癫痫持续状态亚低温神经保护作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分亚低温对匹罗卡品癫痫持续状态幼鼠海马损伤的保护作用研究
     目的:探讨亚低温在癫痫持续状态时的神经保护作用,比较不同亚低温干预时间(2小时、4小时、8小时)的保护作用。
     方法:采用21日龄的wistar大鼠经腹腔注射匹罗卡品制作惊厥持续状态的模型。随机分成NS对照、SE30分钟单纯安定治疗、SE30分钟亚低温联合安定治疗2小时、SE30分钟亚低温联合安定治疗4小时、SE30分钟亚低温联合安定治疗8小时、SE60分钟单用安定治疗、SE60分钟亚低温联合安定治疗8小时组,共7组。干预后72小时取材,经HE染色和Nissl染色观察大鼠海马组织形态学变化和损伤情况;MAP2免疫组织化学染色评价大鼠海马神经元细胞骨架蛋白的影响;通过免疫组织化学方法检测caspase-3,并进行caspase-3和NeuN免疫荧光双标记、TUNEL原位凋亡检测大鼠海马神经元的凋亡情况。
     结果:SE30分钟、SE60分钟后大鼠海马神经元出现不同程度的病理损伤,HE染色和Nissl染色发现海马CA1和CA3区均出现明显的神经元间隙增宽、胞浆溶解、核固缩、核溶解,Nissl颗粒减少等现象,坏死细胞计数百分比和NS组相比明显增高,差异存在统计学意义(P<0.05)。亚低温联合安定治疗2小时即显著减少海马CA3区神经元细胞的坏死,与安定单一治疗组相比,差异具有统计学意义(P<0.05)。亚低温联合治疗8小时的海马神经元形态和坏死细胞计算百分比NS对照组最为接近。MAP2免疫组化检测发现,SE30分钟、SE60分钟后大鼠海马神经元细胞骨架结构损伤明显,和NS组相比差异具有显著的统计学意义(P<0.05)。和单一应用安定治疗组相比,亚低温联合治疗2小时即可显著升高海马CA3区神经元MAP2的表达水平,差异具有统计学意义(P<0.05)。CA1区MAP2表达水平显著升高发生在亚低温干预8小时后,差异具有统计学意义(P<0.05)。而SE60分钟后给予亚低温联合干预2小时,MAP2表达水平的升高无统计学意义。Caspase-3免疫组织化学以及TUNEL原位检测发现,SE30分钟、SE60分钟后大鼠海马神经元细胞发生明显的凋亡,和NS组相比差异具有显著的统计学意义(P<0.05)。亚低温联合治疗8小时后,CA1和CA3区caspase-3蛋白表达明显下降,差异具有统计学意义(P<0.05)。而TUNEL检测发现,亚低温联合干预2小时后CA1和CA3区凋亡细胞明显减少,和未干预组相比,差异具有统计学意义(P<0.05)。caspase3和NeuN免疫荧光双标结果发现,亚低温8小时后,双标神经元数量明显减少。
     结论:1.癫痫持续状态导致大鼠海马神经元细胞的坏死、凋亡以及神经元细胞骨架塌陷。2.亚低温干预能减少海马神经元的坏死、凋亡和细胞骨架蛋白的丢失,具有神经损伤保护作用。3.和亚低温持续治疗2小时、4小时相比,持续治疗8小时具有更好的神经保护作用。
     第二部分亚低温对匹罗卡品癫痫持续状态幼鼠海马损伤的神经保护机制的研究
     目的:通过研究离子型和代谢型谷氨酸受体核酸以及蛋白表达变化,探讨亚低温以及不同亚低温干预时间对癫痫持续状态幼鼠海马神经元损伤的保护机制。
     方法:采用21日龄的wistar大鼠共60只,经腹腔注射匹罗卡品制作癫痫持续状态的模型。随机分成5组,具体分组同第一部分,每组12只。干预后72小时,每组随机挑选6只幼鼠,灌流取脑海马切片,采用免疫组化方法检测各组幼鼠海马各区GLUR-1和GLUR-2蛋白表达水平变化;每组其余6只幼鼠活体分离出双侧海马组织,分别采用实时荧光定量PCR法和Western-blotting免疫印迹技术检测各组幼鼠海马GLUR-1、GLUR-2和mGLUR1-αmRNA和蛋白表达水平。
     结果:免疫组化发现,SE30分钟后,海马CA1和CA3区的GLUR-1蛋白表达明显升高而GLUR-2蛋白表达明显降低,与NS组相比,差异存在统计学意义(P<0.05)。亚低温干预后可以降低海马CA1和CA3区GLUR-1蛋白表达而增加GLUR-2蛋白表达,亚低温干预8小时后,两者的蛋白表达与和未给予亚低温干预组相比差异具有统计学意义(P<0.05)。Western-blotting发现海马GLUR-1和GLUR-2蛋白表达变化与免疫组化结果相似,亚低温干预4和8小时后,两者的蛋白表达与和未给予亚低温干预组相比差异具有统计学意义(P<0.05)。SE30分钟后,海马mGLUR1-α蛋白表达有升高,亚低温联合安定治疗后可以降低海马mGLUR1-α蛋白表达,亚低温干预8小时后,mGLUR1-α蛋白表达与和未给予亚低温干预组相比差异具有统计学意义(P<0.05)。RT-PCR结果发现,SE30分钟后,海马GLUR-1和mGLUR1-αmRNA表达增加,而GLUR-2mRNA表达下降,亚低温联合安定治疗后GLUR-1和mGLUR1-αmRNA表达下降,GLUR-2mRNA表达有升高,亚低温干预8小时后GLUR-1和mGLUR1-αmRNA表达和未给予亚低温干预组相比有统计学差异(P<0.05),但GLUR-2mRNA表达和未给予亚低温干预组相比无统计学差异。
     结论:GLUR-1、GLUR-2和mGLUR1-α共同参与癫痫持续状态后神经元损伤的形成,亚低温通过下调GLUR-1mRNA和蛋白表达,上调GLUR-2蛋白表达,下调mGLUR1-αmRNA和蛋白表达,减少神经元损伤。
PART ONE:
     The Neuroprotective Effect of General Mild Hypothermia on nippocampus in Pilocarpine-induced Status Epilepticus in
     Young Rats
     Objective:To investigate the ncuroprotection of mild hypothermia on hippocampal neurons in young rats with pilocarpine induced status cpilepticus(SE).The different duration of mild hypothcrmia(2h,4h,8h) were used to the rats after SE for 30mins and 60 mins.
     Methods:42 Male Wistar rats aged 21-days weighing 60-65g were used in this study. Animals were given pilocarpine 380mg/Kg through intraperitoneal injection to induce status epilepticus.Rats with induced-sustaining status epilepticus for 30 minutes were divided into seven groups,including:SE 30 minutes treated with NS,with diazepam 10mg/Kg,diazepam with combination of mild hypothermia for 2 hours,4 hours and 8 hours,status epilepticus for 60 minutes were treated with diazepam 10mg/Kg or diazepam with combination of mild hypothermia for 2 hours.The control group received equal volume injections of saline.72 hours after SE,the hippocampal pathological changes have been observed through HE staining Nissl staining,In order to evaluated the changes of microtubule-associated protein 2(MAP2) and caspase 3 in the rat hippocampus,immunohistochemistry was performed according to previously established methods.We also did terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling(TUNEL) to observe the PCD of hippocampus neurons.
     Results:The hippocampal neuronal damage were found in rats after 30 min and 60 min SE.The neurons showed pyknotic nuclei and shnmken plasma in cyton.Nissl granula decreased in CA1 and CA3 regions of hippocampus.The percentage of neuron necrosis of hippocampus were significantly more than that in control group(P<0.05).2 hours after therapeutic alliance with diazepam and mild hypothermia, necrotic neurons in CA3 region of hippocamous were significantly reduced compared with the group treated with diazepam alone(P<0.05).8 hours after treatment,the neuron damage in hippocampus and the percentage of necrotic cells were similar to those of the NS group.Compared with the group of diazepam treatment,the expression of MAP-2 protein were enhanced in the hippocampus with mild hypothermia with 2h,4h or 8h duration(P<0.05).The staining intensity and immunoreactivity increased 8 h after the mild hypothermia treatment.There was no significant difference in MAP2 immunoreactivity between the 60 mins SE rats and with 2h hypothermia treatment.The expression of caspase-3 increased in the hippocampus of rats with 30 mins and 60 mins SE.Significant reductions in caspase-3 immunoreactivity were seen after the intervention of mild hypothermia.TUNEL staining showed DNA fragmentation positivity in the SE with diazepam but decreasing significant in the groups with mild hypothermia.Double stained neurons with caspase3 and NeuN indicated that the positive apoptosis neurons decreased significantly after 8 hours mild hypothermia treatment..
     Conclusion:
     1.Status epilepticus can induces brain damage such as neurons necrosis,apoptosis and the collapse of neuron cystoskeleton.
     2.Mild hypothermia can protect hippocampal neurons from necrosis,apoptosis and lossing of MAP-2.
     3.Compared with 2 and 4 hours of persistent mild hypothermia treatment,8 hours of treatment have most neuroprotection effects after SE..
     PART TWO:
     The Mechanism of Neuroprotection with Mild Hypothermia in Pilocarpine-induced Status Epilepticus in Young Rats
     Objective:Study on expression of mRNA and protein of GluR1,GluR2 and metabotropic glutamate receptors mGluR1 a after SE.To explore the mechanism of neuroprotection of mild hypothermia on hippocampal neurons in young rats.
     Methods:A total of 50 Male Wistar rats aged 21-days were randomly assigned into 5 groups:NS group,diazepam group,diazepam with 2h,4h,and 8h mild hypothermia treatment groups.Animals were given pilocarpine 380mg/Kg through intraperitoneal injection to induce status epilepticus,72 hours after SE,the changes in GluR1 and GluR2 as well as mGluR1 a protein levels were determined using Western-blotting analysis.The protein bands were quantified by densitometric analysis.Real-time PCR was used to investigate the mRNA expression of GluR1,GluR2 and mGluR_α.
     Results:After pilocarpine-induced status epilepticus,the GluR1 immunopositive nrurons increased obviously in CA1 and CA3 area of hippocampus,however protein expression of GluR2 obviously reduced compared with NS group(P<0.05).After therapeutic alliance with diazepam and mild hypothermia,GluR1 protein expression in CA1 and CA3 reduced while GluR2 protein expression increased.After 8 hours of treatment,both protein expression were significant increased compared with the group treated with diazepam alone(P<0.05).Through Western-blotting,after 4 hours and 8 hours therapeutic alliance,the expression GluR1 and GluR2 protein in hippocampal decreased significantly compared with the group treated with diazepam alone(P<0.05).The expression of mGluR1_αprotein increased after status epilepticus and reduced by therapeutic alliance with diazepam and mild hypothermia.With 8 hours therapeutic alliance,there was a significant reduction in mGluR1_αprotein expression compared with the group treated with diazepam alone(P<0.05).The mRNA expression of GluR1 and mGluR1_αincreased but the expression of GluR2 mRNA decreased.With diazepam and mild hypothermia treatment,the mRNA expression of GluR1 and mGluR1_αdecreased while GluR2 increased.With 8 hours therapeutic alliance,GluR1 and mGluR1_αmRNA expression decreased significantly compared with the group treated with diazepam alone(P<0.05) There was no significant up-regulation of GluR2 mRNA in different groups.
     Conclusion:GluR1,GluR2 and mGluR1_αplay an important role in the brain injury induced by SE.The protein and mRNA for GluR1,GIuR2 and mGluR1_αwere different regulated by hypothermia treatment.Hypothermia attenuated neuron injury through down-regulating the expression of GluR1 as well as mGluR1_αmRNA and protein,and up-regulating the protein expression for GluR2.
引文
1. Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. [J] Epilepsia 1981, 22:489-501.
    
