新型电子俘获型红外转可见硅酸盐光转换材料发光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子俘获型光转换材料(Electron trapping materials)具有光转换特性,在发光学领域也被称为光激励材料。这种材料自1986年由美国的Lindmayer首次提出以来便一直受到广泛的关注。在红外探测、光存储、红外光转换以及X射线成像等方面有其广泛的应用前景。光激励材料在受到光辐射后,电子(或空穴)可以被陷阱俘获而处于一种相对稳定的状态。当用红外光或者其他形式的光再次照射材料时,陷阱中的电子(或空穴)就能够释放出来形成光激励发光(photostimulated luminescence)。目前,可以商业化的红外转可见光转换材料主要是碱土金属硫化物系列,这种材料具有光激励发光初始强度高,光激励光存储量大等诸多优点。但是,硫化物的致命缺陷就是化学性质不稳定。最重要的是硫化物分解后会产生有毒物质,对环境造成严重的污染。针对这些问题,寻找一种化学性质稳定的光激励材料已经成为目前光激励材料研究的焦点。
     硅酸盐有较好的化学稳定性,且耐高温、抗腐蚀。目前被广泛的用作稀土发光材料的基体材料。其中,Sr_3SiO_5: Eu~(2+)是一类传统的LED(light emitting diodes)用荧光粉,可以有效的吸收紫外光和蓝绿光发出以580nm为中心的黄光。本论文以Sr_3SiO_5: Eu~(2+)为研究对象,通过掺入另一种共激活剂的方式引入陷阱以提高其光激励发光性能。主要的研究成果如下:
     1)研究了镧系共激活剂(La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)对材料Sr_(2.99)SiO_5:0.01Eu~(2+)的光激励发光性能的影响。我们发现:和其他共激活剂相比,Tm~(3+)掺杂的样品具有非常好的光激励发光性能。其光激励初始强度、光激励光存储量等性能都有不同程度的提高。其原因是因为掺杂Tm~(3+)的样品产生了一个新的陷阱(陷阱B),这个陷阱可以很大程度的提高材料的光激励发光性能;
     2)系统的研究了不同浓度Tm~(3+)掺杂下Sr_(2.99)SiO_5:0.01Eu~(2+)光激励发光性能的变化。经研究我们发现:当Tm~(3+)的掺杂浓度为0.0004时,材料的光激励发光初始强度和光激励光存储量性能均达到了最佳。其中,光激励发光初始强度是未掺杂样品的33倍,光激励光存储量是未掺杂样品的2倍。充分的显示出该材料在红外探测等方面的广阔应用前景。当Tm~(3+)掺杂浓度为0.0004时,材料中陷阱B的数量也同样达到最大值。这说明陷阱B的数量与材料的光激励发光性能有着很强的对应关系;
     3)研究了Sr_(2.9896)SiO_5:0.01Eu~(2+),0.0004Tm~(3+)中的陷阱A和陷阱B中电子的迁移规律。经过对数据的整理和分析,我们得出如下结论:陷阱A和B都可以分成两类,其本质区别是它们距离发光中心Eu~(2+)的远近不同。第一类陷阱距离Eu~(2+)较近,陷阱中的电子很容易与Eu~(2+)的基态能级发生电荷迁移效应。在热激励的条件下,陷阱中的电子仍然可以转化成光子形成发光,而在光激励的条件下则很容易发生无辐射跃迁。第二类陷阱是距离Eu~(2+)较远的陷阱,这类陷阱中的电子无论在热激励还是光激励条件下都可以转化成光子形成发光。不同之处在于,第二类陷阱A中电子在光激励条件下释放速率缓慢不能形成较强的光激励发光,而第二类陷阱B中的电子在光激励的条件下则可以快速的释放形成较强的光激励发光。与此同时,我们还发现在长余辉衰减过程中,陷阱A释放出的电子可以被陷阱B再次俘获。这就是陷阱B的电子再俘获效应;
     4)探索性的研究了Ba元素对材料Sr_(2.9896)SiO_5:0.01Eu~(2+),0.0004Tm~(3+)的荧光发光、长余辉发光以及光激励发光性能的影响。材料的荧光发射、长余辉发射和光激励发射峰位都随着Ba元素的逐渐添加而发生红移。这是因为Ba元素的掺入改变了基体材料的晶格参数而造成发光中心Eu~(2+)的5d能级下降,材料的发射峰位发生红移。Ba元素逐渐掺入后,材料的长余辉和光激励发光性能都明显下降。材料中原来的陷阱A和陷阱B在加入Ba元素后都被破坏,产生了一种新的陷阱(陷阱A-B),而这种新陷阱中的电子无论对长余辉发光还是光激励发光都没有促进作用。
Electron trapping materials (ETM) have the property of photoconversion, and itis called the photostimulated luminescence materials in the field of luminescence.This kind of material has been always focused on extensively since it was firstmentioned by Lindmayer from USA in1986. It has extensive application prospect oninfrared detection, optical storage, infrared conversion and X-ray imaging. While thephotostimulated luminescence materials are irradiated by light, the electron (or hole)is captured by trap being in a comparative stable state. As it is stimulated by infraredlight or others, the electron (or hole) is released to produce photostimulatedluminescence (PSL). At present, the commercial ETM is main alkaline sulfides, whohave many advantages such as intense initial PSL intensity, high PSL light storagecapacity. However, the fatal disadvantage of alkaline sulfides is their poor chemicalstability. The more import is that the toxic substance will arise once the sulfides breakdown, and it will cause serious circumstance pollution. To solve this problem,searching an ETM with good chemical stability is the focus for study on ETM.
