玄武岩基/PPS针刺滤料的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造成大气污染的主要原因是火力发电、钢铁、水泥、冶金、化工、垃圾焚烧等行业的烟气排放。这些烟气的主要成分有烟尘、SO_2、NO_x、HCl、CO、O_2、氟化物和水分等,一般情况下烟气的温度范围为140~240℃。随着人们环保意识及对环境改善的要求日益强烈,提高烟气排放的洁净程度成为必要措施。因此,耐高温滤料的研究成为当代的一个重要课题。
     本课题的主要研究内容包括:
     1、研究PPS纤维的耐高温、耐碱、耐酸及耐混合酸等性能;
     2、探讨玄武岩基布的力学性能及其耐酸碱性能;
     3、研究针刺工艺对玄武岩基/PPS滤料力学性能的影响;
     4、研究单面烧毛轧光、单面涂胶、单面覆膜等后整理工艺对滤料性能的影响。
     通过以上研究,得到的主要结论如下:
     1、通过单纤强力仪、场发射扫描电镜、差示扫描量热仪测试了处理前后PPS纤维的力学性能、表面形貌和内部结构的变化。实验结果表明:当温度高于230℃时,PPS纤维的耐高温性能较差,随着处理温度的升高,纤维表面凸起的颗粒变大且增多,其断裂强力保持率下降,熔点和熔融热都增大,结晶变得完善;PPS纤维有较好耐碱性能;PPS耐H_2SO_4性能好,耐HCl性能一般,耐HNO3性能较差,经HCl、HNO_3处理后,纤维表面出现凹槽和裂缝,其断裂强力保持率、熔点、熔融热随处理时间和温度的增加而减小;PPS纤维的耐HNO3+HCl混合酸比纯HNO_3腐蚀性能差。
     2、通过体视显微镜和织物强力仪观察测试了玄武岩基布的表面形貌和力学性能。结果表明:玄武岩斜纹基布的断裂强力大于平纹基布的断裂强力;玄武岩基布不耐碱,耐HNO_3性能较好,耐H2SO4性能一般,耐HCl性能差,经HCl处理后基布由金黄色变成银色且断裂强力大幅下降。
     3、以玄武岩机织物为基布,以PPS纤维为网层,通过改变针刺道数制备了不同针刺密度的PPS针刺滤料,并分析了针刺密度对不同玄武岩基布和玄武岩基/PPS滤料的力学性能的影响。结果表明:玄武岩基布和玄武岩基/PPS滤料的断裂强力和断裂伸长率都随针刺密度的增加而减小;纤维束规格相同时,经相同针刺密度针刺后,斜纹基布较平纹基布平整,斜纹基布和斜纹基PPS滤料的断裂强力大于平纹基布和平纹基PPS滤料的断裂强力。
     4、通过电子天平、数字式织物厚度仪、场发射扫描电子显微镜、织物电子强力仪、数字式织物透气仪、孔径测定仪、过滤测试平台测试后整理处理前后滤料的单位面积重量、厚度、力学、透气、孔径、过滤效率、过滤阻力等性能。结果表明:烧毛轧光处理使滤料变得平整密实,厚度减小,透气量减小到将近处理前的一半,平均孔径减小,过滤效率提高;单面涂胶处理使滤料的断裂强力增大,透气量减小到涂胶前的一半,孔径减小,过滤阻力增大,过滤效率提高;单面覆膜使滤料孔径减小,过滤阻力急剧升高,对小粒径粒子过滤效率大幅提高,对粒子粒径小于0.3μm的微粒的过滤效率均大于94%,当粒子粒径大于3μm时,过滤效率达到100%。
Air pollutions were mainly caused by exhaust gases, which included dusts, hydrochloride, O_2, CO, SO_2, NO_x, H_2O and emitted from coal-fired power plant, cement plants, steel works, incinerating plants at the temperature of 160~240℃. People paid more attention to environmental protection and improvement of the clean level of emitted gases. Thus, the study of high temperature filtration became an important work.
     The aim of the study was to investigate the mechanical properties of PPS fibers in high temperature, acids and alkali, the mechanical and chemical resistant properties of basalt fabric, the effect of needle-punched on the properties of basalt fabric/PPS filter and the effect of finishing on the properties of basalt fabric/PPS filtration.