    2. World Health Organization. Atlas: Epilepsy Care in the World. Geneva: World Health Organization; 2005:91
    
    3. de Graaf AS. Epidemiological aspects of epilepsy in northern Norway. [J] Epilepsia. 1974, 15(3):291 - 299
    
    4. Annegers JF, Dubinsky S, Coan SP, et al. The incidence of epilepsy and unprovoked seizures in multiethnic, urban health maintenance organizations. [J] Epilepsia. 1999, 40(4):502 - 506.
    
    5. Hauser WA, Annegers JF, Kurland LT. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935-1984. [J] Epilepsia. 1993, 34(3):453-468
    
    6. Hauser WA, Annegers JF, Kurland LT, Prevalence of epilepsy in Rochester, Minnesota: 1940-1980. [J] Epilepsia. 1991, 32(4):429 - 445.
    
    7. Murray CJL, Lopez AD. Global Comparative Assessment in the Health Sector; Disease Burden, Expenditures, and Intervention Packages. Geneva: World Health Organization; 1994
    
    8. Treatment of convulsive status epilepticus. Recommendations of the Epilepsy Foundation of America' s Working Group of Status Epilepticus. [J] JMJA 1993, 270:854-859.
    
    9. Chin RFM, Neville BGR, Scott RC. A systematic review of the epidemiology of status epilepticus. [J] Eur J Neurol. 2004, 11:800-810.
    10 .Garzon E, Fernandes RM, Sakamoto AC. Analysis of clinical characteristic and risk factors for mortality in human status epilepticus. [J] Seizure. 2003, 12:237-245.
    