     Silicates have good chemical stability, thermostability and resistance to corrosion.It is used as the host of rare earth luminescence material extensively now. Sr_3SiO_5:Eu~(2+)is a traditional LED (light emitting diodes) phosphor, which can absorb UV-lightand blue-green light to emit in yellow peaked at580nm. In this paper, we research theSr_3SiO_5: Eu~(2+)in the form of co-doping another coactivator to enhance the PSLproperty. The key results of researching are as follows:
     1) We have researched the effect on the PSL properties by co-doping thecoactivators in lanthanide (La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu) into Sr_(2.99)SiO_5:0.01Eu~(2+). It is found that the sample co-doping Tm~(3+)hasthe best PSL property. The initial PSL intensity and PSL light storage capacity isimproved at different extent. The reason is that a new trap (trap B) is arised in thesample co-doping Tm~(3+), and the trap could greatly enhance the PSL property ofmaterial.
     2) We have researched the variation of PSL properties of Sr_(2.99)SiO_5:0.01Eu~(2+)withdifferent level of co-doping Tm~(3+). The initial PSL intensity and PSL light storagecapacity of ETM reached the maximum at the Tm~(3+)concentration of0.0004. Theinitial PSL intensity is33times of the Tm~(3+)free sample and the PSL light storagecapacity is2times of the Tm~(3+)free sample. It is shown that this kind of ETM hasbroad application prospect in the field of infrared detection. The quantity of trapB also reaches the maximum when the Tm~(3+)concentration is0.0004, it is impliedthat the intense relationship between the PSL property and the quantity of trap B.
     3) The rules for electron transition of trap A and trap B in Sr_(2.9896)SiO_5:0.01Eu~(2+),0.0004Tm~(3+)have been studied. During the arrangement and analysis of data, it isconcluded that there are tow kinds of trap A and B, and the essential difference isthe distance between them and luminescence centre Eu~(2+). The first kind of trap isnear from Eu~(2+), the electron in trap is easy to perform charge transition betweenthe electron and Eu~(2+)ground level. In the condition of thermostimulation, theelectron in trap could convert to photon emitting thermoluminescence yet,nevertheless, with photostimulation, the electron in trap will cause non-irradiationtransition. The second kind trap is far from Eu~(2+), and the electron in trap willconvert to photon in the stimulation of thermal or luminescence. The electron inthe second kind of trap A will release slowly without intense PSL, and theelectron in the second kind of trap B will release rapidly to produce intense PSL.Meanwhile, it is found that the electron released from trap A could be retrappedby trap B in the process of phosphorescence decay. It is the effect of electronretrapping by trap B.