     The results showed that HCl and HNO3 had obviously detrimental effect on the properties of PPS fibers relative to NaOH and H_2SO_4. Many cracks and holes appeared on the surface of PPS fibers after HCl or HNO_3 exposure. The breaking strength and breaking elongation of PPS fibers were decreased as the increasing of concentrations and extension of time. Their melting heat was mostly affected by HNO3 among those acids and alkali. HCl accelerated the degradation of HNO3 on PPS fibers. When the treatment temperature was over 230℃, there were more and more small particles appeared on the surface of the PPS fibers as the increase of the treatment temperature.
     Tensile strength of basalt twill fabric was greater than that of plain fabric. Basalt fabric is not alkali resistance, good performance in HNO3 resistance, general performance in H2SO4 resistance, poor performance in HCl resistance. The color of basalt fabrics changed from the golden yellow to Silver and the breaking strength dropped significantly after HCl treatment.
     The breaking strength and breaking elongation rate of basalt fabric and the basalt based/ PPS filter decreased as increasing of the needling density. The breaking strength of basalt twill fabric and basalt twill fabric based / PPS filter than that of the plain fabric and plain fabric based PPS filter punched by the same needling density.
     Filter became smoother and denser after the singeing and calendering treatment, which also decreased the thickness, reduced gas transmission to be nearly half of the untreated filter, decreased the average pore size and enhanced the filtration efficient. Single-side gelatinizing treatment increased the breaking strength of the filter, reduced gas transmission to be half of the pre-coating filter and increased the filtration efficient. Single-side tectorial membrane treatment decreased the media pore size and enhanced filtration efficient of the filter. The filtration efficient against the particle size bigger than 0.3μm was over 94%, and the filtration efficient increased to 100% when the particle size was greater than 3μm.
引文
[1]李新娥.玄武岩纤维在高温烟气过滤上应用之优势[J].产业用纺织品, 2007, 18(04): 46-48.
    [2]蔡杰.空气过滤ABC[M].北京:中国建筑工业出版社. 2002, 10.第一版: 14~17.
    [3] GB4915-2004,水泥工业大气污染物排放标准[S].
    [4] GB13223-2003,火电厂大气污染排放标准[S].
    [5] GB13223-1996,火电厂大气污染物排放标准[S].
    [6] GB18485-2001,生活垃圾焚烧污染控制标准[S].
    [7]肖宝恒崔云寿.燃煤电厂电除尘器改造为袋式除尘器的可行性研究[J].电力环境保护. 2002, 18(2): 17-18.
    [8]刘书平.我国用于袋式除尘器的过滤材料[J].合成纤维2007,(4): 12-15.
    [9]王江峰,程珈宁.某锡矿粗碎除尘系统设计浅析[J].工程设计与研究. 2008, (124): 25~26.
    [10]柴俊国.火电厂循环半干法脱硫系统存在问题及改进[J].环保与安全2005,12(4):33~34.
    [11]黄家敏.袋式除尘器治理烘干机废气烟尘[J].水泥科技.2003, (4):19~23.
    [12]王新威,胡祖明,刘兆峰.芳香族耐高温纤维及主要品种性能[J].材料导报.2007,21(5):53~58.
    [13]宋丽贞.耐高温针刺非织造布滤料[J].产业用纺织品.2000, (5):12~15.
    [14]任加荣,王锦,余镇慌.芳砜纶纤维热处理力学性能分析[J].国际纺织导报. 2007, (11): 27~34.
    [15]班燕,张玉华,任加荣.芳砜纶在耐高温滤料的应用[J].产业用纺织品. 2006, (12): 33~36.
    [16]张丽,李亚滨,刘建中.芳砜纶纤维耐热性能的研究[J].天津工业大学学报. 2006, 25(6): 17~19.
    [17]汪晓峰,张玉华.芳砜纶的性能及其应用[J].纺织导报. 2005, (1): 19~23.
    [18]朱平.玻璃纤维与P84纤维混杂针刺毡高温滤材[J].玻璃纤维. 2004, (6): 21~23.
    [19]肖容绪.玻纤滤料在袋式除尘器中的应用[C]//中国玻璃纤维工业协会.中国玻璃纤维应用市场高层论坛论文集. 2008. 27~30.
    [20]周维真.高温高效玻璃纤维针刺毡滤材的特性及其应用[J].玻璃纤维. 1995, (2): 11~17.
    [21] O Medvedyev, Y Tsybulya. Basalt use in hot gas filtration[J]. Filtration&Separation.2005,42(1):34~37.
    [22]胡显奇,杜柳柳. GBFR○纤维在高温过滤材料中的应用探讨[J].过滤与分离. 2005,42(1):34~37.