    11. Raspall-Chaure M, Chin RF, Neville BG, et al. Outcome of paediatric convulsive status epilepticus: a systematic review. [J] Lancet Neurol. 2006, 5:769-779
    
    12.Holtkamp M, Othman J, Buchheim K, Masuhr F, Schielke E, Meierkord H. A 'malignant' variant of status epilepticus. [J] Arch Neurol 2005, 62:1428-1431.
    13.Towne AR,Pellock JM,Ko D,DeLorenzo RJ.Determinants of mortality in status epilepticus.[J]Epilepsia.1994,35:27-34.
    14.Fujikawa D,Shinmei S,Cai B.Kainic acid-induced seizures produced necrotic not apoptotic neurons with internucleosomal DNA cleavage:implication for programmed cell death mechanisms.[J]Neuro Science,2000,98:41-53.
    15.陈文华,丁晓虹,庄礼.癫痫持续状态后大鼠海马神经元凋亡的形态学观察.[J]中国科技信息,2005,18:234-238.
    16.Mello LE,Cavalherio EA,Tan AM,etal.Circuit mechanism of seizures in the pilocarpine model of chronic epilepsy:cell loss and mossy fiber sprouting.[J]Epilepsy,1993,34:985-995.
    17.Niimura M,Moussa R,Bissoon N,et al.Changes in phosphorylation of the NMDA receptor in the rat hippocampus induced by status epilepticus.[J]Neurochem.2005,92(6):1377-1385.
    18.Ohmura A,Nakajima W,Ishida A et al.Prolonged hypothermia protects neonatal rat brain against hypoxic-ischemia by reducing both apoptosis and necrosis.[J]Brain Dev.2005,27(7):517-26
    19.Jalava,N.S.,Lopez-Picon,F.R.,Kukko-Lukjanov,T.K.,Holopainen,I.E.,Changes in microtubule-associated protein-2(MAP2) expression during development and after status epilepticus in the immature rat hippocampus.[J]Int.J.Dev.Neurosci.2007,25:121-131.
    20.Lynch M,Sayin U,Bownds J,et al.Long-term consequences of early postnatal seizures on hippocampal learning and plasticity.[J]Eur J Neurosci.2000,12:2252-2264
    21.Sayin U,Sutula TP,Stafstrom CE.Seizures in the developing brain cause adverse long-term effects on spatial learning and anxiety.[J]Epilepsia 2004,45(12):1539-1548.
    22.Raman S,Don HS,Hantao Let al.Patterns of Status Epilepticus-Induced Neuronal Injury during Development and Long-Term Consequences.[J]J Neuro SEi 1998,18(20):8382-8393.
    23.Andrew J.Is Epilepsy a Progressive Disease? The Neurobiological Consequences of Epilepsy.[J]Epilepsia.2000,S13-22
    24.Bleck TP.Management approaches to prolonged seizuresand status epilepticus. [J] Epilepsia. 1999, 40 suppll:s59-s63
    
    25. Thomas P. Bleck. Intensive care unit management of patients with status epilepticus. [J] Epilepsia 2007, 48(Suppl. 8): 59-60
    
    26. Holtkamp M, Othman J, Buchheim K, MeierkordH, Predictors and prognosis of refractory status epilepticus treated in a neurological intensive care unit. J. Neurol. [J] Neurosurg Psychiatry. 2005, 76: 534-539.
    
    27. Mayer SA, Claassen J, Lokin J., Mendelsohn F, Dennis LJ, Fitzsimmons BF. Refractory status epilepticus: frequency, risk factors, and impact on outcome. [J]Arch. Neurol. 2002, 59:205-210.
    
    28. Treiman DM, Meyers PD, Walton NY, et al. Veterans Affairs Status Epilepticus Cooperative Study Group, A comparison of four treatments for generalized convulsive status epilepticus. [J] N. Engl. J. Med. 1998, 339: 792-798.
    
    29. Claassen J, Hirsch LJ, Emerson RG, et al. Treatment of refractory status epilepticus with pentobarbital, propofol, or midazolam: a systematic review. [J] Epilepsia. 2002, 43:146-153.
    
    30. Naylor DE, Liu H, Wasterlain CG. Trafficking of GABA(A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. [J] J Neurosci, 2005, 25(34): 7724-7733.
    
    31. Wang L, Liu YH, Huang YG, et al. Time-course of neuronal death in the mouse pilocarpine model of chronic epilepsy using Fluoro-Jade C staining. [J] Brain Res. 2008, 19(1241):157-167
    
    32. Fujikawa DG. Prolonged seizures and cellular injury Understanding the connection. [J] Epilepsy & Behavior . 2005, 7: S3 - S11.
    
    33. Giuliano G. Avanzini,David M. Treiman, Jerome Engel Jr. Animal Models of Acquired Epilepsies and Status Epilepticus. [M] Epilepsy. 2007,Chapter 36. p434
    
    34. Fay T. Observations on generalized refrigeration in cases of severe cerebral trauma. [J] Assoc Res Nerv Ment Dis Proc 1943;24:611-9.
    35 . Liebetrau M, Burggraf D, Martens HK, et al. Delayed moderate hypothermia reduces calpain activity and breakdown of its substrate in experimental focal cerebral ischemia in rats. [J] Neurosci Lett.2004, 357(1): 17-20.
    36. Haranishi Y, Kawata R, Fukuda S, et al. Moderate hypothermia, but not calpain inhibitor 2, attenuates the proteolysis of microtubule-associated protein 2 in the hippocampus following traumatic brain injury in rats. [J] Eur J Anaesthesiol. 2005, 22(2): 140-7
    37. Ben-Ari, Y., Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. [J] Neuroscience 1985,14: 375-403.
    38.Javedan SP, Fisher RS, Eder HG et al. Cooling Abolishes Neruonal Network Synchronization in Rat Hippocampal Slices. [J] Epilepsia 2002,43 (6): 574-580
    
    39. Leite JP, Garcia-Cairasco N, Cavalheiro EA. New insights from the use of pilocarpine and kainate models. [J] Epilepsy Res 2002,50: 93-103.
    
    40. Haut, S. R., Veliskova, J., Moshe, S. L., Susceptibility of immature and adult brains to seizure effects. [J] Lancet Neurol. 2004, 3:608 - 617.
    41.Turski, L., Cavalheiro, E. A., Sieklucka-Dziuba, M., Ikonomidou-Turski, C., Czuczwar, S.J., Turski, W. A., Seizures produced by pilocarpine: neuropathological sequelae and activity of glutamate decarboxylase in the rat forebrain. [J] Brain Res. 1986, 398: 37-48.
    
    42. Turski, L., Ikonomidou, C., Turski, W. A., Bortolotto, Z. A., Cavalheiro, E. A., Review: cholinergic mechanisms and epileptogenesis, The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse . 1989,3: 154-171.
    
    43. Walker MC, White HS, Sander JW. Disease modification in partial epilepsy. [J] Brain. 2002, 125:1937-1950.
    
    44. Chen J WY, Wasterlain CG. Status epilepticus: pathophysiology and management in adults. [J] Lancet Neurol 2006, 5:246.
    
    45. Matthew Walker. Neuroprotection in epilepsy. [J] Epilepsia, 2007, 48(Suppl. 8):66-68
    
    46.Sankar R, Shin D, Mazarati AM, et al. Epileptogenesis after status epilepticus reflects age- and model-dependent plasticity. [J] Ann Neurol 2000, 48: 580-89.
    
    47. Tremblay E, Ben-Ari Y. Usefulness of parenteral kainic acid as a model of temporal lobe epilepsy. [J] Rev Electroencephalogr Neurophysiol Clin 1984, 14: 241-46.
    
    48. Cavalheiro EA, Riche DA, Le Gal La SG. Long-term effects of intrahippocarapal kainic acid injection in rats: a method for inducing spontaneous recurrent seizures. [J] Electroencephalogr Clin Neurophysiol 1982, 53: 581-89.
    
    49. Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, Ikonomidou C, Turski L. Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. [J]Epilepsia 1991, 32: 778-82.
    