     4) The effect on the characteristics of photoluminescence (PL), phosphorescenceand PSL of Sr_(2.9896)SiO_5:0.01Eu~(2+),0.0004Tm~(3+)doped Ba has been researchedtentatively. The emission peaks of PL, phosphorescence and PSL are all redshifted gradually as the Ba content is increased. The reason is that the latticeparameter of material is changed to make the Eu~(2+)5d orbital decrease afterdoping Ba. The properties of phosphorescence and PSL of the material are decreased evidently as the Ba content is increased. The trap A and trap B inphosphors are both destroyed after doping Ba, and a new trap (trap A-B) isemerged. However, the new trap could not enhance the phosphorescence or thePSL at all.
引文
[1] Nakamura S and Fasol G. The Blue Laser Diode [M]. Berlin: Springer,1996.
    [2] Arturas Zukaurkas, Micheal S Shur, Remis Gaska. Introduction to Solid StateLighting [M]. New York: John Wiley&Sons, Inc.,2002,1-10.
    [3] Fred Schubert E. Light Emitting Diode [M]. Cambridge: Cambridge UniversityPress,2003.
    [4]李建宇.稀土发光材料及其应用[M],北京:化学工业出版社,2003.
    [5]朱小清,林瀚.照明技术手册[M].第2版.北京:机械工业出版社,2004,1-7.
    [6](日)照明学会编.照明手册[M].第2版.李农,杨燕译.北京:科学出版社,2005,1-17.
    [7] Philippe F Smet, Iwan Moreels, Zeger Hens et al. Luminescence in Sulfides: ARich History and a Bright Future [J]. Materials,2010(3):2834-2883.
    [8]孙家跃,杜海燕,胡文祥.固体发光材料[M],北京:化学工业出版社,2003.
    [9]张希艳,卢利平,柏朝晖等.稀土发光材料[M].北京:国防工业出版社,2005.
    [10] J Lindmayer A new erasable optical memory [J]. Solid. State. Technol,1988,31(8):135-138.
    [11] Lawrence H Robins, J Ari Tuchman Photoluminescence studies of Sm3+in thestimulable phosphor SrS: Eu, Sm [J]. Phys Rev B,1998,57:12094-12103.
    [12]徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社,2004,323-325.
    [13]陈大华.现代光源基础[M]。上海:学林出版社,1987.
    [14]方道腴,蔡祖泉.电光源工艺(上)[M].上海:上海科学技术出版社,1988.
    [15]中国科学院吉林物理所、中国科学技术大学《固体发光》编写组编.固体发光[M].长春:内部出版,1976.
    [16]韩万书.中国固体无机化学十年进展[M].北京:高等教育出版社,1998.
    [17] Jenkings H G, Mckeag A H, Ranby P N. Alkalinge earth halophosphates andrelated phosphors [J]. J Electrochem Soc,1949,96:1-6.
    [18] Verstegen J M P J, Radielovic D, Vrenken L E. A new generation of―Deluxe‖fluorescent lamps, combining an efficacy of80lumens/W or more with a colorrendering index of approximately85[J]. J Electrochem Soc,1974,121:1627-1631.
    [19] N Narendran, N Maliyagoda, L Deng, et al. Characterizing LEDs for generalillumination applications: Mixed-color and phosphor-based white sources [J].SPIE-Int. Soc. Opt. Eng.,2001,4445:137-147.
    [20] S Muthu, F Schuurmans, M Pashley, et al. Red, green, and blue LEDs for whitelight illumination [J]. IEEE J. Selected Topics in Quantum Electronics,2002,8(2):333-338.
    [21] D Xiao, K Kim, S Bedair, et al. Design of white light-emitting diodes usingInGaN/AlInGaN quantum-well structures [J]. Appl. Phys. Lett.,2004,84:672-674.
    [22] M Yamada, Y Narukawa, T Mukai. Phosphor free high-luminous-efficiencywhite light-emitting diodes composed of InGaN multi-quantum well [J]. Jpn. J.Appl. Phys.,2002,41: L246-L248.
    [23] J K Park, C H Kim, S H Park, et al. Application of strontium silicate yellowphosphor for white light-emitting diodes [J]. Appl Phys Lett.,2004,84(10):1647-1649.
