b,60:141-147.
    563. Zeng WT, Wang DC, WKirk, Hao JJ. Use of Coniothyrium minitans and other microorganisms for reducing Sclerotinia sclerotiorum. Biological Control,2012c,60:225-232.
    564. Zhang CX, Zhao X, Jing YX, Chida T, Chen H, Shen SH. Phenotypic and biological properties of two antagonist Bacillus subtilis strains. World J Microb Biot,2008,24:2179-2181.
    565. Zhang HF, Tang W, Liu KY, Huang Q, Zhang X, Yan X, Chen Y, Wang JS, Qi ZQ, Wang ZY, Zheng XB, Wang P, Zhang ZG. Eight RGS and RGS-like proteins orchestrate growth, differentia-tion, and pathogenicity of Magnaporthe oryzae. PLoS Pathog,2011a,7:e1002450.
    566. Zhang HF, Xue CY, Kong LA, Li GT, Xu JR. A Pmkl-interacting gene is involved in appresso-rium differentiation and plant infection in Magnaporthe oryzae. Eukaryot Cell,2011b,10:1062-1070.
    567. Zhang JX and Xue AG. Biocontrol of Sclerotinia stem rot(Sclerotinia sclerotiorum) of soybean using novel Bacillus subtilis strain SB24 under control conditions. Plant Pathol,2010,59:382-391.
    568. Zhang JX, Xue AG, Morrison MJ, Meng Y. Impact of time between field application of Bacillus subtilis strains SB01 and SB24 and inoculation with Sclerotinia sclerotiorum on the suppression of Sclerotinia stem rot in soybean. Euro J Plant Pathol,2011c,131:95-102.
    569. Zhang LY, Fu YP, Xie JT, Jiang DH, Li GQ, Yi XH. A novel virus that infecting hypovirulent strain XG36-1 of plant fungal pathogen Sclerotinia sclerotiorum. Virol J,2009a,6:96-104.
    570. Zhang Y, Lamm R, Pillonel C, Lam S, Xu JR. Osmoregulation and fungicide resistance:the Neurospora crassa OS-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. Appl Environ Microb,2002,68:532-538.
    571. Zhang YJ, Zhang JQ, Jiang XD, Wang GJ, Luo ZB, Fan YH, Wu ZQ, Pei Y. Requirement of a mitogen-activated protein kinase for appressorium formation and penetration of insect cuticle by the entomopathogenic fungus Beauveria bassiana. Appl Environ Microb,2010,76:2262-2270.
    572. Zhang YJ, Zhao JH, Fang WG, Zhang JQ, Luo ZB, Zhang M, Fan YH, Pei Y. Mitogen-activated protein kinase hogl in the entomopathogenic fungus Beauveria bassiana regulates environmental stress responses and virulence to insects. Appl Environ Microb,2009b,75:3787-3795.
    573. Zhang YP, Choi YE, Zou XX, Xu JR. The FvMK1 mitogen-activated protein kinase gene regu-lates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides. Fungal Genet Biol,2011d,48:71-79.
    574. Zhao XH and Xu JR. A highly conserved MAPK-docking site in Mst7 is essential for Pmkl activation in Magnaporthe grisea. Mol Microbiol,2007,63:881-894.
    575. Zhao XH, Mehrabi, R, Xu JR. Mitogen-activated protein kinase pathways and fungal patho-genesis. Eukaryot Cell,2007,6:1701-1714.
    576. Zhao XH. Kim Y, Park G, Xu JR. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell,2005,17:1317-1329.
    577. Zheng L, Campbell M, Murphy J, Lam S, Xu JR. The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrylis cinerea. Mol Plant-Microbe Interact,2000,13:724-732.
    578. Zhou LC, Bailey KL, Derby J. Plant colonization and environmental fate of the biocontrol fungus Phoma macrostoma. Biol Control,2004,30:634-644.
    579. Zhou ZP, Wang Y, Cai GH, He Q. Neurospora COP9 signalosome integrity plays major roles for hyphal growth, conidial development, and circadian function. PLoS Genet,2012,8:e1002712.
    580. Ziedan ESH, Farrag ES, El-Mohamedy RS, Abd Alla MA. Streptomyces alni as a biocontrol agent to root-rot of grapevine and increasing their efficiency by biofertilisers inocula. Arch Phytopath Plant Protect,2010,43:634-646.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700