    50. Lado FA, Laureta EC, Moshe SL. Seizure-induced hippocampal damage in the mature and immature brain. [J] Epileptic Disord. 2002, 4: 83-97.
    
    51. Sutula TP, Hagen J, Pitkanen A. Do epileptic seizures damage the brain? [J] Curr Opin Neurol 2003,16:189-195.
    
    52. Holmes GL. Seizure-induced neuronal injury: animal data. [J] Neurology 2002, 59 (suppl 5): S3 - S6.
    
    53. Fujikawa D, Shinmei S, Cai B. Kainic acid-induced seizures produced necrotic not apoptotic neurons with internucleosomal DNA cleavage: implication for programmed cell death mechanisms. [J] Neuro Science,2000, 98:41-53.
    
    54. Mello LE, Cavalherio EA, Tan AM, etal. Circuit mechanism of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. [J] Epilepsia. 1993, 34:985-995.
    
    55. Niimura M, Moussa R, Bissoon N , et al . Changes in phosphorylation of the NMDA receptor in the rat hippocampus induced by status epilepticus. [J] Neurochem. 2005, 92(6): 1377-1385.
    
    56. Walker MC, White HS, Sander JW. Disease modification in partial epilepsy. Brain.2002; 125:1937-1950.
    
    57. Meldrum BS. Implications for neuroprotective treatments. [J] Prog Brain Res . 2002, 135:487-495.
    
    58. Wasterlain CG, Fujikawa DG, Penix L, Sankar R. Pathophysiological mechanisms of brain damage from status epilepticus. [J] Epilepsia 1993,34 (suppl 1): S37-S53.
    
    59. Fukunaga K, Muller D, Miyamoto E. Increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in the induction of long-term potentiation. [J] J Biol Chem. 1995,270 (11): 6119-24
    
    60. Pellegrini-Giampietro DE, Gorter JA, Bennett MV, et al. The GluR2 (GluR-B) hypothesis: Ca2+ -permeable AMPA receptors in neurological disorders. [J] Trends Neurosci, 1997, 20: 464-470
    
    61. Allen JW, Knoblach SM, Faden AI. Activation of group I metabotropic glutamate receptors reduces neuronal apoptosis but increases necrotic cell death in vitro. [J] Cell Death Differ, 2000, 7: 470-476
    
    62. Aronica E, Gorter JA, Jansen GH, etal. Expression and cell distribution of group I and group II metabotropic glutamate receptor subtypes in taylor type focal cortical dysplasia. [J] Epilepsia, 2003, 44:785-795
    
    63. XuW, Wong TP, Chery N, et al. Calpain-mediated mGluR1 alpha truncation: a key step in excitotoxicity. [J] Neuron. 2007, 53(3): 399-412.
    
    64. Niimura M, Moussa R, Bissoon N , et al . Changes in phosphorylation of the NMDA receptor in the rat hippocampus induced by status epilepticus. [J] Neurochem. 2005, 92(6): 1377-1385.
    
    65. Wang L, Liu YH, Huang YG, et al. Time-course of neuronal death in the mouse pilocarpine model of chronic epilepsy using Fluoro-Jade C staining. [J] Brain Res. 2008, 19 (1241): 157-167
    1. Mazarati AM, Wasterlain CG, Sankar R, Shin D. Self-sustaining status epilepticus after brief electrical stimulation of the perforant path. [J] Brain Res 1998, 801: 251-3.
    
    2. Aicardi J, Chevrie JJ. Consequences of status epilepticus in infants and children. [J] AdvNeurol 1983,34:115-25.
    
    3. Lazeyras F, Blanke O, Zimine I, Delavelle J, Perrig SH, Seeck M. MRI, (1)H-MRS, and functional MRI during and after prolonged nonconvulsive seizure activity. [J]Neurology 2000,55:1677 - 82.
    
    4. Freeman JL, Coleman LT, Smith LJ, Shield LK. Hemiconvulsion- hemiplegia -epilepsy syndrome: characteristic early magnetic resonance imaging findings. [J] J Child Neurol 2002,17:10 - 6.
    
    5. Morimoto T, Fukuda M, Suzuki Y, Kusu M, Kida K. Sequential changes of brain CT and MRI after febrile status epilepticus in a 6-year-old girl. [J] Brain Dev 2002,24: 190-3.
    
    6. Lansberg MG, O'Brien MW, Norbash AM, Moseley ME, Morrell M, Albers GW. MRI abnormalities associated with partial status epilepticus. [J] Neurology 1999,52:1021-7.
    
    7. Marie-Pierre TE, Anne L, Lionel C. Neonatal Seizures: Do They Damage the Brain? [J] Pediatr Neurol 2009, 40:175-180.
    
    8. Irma E. Holopainen. Seizures in the developing brain: Cellular and molecular mechanisms of neuronal damage, neurogenesis and cellular reorganization. [J] Neurochemistry International. 2008, 52: 935-947
    
    9. Kubova H, Druga R, Lukasiuk K, et al. Status epilepticus causes necrotic damage in the mediodorsal nucleus of the thalamus in immature rats. [J] J. Neurosci. 2001, 21:3593-3599.
    
    10. Montgomery EM, Bardgett M.E, Lall B, et al. Delayed neuronal loss after administration of intracerebroventricular kainic acid to preweanling rats. [J] Brain Res. Dev. Brain Res. 1999, 112: 107-116.
    
    11. Humphrey WM, Dong H, Csernansky CA, et al. Immediate and delayed hippocampal neuronal loss induced by kainic acid during early postnatal development in the rat. [J] Brain Res. Dev. Brain Res. 2002, 137: 1-12.
    
    12. Dong H, Csernansky CA, Goico B, Csemansky JG. Hippocampal neurogenesis follows kainic acid-induced apoptosis in neonatal rats. [J] J. Neurosci. 2003, 23: 1742-1749.
    13.Kubova H,Druga R,Haugvicova R,et al.Dynamic changes of status epilepticus-induced neuronal degeneration in the mediodorsal nucleus of the thalamus during postnatal development of the rat.[J]Epilepsia 2002,43(Suppl.5),54-60.
    14.施亿赟,王艺,邵肖梅等.亚低温对惊厥性脑损伤神经保护作用。[J]《复旦学报》2005,32(2):202-204
    15.施亿赟,王艺,邵肖梅等.幼鼠持续惊厥状态脑损伤时托吡酯的神经保护作用。[J]中国临床康复,2005,9(3):194-195
    16.Kunz T,Oliw EH.The selective cyclooxygenase-2 inhibitor rofecoxib reduces kainate-induced cell death in the rat hippocampus.[J]Eur.J.Neurosci.2001,13:569-575.
    17.Jung KH.,Chu,K,Lee ST,et al.Cyclooxygenase-2 inhibitor,celecoxib,inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpineinduced status epilepticus.[J]Neurobiol.Dis.2006,23:237-246.
    18.Lee B,Dziema H,Lee K.H,et al.CRE-mediated transcription and COX-2expression in the pilocarpine model of status epilepticus.[J]Neurobiol.Dis.2007,25:80-91.
    19.Sankar R,Shin D,Liu H,et al.Epileptogenesis during development:injury,circuit recruitment,and plasticity.[J]Epilepsia.2002;43(Suppl.5),47-53.
    20.Nairismagi J,Pitkanen A,Kettunen MI,et al.Status epilepticus in 12-day-old rats leads to temporal lobe neurodegeneration and volume reduction:a histologic and MRI study.[J]Epilepsia 2006,47:479-488.
    21.Cilio MR,Sogawa Y,Cha BH,et al.Long-term effects of status epilepticus in the immature brain are specific for age and model.[J]Epilepsia 2003,44:518-528.
    22.Sankar R,Shin DH,Liu H,et al.Patterns of status epilepticus-induced neuronal injury during development and long-term consequences.[J]J.Neurosci.1998,18:8382-8393.
    23.Gregory L.Holmes.Effects of Seizures on Brain Development:Lessons from the Laboratory.[J]Pediatr Neurol 2005,33:1-11
    24.Chen JWY,Naylor DE,Wasterlain CG.Advances in the pathophysiology of status epilepticus.[J]Acta Neurol Scand 2007,115(Suppl.186):7-15.
    25.Tucker RP.The roles of microtubule-associated proteins in brain morphogenesis:a review. [J] Brain Res. Brain Res. Rev. 1990, 15: 101-120.
    