    [24] J K Park, K J Choi, J H Yeon, et al. Embodiment of the warmwhite-light-emitting diodes by using a Ba2+codoped Sr3SiO5: Eu phosphor [J].Appl Phys Lett,2004,88:043511(1-3).
    [25] N Hirosaki, R J Xie, K Kimoto, et al. Characterization and properties ofgreen-emitting β-SiAlON: Eu2+powder phosphors for white light-emittingdiodes [J]. Appl Phys Lett,2005,86:211905-211907.
    [26] Rong-Jun Xie, Naoto Hirosaki, Ken Sakuma, et al. Eu2+-doped Ca-α-SiAlON: Ayellow phosphor for white light-emitting diodes [J]. Appl Phys Lett,2004(84):5404-5406.
    [27] Rong-Jun Xie, Naoto Hirosaki, Mamoru Mitomo, et al. Highly efficientwhite-light-emitting diodes fabricated with short-wavelength yellow oxynitridephosphors [J]. Appl Phys Lett,2006(88):101104(1-3).
    [28] J S Kim, P. E Jeon, J C Choi. Warm-white-light emitting diode utilizing asingle-phase full-color Ba3MgSi2O8:Eu2+, Mn2+phosphor [J]. Appl Phys Lett,2004,84(15):2931-2933.
    [29] J S Kim, P E Jeon, Y H Park, et al. White-light generation throughultraviolet-emitting diode and white-emitting phosphor [J]. Appl Phys Lett,2004,85:3696-3698.
    [30] Woan-Jen Yang, Teng-Ming Chen. White-light generation and energy transfer inSrZn2(PO4)2:Eu, Mn phosphor for ultraviolet light-emitting diodes [J]. ApplPhys Lett,2006(88):101903-1-101903-3.
    [31] Xiaoyuan Sun, Jiahua Zhang, Xia Zhang, et al. A white light phosphor suitablefor near ultraviolet excitation [J]. J Lumin,2007(122–123):955-957.
    [32]孙晓园,张家骅,张霞等.新一代白光LED照明用一种适于近紫外光激发的单一白光荧光粉[J].发光学报,2005,26:404-406.
    [33] H S Jang, D Y Jeon. Yellow-emitting Sr3SiO5:Ce3+, Li+phosphor forwhite-light-emitting diodes and yellow-light-emitting diodes [J]. Appl Phys Lett,2007,90:041906(1-3).
    [34] Lakshminarasimhan N, Varadaraju U V. White-light Generation in Sr2SiO4:Eu2+,Ce3+under Near-UV Excitation [J]. J Electrochem Soc,2005,152(9):H152-H156.
    [35] Zhendong Hao, Jiahua Zhang, Xia Zhang, et al. White light emitting diode byusing α-Ca2P2O7:Eu2+, Mn2+phosphor [J]. Appl Phys Lett,2007,90:261113(1-3).
    [36] Zhendong Hao, Jiahua Zhang, Xia Zhang, et al. Phase dependentphotoluminescence and energy transfer in Ca2P2O7: Eu2+, Mn2+phosphors forwhite LEDs [J], J Lumin,2008,128:941.
    [37]方志烈.发光二极管材料与历史、现状和展望[J].物理,2003,32(5):295-301.
    [38]张思远,毕宪章.稀土光谱理论[M].吉林科学技术出版社,1991.第2章,第9章.
    [39] W Lü, Z D Hao, X Zhang, et al. Tunable Full-Color Emitting BaMg2Al6Si9O30:Eu2+, Tb3+, Mn2+phosphors based on energy transfer [J]. Inorg Chem,2011,50:7846-7851.
    [40] Y F Liu, X Zhang, Z D Hao, et al. Generation of broadband emission byincorporating N3-into Ca3Sc2Si3O12:Ce3+garnet for high rendering white LEDs[J]. J Mater Chem,2011,21:6354-6358.
    [41] J Y Yu, Z D Hao, X Zhang, et al. A new emission band of Eu2+and its efficientenergy transfer to Mn2+in Sr2Mg3P4O15:Mn2+, Eu2+[J]. Chem Commun,2011,47:123376-12378.