    [23] H. Griesser. P84聚酰亚胺纤维在非织造业中的应用[J].产业用纺织品. 2000, 18(4): 40~42.
    [24] Lenzing A G. P84 polyimide agreement reached [J]. High Performance Textile, 1990, (7) :13.
    [25]梁生宪. P84纤维和普抗纤维性能介绍及应用[J].玻璃纤维, 2002 , (2) :24.
    [26] Cheng S Z D, Wu Z Q, et al. A high-performance aromatic polyimide fiber (I) Structure, properties an mechanical history dependence. Polymer, 1991, 32: 1803.
    [27]赵家森,渠冬梅.国产聚苯硫醚纤维拉伸结晶行为的研究[J].纺织学报,1997 ,18 (3) :21.
    [28] Brady D G. The crystallinity of poly(phenylene sulfide) and it s effect on polymer properties[J]. J Appl Polym Sci, 1976, 20 (9): 2541.
    [29]肖为维,徐僖.聚苯硫醚纤维研究[J].高分子材料科学与工程, 1993 ,2 (3) :103
    [30]王德禧.聚苯硫醚的特性及应用[J].塑料, 2002 ,31 (2) :34.
    [31] Lopez C L, Wilkes GL, Geibel J F. Crystallization kinetics of poly(p-phenylene sulphide): the effect of branching agentcontent and endgroup counter-atom[J]. Polymer, 1989, 30 (1): 147.
    [32] Brady D G. The crystallinity of poly(phenylene sulfide) and its effect on polymer properties[J]. J Appl Polym Sci, 1976, 20 (9): 2541.
    [33] Rule M, Fagerburg D R, Watkins J J, et al. A new melt preparation method for poly(phenylene sulfide). Die Makromolekulare Chemie, Rapid Communications, 1991, 12(4): 221.
    [34] Joy Jyoti P. Crystallization of polymers: polyethyleneterephthalate and poly(phenylene sulfide) . Plast Eng, N Y: 1996, 31 (Handbook of Applied Polymer Processing Technology): 661.
    [35]李熙,靳双林. PPS纤维及其在袋式除尘领域的应用[J].塑料, 2007 , (4) :1~4.
    [36]何正兴.国产聚四氟乙烯纤维的特性与应用[J].合成纤维, 2007, 36(4): 16-18.
    [37] Adalbert Wimmer. PTFE yarns and fibers in hot gas filtration [J]. Filtration & Separation, 1999, 36(2): 26-28.
    [38]鲍萍,王秋美.特氟纶纤维的制造、性能与应用[J].产业用纺织品, 2003, 21(4): 35-37.
    [39] Klaus Bloch. Textile thread having a polytetrafluoroethylene wrapped core: The United States, US7401460 B2[P]. 2004-8-13.
    [40]李勇.袋式除尘器的除尘机理和影响因素[J].特种橡胶制品.2003,(1):29~33.
    [41]杜柳柳.袋式除尘器用PTFE复合滤料性能的试验研究[D].上海:东华大学, 2008.
    [42]王华英.过滤材料对PM10的过滤性能研究[D].上海:东华大学, 2004.
    [43]陈奕光.低压长袋脉冲袋式除尘器设计与应用[J].中氮肥, 2003, (3).
    [44] W. Hoflinger, Ch.Stocklmager and A.Hakcl, Particle accumulation at the surface of a filter[J], Filrtation & Separation,Dec.1994.
    [45] K. Maysaka, Surface and Depth Filtration for Spin Packs[J], Filtration & Separation, March/April, 1986.
    [46] zhaoguangYang,The effects on baghouse filter bags during the incineration of high-fluoride wastes[J],PowderTechnology. 2000: 160-163.
    [47]严长勇.燃煤电厂锅炉烟气净化用除尘过滤材料的试验研究[D].上海:东华大学, 2006.
    [48]徐下忠,吾良福,王文理,等.聚四氟乙烯主要成型制品及其生产工艺[J].塑料, 2004, 33(6): 22-29.
    [49]黄继红,茅清希,梅红生,等.微孔薄膜复合滤料运行阻力的研究[J].建筑热能通风空调, 2001, 20(1): 1-4.
    [50]陈强,沈恒根,李华.覆膜滤料的性能测试研究[J].建筑热能通风空调, 2004, 23(4): 71-74.
    [51]刘华,茅清希,黄继红,等.覆膜滤料清灰效果的分析研究[J].建筑热能通风空调, 2002, 21(3): 9-12.