    26. Matsunaga W, Miyata S, Hashimoto Y, et al. Microtubule-associated protein-2 in the hypothalamo -neurohypophysial system: low-molecular-weight microtubule-associated protein-2 in pituitary astrocytes. [J] Neuroscience 1999,88:1289-1297.
    
    27. Kaech S, Ludin B, Matus A. Cytoskeletal plasticity in cells expressing neuronal microtubule-associated proteins. [J] Neuron. 1996,17: 1189-1199.
    
    28. Vega LR, Solomon F. Microtubule function in morphological differentiation: growth zones and growth cones. [J] Cell 1997, 89: 825-828.
    
    29. Stein-Behrens B, Mattson MP, Chang I, et al. Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus. [J] J. Neurosci. 1994,14: 5373-5380.
    
    30. Lopez-Picon FR, Uusi-Oukari M, Holopainen IE. Differential expression and localization of the phosphorylated and non-phosphorylated neurofilaments during the early postnatal development of rat hippocampus. [J] Hippocampus 2003,13:767-779.
    
    31. Lopez-Picon F, Kukko-Lukjanov TK, Holopainen IE. Calpain inhibitor MDL-28170 and AMPA/KA receptor antagonist CNQX inhibit neurofilament degradation and enhance neuronal survival in kainic acidtreated hippocampal slice cultures. [J] Eur. J. Neurosci. 2006. 23: 2686-2694.
    
    32. Dawson DA, Hallenbeck JM. Acute focal ischemia-induced alterations in MAP2 immunostaining: description of temporal changes and utilization as a marker for volumetric assessment of acute brain injury. [J] J Cereb Blood Flow Metab 1996,16:170-4.
    
    33. Barbara E. Lingwood, Genevieve N. Healy, Susan M. Sullivan, et al. MAP2 provides reliable early assessment of neural injury in the newborn piglet model of birth asphyxia. [J] Journal of Neuroscience Methods 2008,171:140 - 146
    
    34. Faddis BT, Hasbani MJ, Goldberg MP. Calpain activation contributes to dendritic remodeling after brief excitotoxic injury in vitro. [J] J. Neurosci. 1997, 17:951-959.
    
    35. Kim JA., Mitsukawa K, Yamada MK, et al. Cytoskeleton disruption causes apoptotic degeneration of dentate granule cells in hippocampal slice cultures. [J] Neuropharmacology 2002,42: 1109-1118.
    
    36. Sanchez C, Diaz-Nido J, Avila J. Phosphorylation of microtubule associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. [J] Prog. Neurobiol. 2000, 61: 133-168.
    
    37. Rami A, Jansen S, Giesser I, et al. Post-ischemic activation of caspase-3 in the rat hippocampus: evidence of an axonal and dendritic localisation. [J] Neurochem. Int. 2003,43: 211-223.
    
    38. Lynch DR., Guttmann RP. Excitotoxicity: perspectives based on Nmethyl- D-aspartate receptor subtypes. [J] J. Pharmacol. Exp. Ther. 2002, 300:717-723.
    
    39. Chan SL, Mattson MP. Caspase and calpain substrates: roles in synaptic plasticity and cell death. [J] J. Neurosci. Res. 1999, 58: 167-190.
    
    40. Pant HC. Dephosphorylation of neurofilament proteins enhances their susceptibility to degradation by calpain. [J] Biochem. J. 1988,256: 665-668.
    
    41. Trojanowski JQ, Walkenstein N, Lee VM. Expression of neurofilament subunits in neurons of the central and peripheral nervous system: an immunohistochemical study with monoclonal antibodies. [J] J. Neurosci. 1986, 6: 650-660.
    
    42. Lee MK, Cleveland DW. Neuronal intermediate filaments. [J] Annu. Rev. Neurosci. 1996,19: 187-217.
    
    43. Lopez-Picon F, Puustinen N, Kukko-Lukjanov TK, et al. Resistance of neurofilaments to degradation, and lack of neuronal death and mossy fiber sprouting after kainic acid-induced status epilepticus in the developing rat hippocampus. [J] Neurobiol. Dis. 2004,17: 415-426.
    
    44. Wang S, Hamberger A, Yang Q, et al. Changes in neurofilament protein NF-L and NF-H immunoreactivity following kainic acidinduced seizures. [J] J. Neurochem. 1994, 62: 739-748.
    
    45. Yang Q, Wang S, Karlsson JE, et al. Phosphorylated and non-phosphorylated neurofilament proteins: distribution in the rat hippocampus and early changes after kainic acid induced seizures. [J] J. Chem. Neuroanat. 1995, 9: 217-228.
    
    46. Dawson DA, Hallenbeck JM. Acute focal ischemia-induced alterations in MAP2 immunostaining: description of temporal changes and utilization as a marker for volumetric assessment of acute brain injury. [J] J. Cereb. Blood Flow Metab. 1996, 16:170-174.
    
    47. Li Y, Jiang N, Powers C, et al. Neuronal damage and plasticity identified by microtubule-associated protein 2, growth-associated protein 43, and cyclin D1 immunoreactivity after focal cerebral ischemia in rats. [J] Stroke. 1998.29,1972-1980.
    
    48. Sanabria ER, da Silva AV, Spreafico R, et al. Damage, reorganization, and abnormal neocortical hyperexcitability in the pilocarpine model of temporal lobe epilepsy. [J] Epilepsia 2002; 43 (Suppl. 5), 96-106.
    
    49. Niina S. Jalava, Francisco R. Lopez-Picon, Tiina-Kaisa Kukko-Lukjanov, et al. Changes in microtubule-associated protein-2 (MAP2) expression during development and after status epilepticus in the immature rat hippocampus [J] J. Devl Neuroscience 2007,25 :121-131
    
    50. Ikegaya Y, Kim JA, Baba M, Iwatsubo T, Nishiyama N, Matsuki N. Rapid and reversible changes in dendrite morphology and synaptic efficacy following NMDA receptor activation: implication for a cellular defense against excitotoxicity. [J] J. Cell Sci. 2001. 114: 4083-4093.
    