    [42]葛葆王圭.电致发光原理及应用[M].北京:测绘出版社,1984.
    [43] Tang C W, Vanslyke S A, Chen C H. Electroluminescence of organic thin film.[J]. Jpn J Appl Phys,1989,65(9):3610-3615.
    [44]赵辉,王永生,徐征等. ZnS: Mn薄膜电致发光器件中的电子能量[J].功能材料,1999,30(5):531-532.
    [45]衣立新,侯延冰,王晓峰等. ZnS: Ag和ZnS: Cu的薄膜电致发光特征[J].光电子·激光,2000,11(6):570-574.
    [46]刘志甫,李永祥,殷庆瑞.金属氧化物系电致发光材料研究进展[J].功能材料,2002,33(6):584-587.
    [47] Miyata T, Nakatani T. Gallium oxide as host material for multi color emittingphosphors [J]. J Lumin,2000,87-89:1183-1186.
    [48] Xu X L, Hou Y B, X Z, et al. Photoluminescence and electro-luminescence of(Gd2O3-Ga2O3): Ce thin film [J]. Jpn J Appl Phys,2000,39(A):1769-1772.
    [49]许秀来,徐征,侯延冰等. Gd3Ga5O12: Ag薄膜电致发光材料的制备及其发光性能[J].物理学报,2000,49(7):1390-1393.
    [50] Minami T, Miyata T, Takata S, et al. High luminescence green ZnSiO4: Mn thinelectro-luminescence devices using an insulating BaTiO3ceramic sheet [J]. JpnAppl Phys Part2,1991,30: L117-120.
    [51] Wang J G, Tian S J, Li G B, et al. Luminescence properties of FED bluephosphor Y2SiO5: Ce [J]. J Electrochem Soc,2001,148(6): H61-65.
    [52] Lewis J S, Holloway P H. Sputter deposition and electro-luminescence ofZn2GeO4: Mn [J]. J Electrochem Soc,2000,147(8):3148-3150.
    [53] Tang C W, Vanslyke S A. Organic electro-luminescent diodes. Appl Phys Lett [J].1987,51:913-915.
    [54]朱卫国,范同锁,卢志云等.有机金属螯合物电致发光材料的研究[J].材料导报,2000,14(1):50-54.
    [55]刘式墉,冯晶,李峰.有机电致发光材料分子与器件结构设计[J].发光学报,2002,23(5):425-428.
    [56]梁春军,李文连,洪自若等.有机稀土Eu(DBM)3bath配合物电致发光[J].发光学报,1998,19(3):89-91.
    [57] Adachi C, Nagai K, Tamoto N. Molecular design of hole transport materials forobtaining high durability in organic electro-luminescent diodes [J]. Appl PhysLett,1995,66(20):2679-2682.
    [58]徐叙瑢,楼立人.发光及其应用[M].湖南:湖南教育出版社,1994.
    [59]陈湘南.蓄光颜料及其开发动向[J].中国涂料,2000,4:40-43.
    [60] W Hoogenstraten. Luminescence phenomenon in ZnS-type phosphors [J].Philips Research Reports,1959,13:515-521.
    [61]戴国瑞.非放射性红色荧光粉的合成和发展[J].吉林大学自然科学学报,1993,1:97-99.
    [62]毛向辉.铕激活的碱土硫化物荧光粉的研究[J].发光学报,1996,17(增):147-148.
    [63]戴国瑞,郑雁,张兰英.非放射性红色荧光粉的合成和发光[J].吉林大学自然科学学报,1993,1:97-100.
    [64] C F Palilla, A K Levine, M R Tomkus. Fluorescent properties of alkaline earthaluminates of the type MAl2O4activated by divalent europium [J]. JElectrochem Soc,1968,115(6):642-644.
    [65]《固体发光》编写组.固体发光[M].吉林:吉林物理所,1976:370-383.
    [66] T Matasuzawa, Y Aoki, N Takeuchi, Y Murayama. A new long phosphorescentphosphor with high brightness SrAl2O4: Eu2+,Dy3+[J]. J Electrochem Soc,1996,143(8):2670-2673.