    [52]郝新敏,张建春,郭玉海,等.拉伸工艺对膨体PTFE薄膜微孔结构的影响[J].膜科学与技术. 2005,(04): 26-29.
    [53]郭玉海,来侃,孙润军等.高温烟气和粉尘处理用的聚四氟乙烯微孔薄膜制备方法[P].中国: 200710069975, 2007-07-10.
    [54] Ned Galka, Abhishek Saxena. High efficiency air filtration: The growing impact of membranes [J]. Filtration & Separation, 2009, (4):22-25.
    [55]范晓玲.新型环保用耐高温复合滤料的研究[D].天津:天津工业大学. 2002, 10.
    [56]王亚西.浅谈袋式除尘器在粉尘治理中的应用[DB/OL]. http://www.6lib.com/pdf/46554AF15466688591.pdf, 2010-11-03.
    [57]李华.烟煤锅炉烟气除尘用新型复合滤料过滤新能应用研究[D].上海:东华大学,2004,12.
    [58]吴章平,李桂水.深层过滤的研究及评述.过滤与分离.2003,13(3):25~28.
    [59]谭天佑,梁凤珍.工业通风除尘技术[M].北京:中国建筑工业出版社.1984,8.
    [60]范晓玲,刘书平.新型耐高温滤料的研制[J].产业用纺织品. 2001,19(10): 24-27.
    [61]许明珠.高温烟气过滤除尘用合成纤维性能的试验研究[D].上海:东华大学. 2008.1.
    [62]包林初. PPS(RYTON)针刺滤料的研制和应用[J].产业用纺织品. 2002,20(1): 18-22.
    [63]王玉华.两种滤料耐腐蚀性研究[D].东北大学. 2005,12.
    [64]王锦,任加荣,余镇慌.芳砜纶针刺非织造布在高温条件下的性能研究[J].合成纤维. 2008, (1):39~41.
    [65]杜柳柳.袋式除尘器用PTFE复合滤料性能的试验研究[D].上海:东华大学,2008.1.
    [66]罗章生. 100%聚四氟乙烯针刺过滤材料制作方法初探[J].产业用纺织品, 2009, 19(4): 10-12.
    [67]. Mónica Lupión, Francisco J. Gutiérrez Ortiz, et al. Assessment performance of high-temperature filtering elements[J]. Fuel. In Press.
    [68]程彦,何茵.杜邦公司的高性能纺织过滤材料[J].产业用纺织品, 1992, 10(4): 38-42.
    [69] Kenney, Maryann Cully, Barlow, et al. Improvements in and relating to paper machine clothing: European Patent, 0547816[P], 2002-06-12. [70 ]朱平.玻璃纤维与P84纤维混杂针刺毡高温滤材[J].玻璃纤维,2004,(6):21~23.
    [71]李华,沈恒根,刘书平,等.新型复合滤料过滤性能的实验研究及其应用[J].环境工程. 2005, 23( 1):36~40.
    [72]刘书平.新型耐高温滤料的研制与发展[J].非织造布, 1999, 13 (4): 32-33.
    [73]孙玉红.聚四氟乙烯的性能与应用[J].科技资讯, 2008(12): 6.
    [74] Vives VC, Dix JS, Brady DG. Polyphenylene sulfide (PPS) in harsh environments [M]. ACS Symposium Series 1983, 229(6): 65-85.
    [75] Winyu Tanthapanichakoon, Mitsuhiko Hata, Koh-hei Nitta, et al. Mechanical degradation of filter polymer materials: Polyphenylene sulfide [J]. Polymer Degradation and Stability. 2006, 91(11). 2614-2621.
    [76]. Winyu Tanthapanichakoon, Masami Furuuchi, Koh-hei Nitta. Degradation of bag filternon-woven fabrics by nitric oxide at high temperatures [J]. Advanced Powder Technology, 2007, 18(3): 349–354.
    [77]庄玉玲. PPS滤料在SO2气体作用下的耐腐蚀性研究[J].安全与环境学报, 2008, 8(1): 51-55.
    [78]王桦,覃俊,许久峰等.使用工况条件对聚苯硫醚纤维滤料的影响[J].合成纤维, 2009, (9): 43-46.
    [79]于伟东,储才元.纺织物理[M].上海:中国纺织大学出版社, 2001.1.第1版:77,248.
    [80]焦晓宁,金宁熙.不同后整理手段对非织造布针刺过滤材料过滤性能的影响[J].产业用纺织品. 1999, 17(10):24~26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700