    51. Hoskison MM, Yanagawa Y, Obata K, Shuttleworth CW Calcium-dependent NMDA-induced dendritic injury and MAP2 loss in acute hippocampal slices. [J] Neuroscience 2007, 145:66-79.
    
    52. Hoskison MM, Shuttleworth CW Microtubule disruption, not calpain - dependent loss of MAP2, contributes to enduring NMDAinduced dendritic dysfunction in acute hippocampal slices. [J] Exp Neurol 202:302-312.
    
    53. Lopez-Picon FR, Kukko-Lukjanov TK, Holopainen IE. The calpain inhibitor MDL-28170 and the AMPA/KA receptor antagonist CNQX inhibit neurofilament degradation and enhance neuronal survival in kainic acidtreated hippocampal slice cultures. [J] Eur. J. Neurosci. 2006. 23:2686-2694.
    
    54. Higuchi M, Tomioka M, Takano J, Shirotani K, Iwata N, Masumoto H, Maki M, Itohara S, Saido TC. Distinct mechanistic roles of calpain and caspase activation in neurodegeneration as revealed in miceoverexpressing their specific inhibitors.[J] J. Biol. Chem. 2005,280:15229-15237.
    
    55. Matesic DF, Lin RC. Microtubule-associated protein-2 as an early indicator of ischemia-induced neurodegeneration in the gerbil forebrain. [J] J. Neurochem. 1994,63:1012-1020.
    
    56. Zhu C, Wang X, Hagberg H, Blomgren K. Correlation between caspase-3 activation and three different markers of DNA damage in neonatal cerebral hypoxia - ischemia. [J] J Neurochem 2000, 75:819 - 29.
    
    57. Busto R, Globus MY, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. [J] Stroke. 1989, 20: 904-10.
    
    58. Nakashima K, Todd MM. Effects of hypothermia on the rate of excitatory amino acid release after ischemic depolarization. [J] Stroke 1996, 27: 913-8.
    
    59. Globus MY, Alonso O, Dietrich WD, et al. Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. [J] J Neurochem 1995, 65:1704e11.
    
    60. Akisu M, Huseyinov A, Yalaz M, Cetin H, Kultursay N. Selective head cooling with hypothermia suppresses the generation of platelet-activating factor in cerebrospinal fluid of newborn infants with perinatal asphyxia. [J] Prostaglandins Leukotrienes Essent Fatty Acids 2003, 69:45-50.
    
    61. Qing M, Nimmesgern A, Heinrich PC, Schumacher K, Vazquez- Jimenez JF, Hess J, et al. Intrahepatic synthesis of tumor necrosis factor-alpha related to cardiac surgery is inhibited by interleukin-10 via the Janus kinase (Jak)/signal transducers and activator of transcription (STAT) pathway. [J] Crit Care Med 2003, 31:2769-75.
    
    62. Amess PN, Penrice J, Cady EB, Lorek A, Wylezinska M, Cooper CE, et al. Mild hypothermia after severe transient hypoxia- ischemia reduces the delayed rise in cerebral lactate in the newborn piglet. [J] Pediatr Res 1997,41:803-8.
    
    63. Erecinska M, Thoresen M, Silver IA. Effects of hypothermia on energy metabolism in Mammalian central nervous system. [J] J Cereb Blood Flow Metab 2003,23:513-30.
    
    64. Edwards AD, Yue X, Squier MV, et al. Specific inhibition of apoptosis after cerebral hypoxiaischaemia by moderate post-insult hypothermia. [J] Biochem Biophys Res Commun 1995,217:1193-9.
    
    65. Xu L, Yenari MA, Steinberg GK, Giffard RG Mild hypothermia reduces apoptosis of mouse neurons in vitro early in the cascade. [J] J Cereb Blood Flow Metab 2002, 22: 21-8.
    
    66. 8, Wang X, Cheng X, Qiu L, Xu F, Simbruner G, et al. Postischemic hypothermia-induced tissue protection and diminished apoptosis after neonatal cerebral hypoxia-ischemia. [J] Brain Res 2004, 996:67-75.
    
    67. Ning XH, Chen SH, Xu CS, et al. Hypothermic protection of the ischemic heart via alterations in apoptotic pathways as assessed by gene array analysis. [J] J Appl Physiol. 2002, 92: 2200-2207
    
    68. Zhang Z, Sobel RA, Cheng D, Steinberg GK, Yenari MA. Mild hypothermia increases Bcl-2 protein expression following global cerebral ischemia. [J] Brain Res Mol Brain Res 2001, 95:75-85.
    69. Karkar KM, Garcia PA, Bateman LM, Smyth MD, Barbaro NM, Berger M. Focal cooling suppresses spontaneous epileptiform activity without changing the cortical motor threshold. [J] Epilepsia 2002,43: 932 - 935.
    
    70. Schmitt FC, Buchheim K, Meierkord H. Anticonvulsant properties of hypothermia in experimental status epilepticus. [J] Neurobiology of Disease. 2006, 23: 689 - 696
    1. Simon R. Platt. The role of glutamate in central nervous system health and disease - A review [J]. The Veterinary Journal 2007,173:278 - 286
    
    2. Dingledine, R. & Conn, J. P. Peripheral glutamate receptors: molecular biology and role in taste sensation [J]. J. Nutr. 2000, 130:1039S-1042S.
    
    3. Dingledine, R., Borges, K., Bowie, D., and Traynelis, S.F. The glutamate receptor ion channels [J].. Pharmacol. Rev. 1999, 51: 7-61.
    
    4. Belachew, S., and Gallo, V. Synaptic and extrasynaptic neurotransmitter receptors in glial precursors' quest for identity [J]. Glia 2004,48: 185-196.
    
    5. de Lanerolle NC, Eid T, von Campe G, et al. Glutamate receptor subunits GluR1 and GluR2/3 distribution shows reorganization in the human epileptogenic hippocampus [J].. Eur J Neurosci. 1998,10(5): 1687-1703
    
    6. Doi T, Ueda Y, Tokumaru J, et al. Sequential changes in AMPA and NMDA protein levels during Fe(3+)-induced epileptogenesis [J]. Brain Res Mol Brain Res.2001, 92(1-2): 107-14.
    
    7. Grooms SY, Opitz T, Bennett MV, Zukin RS. Status epilepticus decreases glutamate receptor 2 mRNA and protein expression in hippocampal pyramidal cells before neuronal death [J]. Proc Natl Acad Sci. 2000, 97 (7): 3631-3636.
    
    8. Hu RQ, Cortez MA, Man HY, et al. Alteration of GLUR2 expression in the rat brain following absence seizures induced by gamma-hydroxybutyric acid [J]. Epilepsy Res. 2001,44(1): 41-51.
    
    9. Mathern GW, Pretorius JK, Kornblum HI, et al. Human hippocampal AMPA and NMDA mRNA levels in temporal lobe epilepsy patients [J]. Brain. 1997, 120(11):1937-1959.
    
    10. Prince HK, Conn PJ, Blackstone CD, et al. Down-regulation of AMPA receptor subunit GluR2 in amygdaloid kindling [J]. J Neurochem. 1995, 64(1): 462-465
    
    11. Sanchez RM, Koh S, Rio C, et al. Decreased glutamate receptor 2 expression and enhanced epileptogenesis in immature rat hippocampus after perinatal hypoxia-induced seizures [J]. J Neurosci. 2001, 21(20): 8154-8163.
    