    [67] W Y Jia, H B Yuan, L Zh Lu, et al. Phosphorescent dynamics SrAl2O4: Eu2+,Dy3+single crystal fibers [J]. J Lumin,1998,76-77:424-428.
    [68]张瑞俭,宁桂玲.发光体MAl2O4: Eu2+,RE3+的长余辉形成机理[J].光电子技术,2003,23(1):30-34.
    [69] J Qiu, K Hirao. Long lasting phosphorescence in Eu2+-doped calciumaluminoborate glasses [J]. Solid State Commun.1998,106(12):795-798.
    [70]张天之,苏锵,王淑彬. MAl2O4: Eu2+,RE3+长余辉发光性质的研究[J].发光学报,1999,20(2)170-175.
    [71] Jia D, Meltzer R S, Yen W M, et al. Green phosphorescence of CaAl2O4: Tb3+,Ce3+through persistence energy transfer [J]. Appl Phys Lett,2002,80:1535-1537.
    [72] Eiichiro Nakazawa, Yoshinori Murazaki, Susumu Saito. Mcchanism of thepersisitent phosphorescence in Sr4Al14O25: Eu and SrAl2O4: Eu codoped withrare earth ions [J]. J Appl Phys,2006,100:113113.
    [73]徐光宪.稀土(下)[M].北京:冶金工业出版社,1995.
    [74] Maciel G S, Biswas A, Prasad P N. Infrared-to-visible Eu3+energy upconversiondue to cooperative energy transfer from an Yb3+ion pair in a sol-gel processedmulti-component silica glass [J]. Optics Commun,2000,178:65-69.
    [75] Balda R, Saez I, Ocariz D, et al. Spectroscopy and orange-blue frequencyupconversion in Pr3+-doped GeO2-PbO-Nd2O5glass [J]. J Phys: CondensedMatter,2000,12:10623-10627.
    [76] Fernandez J, Balda R, Mendioroz A, et al. Upconversion processes inPr3+-doped chalxohalide glasses [J]. J Phys: Condensed Matter,2001,13:10347-10350.
    [77] Lindmayer J. Apparatus for extending the infrared response of photocathodes
    [P]. US Patent,4891507.1990.
    [78] Jutamulia S, Storti G M, Seiderman W, et al. Use of electron-trapping materialsin optical signal processing. Ⅳ: Parallel incoherent image subtraction [J]. ApplOpt,1993,32(5):743-745.
    [79] Z Hua, L Salamanca-Riba, M Wuttig, et al. Temperature dependence ofphotoluminescence in SrS: Eu2+, Sm3+thin films [J]. J Opt Soc Am. B,1993,10(8):1464-1469.
    [80] Wen Z, Farhat N H, Zhao Z J. Dynamics of electron-trapping materials for usein optoelectronic meurocomputing [J]. Appl Opt,1993,32(35):7251-7265.
    [81] Chen S C, Dai F M. Up-conversion and optical storage properties of SrS: Eu,Sm in PMMA [J]. Chinese J Lasers,1993, B2(1):67-69.
    [82] Hidehito Nanto, Yoshiaki Hirai, Mitsuo Ikeda, et al. A novel image storagesensor using photostimulated luminescence in SrS: Eu, Sm phosphor forelectromagnetic waves such as X-rays, UV-rays and visible light [J]. SensActuators A,1996,53:223-226.
    [83] Ruan H, Chen Sh Ch, Gan F X. Temporal characteristics of luminescence fromultrashort-pulsed infraredlaser stimulated electron trapping materials [J].Chinese J Lasers,1997, B6(1):86-90.
    [84] Pham-Thi M, Ravarx G. Calcium Sulfide Phosphors Prepared by the FluxMethod Ⅰ: Growth Parameters and Luminescent Efficiency [J]. J ElectrochemSoc,1991,138(4):1103-1110.
    [85] Z Hasan, M Solonenko, P I Macfarlane, et al Persistent high density spectralholeburning in CaS: Eu and CaS: Eu, Sm phosphors [J]. Appl. Phys. Lett,1998,72(19):2373-2375.
    [86]陈伟,宋家庆,苏勉曾. X射线影响存储与现用发光材料MFX: Eu2+的研究现状及应用前景[J].功能材料,1994,25(3):197-205.