    12. Sommer C, Roth SU, Kiessling M. Kainate-induced epilepsy alters protein expression of AMPA receptor subunits GluRl, GluR2, and AMPA receptor binding protein in the rat hippocampus [J]. Acta Neuropathol (Bert). 2001, 101(5):460-468.
    
    13. Wong ML, Smith MA, Licinio J, et al. Differential effects of kindled and electrically induced seizures on a glutamate receptor (GluR1) gene expression [J].Epilepsy Res. 1993, 14:221-227.
    
    14. Garcia-Ladona FJ, Palacios JM, Probst A, et al. Excitatory amino acid AMPA receptor mRNA localization in several regions of normal and neurological disease affected human brain. An in situ hybridization histochemistry study [J]. Brain Res Mol Brain Res. 1994, 21: 75-84.
    
    15. Kamphuis W, Hendriksen H, Diegenbach PC, et al. N-methyl-D-aspartate and kainate receptor gene expression in hippocampal pyramidal and granular neurons in the kindling model of epileptogenesis [J]. Neuroscience. 1995, 67: 551-559.
    
    16. Kamphuis W, Hendriksen H, Diegenbach PC, et al. N-methyl-D-aspartate and kainate receptor gene expression in hippocampal pyramidal and granular neurons in the kindling model of epileptogenesis [J]. Neuroscience. 1995, 67: 551-559.
    
    17. Grigorenko E, Glazier S, Bell W, et al. Changes in glutamate receptor subunit composition in hippocampus and cortex in patients with refractory epilepsy [J]. J Neurol Sci. 1997, 153:35-45.
    
    18. Mathern GW, Pretonus JK, Kornblum HI, et al. Human hippocampal AMPA and NMD A mRNA levels in temporal lobe epilepsy patients [J]. Brain. 1997, 120(11):1937-1959.
    
    19. Ekonomou A, Smith AL, Angelatou F. Changes in AMPA receptor binding and subunit messenger RNA expression in hippocampus and cortex in the pentylenetetrazole-induced 'kindling' model of epilepsy [J]. Brain Res Mol Brain Res. 2001,95:27-35.
    
    20. Ullal G, Fahnestock M, Racine R. Time-dependent effect of kainite - induced seizures on glutamate receptor GluR5, GluR6, and GluR7 mRNA and protein expression in rat hippocampus [J]. Epilepsia. 2005,46:616-623.
    
    21. Benardo LS, Prince DA. Acetylcholine induced modulation of hippocampal pyramidal neurons [J]. Brain Res. 1981, 211:227-234.
    
    22. Benardo LS, Prince DA. Cholinergic excitation of mammalian hippocampal pyramidal cells [J]. Brain Res. 1982, 249: 315-331.
    
    23. Nevander G, Ingvar M, Auer R, et al. Status epilepticus in well-oxygenated rats causes neuronal necrosis [J]. Ann Neurol. 1985, 18:281-290.
    
    24. Cavalheiro, EA. The pilocarpine model of epilepsy [J]. Ital J Neurol Sci. 1995,16:33-37.
    
    25. Lipp JA. Effect of diazepam upon soman-induced seizure activity and convulsions [J]. Electroencephalogr Clin Neurophysiol. 1972, 32:557-560.
    
    26. Turski L, Ikonomidou C, Turski WA, et al. Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy [J]. Synapse. 1989,3:154-171.
    
    27. Chapman AG Glutamate receptors in epilepsy. In: Ottersen OP, Langmoen IA, Gjerstad L, editors[J] . Progress in Brain Research. 1998,116: 348-60.
    
    28. John T.R. Isaac, Michael C. Ashby, Chris J. McBain. The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity[J] . Neuron 2007,54: 859-871
    
    29. Meldrum, B.S., Glutamate as a neurotransmitter in the brain: review of physiology and pathology [J]. Journal of Nutrition 2000,130: 1007S - 1015S.
    
    30. Higuchi, M, Maas, S., Single, F.N., Hartner, J.et al., Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2[J] .Nature 2000,406:78-81.
    
    31. S. Bassanip P, Valnegri F, Beretta M. The GLUR2 subunit of AMPA Receptors: Synaptic role [J]. Neuroscience 2009,158: 55-61
    
    32. S. BORBELY E. DOBO D. CZEGE. Modification of ionotropic glumatate receptor-mediated process in the rat hippocampus following repeated brief seizures [J]. Neuroscience 2009,159: 358-368.
    
    33. Smith JS, Iannotti CA, Dargis P, et al. Differential expression of kcnq2 splice variants: implications to m current function during neuronal development [J]. J Neurosci. 2001, 21(4):1096-1103.
    
    34. Kumar, S.S., Bacci, A., Kharazia, V., and Huguenard, J.R. A developmental switch of AMPA receptor subunits in neocortical pyramidal neurons [J]. J. Neurosci. 2002,22: 3005-3015.
    
    35. Sanchez RM, Koh S, Rio C, et al. Decreased glutamate receptor 2 expression and enhanced epileptogenesis in immature rat hippocampus after perinatal hypoxia-induced seizures [J]. J Neurosci. 2001,21(20): 8154-8163.
    
    36. Sanchez RM, Koh S, Rio C, et al. Decreased glutamate receptor 2 expression and enhanced epileptogenesis in immature rat hippocampus after perinatal hypoxia-induced seizures [J] . J Neurosci. 2001,21(20):8154-8163.
    
    37. Doherty, J., Dingledine, R., The roles of metabotropic glutamate receptors in seizures and epilepsy [J]. Current Drug Targets: CNS and Neurological Disorders 2002,1:251 -260.
    38. Sayin U., Rutecki PA. Group I metabotropic glutamate receptor activation produces prolonged epileptiform neuronal synchronization and alters evoked population responses in the hippocampus [J]. Epilepsy Research 2003,53:186 -195.
    
    39. Kew JN, Kemp JA. Inotropic and metabotropic glutamate receptor structure and pharmacology [J]. Psychopharmacology 2005,179(1): 4-29.
    
    40. Niswender CM, Jones CK, Conn PJ. New therapeutic frontiers for metabotropic glutamate receptors [J]. Curr Top Med Chem. 2005, 5(9): 847-857.
    
    41. Keele NB, Neugebauer V, Shinnick-Gallagher P. Differential effects of metabotropic glutamate receptor antagonists on bursting activity in the amygdale [J]. J. Neurophysiol. 1999, 81: 2056-2065.
    
    42. Fotuhi M, Standaert DG, Testa CM, Penney JB, Young AB. Differential expression of metabotropic glutamate receptors in the hippocampus and entorhinal cortex of the rat [J]. Mol Brain Res 1994,21:283-92.
    
    43. Lujan R, Nusser Z, Roberts JDB, Shigemoto R, Somogyi P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines on the rat hippocampus [J] Eur J Neurosci 1996, 8:1488- 500.
    
    44. Ong WY, He Y, Tan KK, Garey LJ. Differential localisation of the metabotropic glutamate receptor mGluR1a and the ionotropic glutamate receptor GluR2/3 in neurons of the human cerebral cortex [J]. Exp Brain Res 1998,119:367-74.
    