    [87] Nanto H, Endo F. Eu-doped KCl phosphor crystals as a storage materials fortwo-dimensional ultraviolet-ray or X-ray imaging sensors [J]. J Appl Phys,1994,75(11):7493-7495.
    [88] De Carcer I A, Rowlands A P. Thermoluminescence of KCl: Eu2+underultraviolet irradiation at different temperature [J]. Radiation Measure-ments,1998,29(2):203-208.
    [89] M Secu, L Matei, T Serban, et al. Preparation and optical properties of BaFCl:Eu2+X-ray storage phosphor [J]. Opt Mater,2000,15:115-122.
    [90] T. Katsumata, R. Sakai, S. Komuro, et al. Thermally stimulated andphotostimulated luminescence from long duration phosphorescent SrAl2O4: Eu,Dy crystals [J]. J Electrochem Soc,2003,150: H111-H114.
    [91] J C Zhang, Q S Qin, M H Yu, et al. The photoluminescence, afterglow and upconversion photostimulated luminescence of Eu3+doped Mg2SnO4phosphors [J].J Lumin,2012,132:23-26.
    [92] X Y Sun, J H Zhang, X Zhang, et al. Long lasting yellow phosphorescence andpotostimulated luminescence in Sr3SiO5: Eu2+and Sr3SiO5: Eu2+, Dy3+phosphors [J]. J Phys D: Appl phys.2008,41:195414.
    [93] X Y Sun, J H Zhang, X Zhang, et al. Effect of retrapping on photostimulatedluminescence in Sr3SiO5: Eu2+, Dy3+phosphor [J]. J Appl Phys,2009,105:013501.
    [94]孙晓园.近紫外芯片白光LED用掺Eu2+的硅酸盐荧光粉的制备发光性质研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2008.
    [95]张迈生,臧李纳.微波场作用下类球形亚超细CaS: Sm3+的快速合成及其发光特性[J].稀有金属,2000,24(6):410-415.
    [96]张希艳,刘全生,王晓春.红外上转换材料CaS: Eu2+, Sm3+的制备[J].红外与毫米波,2005.
    [97] RAO R P. Role of Alkaline Earth Sulphide Phosphors in Solid State Dosimetry[J]. Radiation Protection Dosimetry,1986,17:403-405.
    [98] Vasyl G Kravets. Using electron trapping materials for optical memory [J]. OptMater,2001,16:369-375.
    [99]李建宇.稀土发光材料及其应用[M].化学工业出版社,2003,第1章.
    [100]聂兆刚.镨在六角碱土铝酸盐中的量子剪裁和真空紫外光谱[D]:[博士学位论文].北京:中国科学院研究生院,2007.
    [101]苏锵,稀土化学[M].郑州:河南科学技术出版社,1993,267
    [102]张洪杰,洪广言,李得谦等.我国稀土化学的进展[J].化学通报,2001,6:325-329.
    [103]张希艳,卢利平,柏朝晖等.稀土发光材料[M].北京:国防工业出版社,2005,第四章.
    [104]张中太,张俊英.无机光致发光材料及应用[M].北京:化学工业出版社,2005,第九章.
    [105]Takahashi K, Kahda K, Miyahara J. Mechanism of photostimulatedluminescence in BaFX: Eu2+(x=Cl, Br) phosphors [J]. J Lumin,1984,31/32(2):266-268.
    [106]Von Seggern H, Voigt T, Knüpfer W. Physical model of photostimulatedluminescence of X-ray irradiated BaFBr: Eu2+[J]. J Appl Phys,1988,64:1450-1412.
    [107]陈伟,苏勉曾. X射线诱导BaFCl: Eu2+光激励发光过程的新观察[J].无机化学学报,1994,10(2):165-171.
    [108]T Hangleiter, F K Koschnick, J-M Spaeth, et al. Temperature dependence of thephotostimulated luminescence of x-irradiated BaFBr: Eu2+[J]. J Phys: CondensMatter,1990,2:6837-6846.
    [109]M K Crawford, L H Brixner, K Somaiah. X-ray excited luminescencespectroscopy of barium fluorohalides [J]. J Appl Phys,1989,3758-3762.
    [110]M K Crawford, L H Brixner. Photostimulable phosphors for X-ray imaging:applications and mechanism [J]. J Lumin,1991,48/49:37-42.
    [111]王永生,熊光楠,徐叙瑢等. BaFCl: Eu~(2+)光激励发光的多隧穿能级模型[J].物理学报,1995,44(12):2007-2013.
    [112]R Chen Glow curves with general order kinetics [J]. J Electrochem Soc: SolidState Sci,1969,116(9):1254-1257.
    [113]R Chen. On the Calculation of Activation Energies and Frequency Factors fromGlow Curves [J]. J Appl Phys,1969,40(2):570-585.
    [114]黄世华.激光光谱学原理和方法[M].长春:吉林大学出版社.2001.第一章.
    [115]Y H. Liu, J H. Hao, W D Zhuang, et al. Structural and luminescent properties ofgel-combustion synthesized green-emitting Ca3Sc2Si3O12:Ce3+phosphor forsolid-state lighting [J]. J. Phys. D: Appl. Phys.,2009,42:245102.
    [116]N Enomoto, T Sakai, M Inada, et al. Synthesis of Ca3Sc2Si3O12:Ce3+phosphorvia newly developed emulsion route [J]. J Ceram Soc Jpn,2010,118(11):1067-1070.
    [117]J C Zhang, M H Yu, Q S Qin, et al. The persistent luminescence and upconversion photostimulated luminescence properties of nondoped Mg2SnO4material [J]. J Appl Phys,2010,108:123518.
    [118]J C Zhang, Q S Qin, M H Yu, et al. Up-Conversion PhotostimulatedLuminescence of Mg2SnO4for Optical Storage [J]. J Lumin,2011,28(2):027802(1-3).
    [119]秦青松,马新龙,邵宇等.新型光存储材料Sr2SnO4: Tb3+, Li+的合成及其红外上转换光激励发光性能的研究[J].物理学报,2012,61(9):097804(1-4).
    [120]王治龙,郑贵森,王世钦等.新型电子俘获型光存储材料Sr2SnO4: Sb3+的发光性能研究[J].物理学报,2012,61(12):127805(1-6).
    [121]G Blasse, W L Wanmaker, J W Vrugtter, et al. Fluorescence of Eu2+activatedsilicates [J]. Philips Res Rep,1968,23:189-193.
    [122]S D Jee, J K Park, S H Lee. Photoluminescence properties of Eu2+-activatedSr3SiO5phosphors [J]. J Mater Sci,2006,41:3139-3141.
    [123]P L Li, Z P Yang, Z J Wang, et al. Preparation and luminescence characteristicsof Sr3SiO5: Eu2+phosphor for white LED [J]. Chin Sci Bull,2008,53(7):974-977.
    [124]李盼来,杨志平,王志军等. Sr3SiO5: Eu2+材料光谱特性研究[J].光子学报,2008,37(10):2001-2004.
    [125]G Cheng, Q S Liu, L Q Cheng, et al. Synthesis and luminescence property ofSr3SiO5: Eu2+phosphors for white LED [J]. J Rare Earth,2010,28(4):526-528.
    [126]Y Nakamura, T Watari, T Torikai, et al. Synthesis and Luminescence Propertiesof Eu2+-activated Sr3SiO5Phosphors [J]. Mater Sci Eng,2011,18:102007(1-4).
    [127]E H Kang, S W Choi, S E Chung, et al. Photoluminescence Characteristics ofSr3SiO5: Eu2+Yellow Phosphors Synthesized by Solid-State Method and PechiniProcess [J]. J Electrochem Soc,2011,158(11): J330-J333.
    [128]Dent G L S, Glasser F P. Silicates M3SiO5.Ⅰ.Sr3SiO5[J]. Acta Cryst,1965,18:453-454.
    [129]Shionoya S, Yen W M. Phosphor Handbook [M]. CRC press,1998, Part Ⅰ:90-91.
    [130]J P Wu, D Newman, Ian V F Viney. Study on relationship of luminescence inCaS: Eu, Sm and dopants concentration [J]. J Lumin,2002,99:237-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700