    45. Avallone J, Gashi E, Magrys B, Friedman LK. Distinct regulation of metabotropic glutamate receptor (mGluRl alpha) in the developing limbic system following multiple early-life seizures [J]. Exp. Neurol. 2006, 202:100-111.
    
    46. Abe T, Sugihara H, Nawa H, et al. Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate / Ca2+ signal transduction [J]. JBiol Chem. 1992, 267(19):13361-13368.
    
    47. Aramori I, Nakanishi S. Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluRl, in transfected CHO cells [J].Neuron. 1992, 8(4):757-765.
    
    48. Jorge Ure, Michel Baudry , Mo'nica Perassolo. Metabotropic glutamate receptors and epilepsy [J]. J Neurol Scie. 2006, 247: 1 - 9
    
    49. Sacaan AI. & Schoepp D D. Activation of hippocampal metabotropic excitatory amino acid receptors leads to seizures and neuronal damage [J]. Neurosci. Lett. 1992,139: 77-82.
    50. Fiorillo CD. & Williams JT. Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons [J]. Nature. 1998, 394: 78-82.
    
    51. Mukhin A, Fan L. & Faden AI. Activation of metabotropic glutamate receptor subtype mGluR1 contributes to post- traumatic neuronal injury [J]. J. Neurosci.1996,16: 6012-6020.
    
    52. Moldrich RX, Chapman AG, De Sarro G, Meldrum BS. Glutamate metabotropic receptors as targets for drug therapy in epilepsy [J]. Eur J Pharmacol. 2003, 476(1-2): 3-16.
    
    53. Merlin LR, Bergold PJ, Wong RK. Requirement of protein synthesis for group I mGluR-mediated induction of epileptiform discharges [J]. J Neurophysiol. 1998, 80(2): 989-993.
    
    54. Merlin LR, Taylor GW, Wong RK. Role of metabotropic glutamate receptor subtypes in the patterning of epileptiform activities in vitro [J]. J Neurophysiol. 1995, 74(2): 896-900.
    
    55. Merlin LR, Wong RK. Role of group I metabotropic glutamate receptors in the patterning of epileptiform activities in vitro [J]. J Neurophysiol. 1997, 78(1):539-44.
    
    56. Rong R, Ahn JY, Huang H et al. PI3 kinase enhancer-Homer complex couples mGluRI to PI3 kinase, preventing neuronal apoptosis [J]. Nat. Neurosci.2003;(6):1153-1161.
    
    57. Xu W, Wong TP, Chery N, et al. Calpain-mediated mGluR1 alpha truncation: a key step in excitotoxicity [J].Neuron. 2007 Feb 1;53(3):399-412.
    
    58. MM Soloviev, Ciruela F, Chan WY et al. Molecular characterisation of two structurally distinct groups of human homers, generated by extensive alternative splicing [J]. J Mol Biol .2000; 295(5): 1185-1200.
    
    59. BG Lyeth, Gong QZ, Shields S et al. Group I metabotropic glutamate antagonist reduces acute neuronal degeneration and behavioral deficits after traumatic brain injury in rats [J]. ExpNeurol .2001; 169(1): 191-199.
    
    60. Akbar MT, Rattray M, Powell JF, et al. Altered expression of group I metabotropic glutamate receptors in the hippocampus of amygdala-kindled rats [J]. Brain Res Mol Brain Res. 1996, 43:105-116.
    
    61. Blumcke I, Becker AJ, Klein C, et al. Temporal lobe epilepsy associated up - regulation of metabotropic glutamate receptors: correlated changes in mGluR1 mRNA and protein expression in experimental animals and human patients[J] . J Neuropathol Exp Neurol 2000, 59:1-10.
    
    62. Ginsberg MD, Sternau LL, Globus MY, Dietrich WD, Busto R. Therapeutic modulation of brain temperature: Relevance to ischemic brain injury [J]. Cerebrovasc Brain Metab Rev 1992,4:189 - 225.
    
    63. Bruno VM, Goldberg MP, Dugan LL, Giffard RG, Choi DW. Neuroprotective effect of hypothermia in cortical cultures exposed to oxygen-glucose deprivation or excitatory amino acids [J]. J Neurochem 1994, 63:1398 - 1406.
    
    64. Maier CM, Sun GH, Kunis D, Yenari MA, Steinberg GK. Delayed induction and long-term effects of mild hypothermia in a focal model of transient cerebral ischemia: Neurological outcome and infarct size [J]. J Neurosurg 2001, 94:90 - 96.
    
    65. Colbourne F, Li H, Buchan AM. Indefatigable CA1 sector neuroprotection with mild hypothermia induced 6 hours after severe forebrain ischemia in rats[J] . J Cereb Blood Flow Metab 1999,19: 742 - 749.
    
    66. Colbourne F, Corbett D, Zhao Z, Yang J, Buchan AM. Prolonged but delayed postischemic hypothermia: A long-term outcome study in the rat middle cerebral artery occlusion model [J]. J Cereb Blood Flow Metab 2000,20:1702 - 1708.
    
    67. Chopp M, Knight R, Tidwell CD, Helpern JA, Brown E, Welch KM. The metabolic effects of mild hypothermia on global cerebral ischemia and recirculation in the cat: Comparison to normothermia and hyperthermia [J]. J Cereb Blood Flow Metab 1989, 9:141 - 148.
    
    68. Globus MY, Busto R, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Intra-ischemic extracellular release of dopamine and glutamate is associated with striatal vulnerability to ischemia [J]. Neurosci Lett. 1988, 91:36 - 40.
    
    69. Busto R, Globus MY, Dietrich WD, et al.. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain [J]. Stroke. 1989,20:904-910.
    
    70. Lo EH, Steinberg GK. Effects of hypothermia on evoked potentials, magnetic resonance imaging, and blood flow in focal ischemia in rabbits[J] . Stroke. 1992,23:889-893.
    
    71. Bruno VM, Goldberg MP, Dugan LL, Giffard RG, Choi DW. Neuroprotective effect of hypothermia in cortical cultures exposed to oxygen-glucose deprivation or excitatory amino acids [J]. J Neurochem 1994, 63:1398-1406.
    
    72. Wei-Wei Hu, Yang Du, Chong Li. Neuroprotection of Hypothermia Against Neuronal Death in Rat Hippocampus Through Inhibiting the Increased Assembly of GluR6-PSD95-MLK3 Signaling Module Induced by Cerebral Ischemia/Reperfusion [J]. HIPPOCAMPUS . 2008,18:386-397
    
    73. Smith SL, Hall ED. Mild pre- and posttraumatic hypothermia attenuates blood-brain barrier damage following controlled cortical impact injury in the rat [J]. J Neurotrauma 1996, 13:1-9.
    
    74. Busto R, Globus MY, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain [J]. Stroke. 1989,20:904e10.
    
    75. Nakashima K, Todd MM. Effects of hypothermia on the rate of excitatory amino acid release after ischemic depolarization [J]. Stroke 1996,27:913e8.
    
    76. Trevelyan AJ, Jack J. Detailed passive cable models of layer 2/3 pyramidal cells in rat visual cortex at different temperatures [J]. J Physiol 2002, 539: 623- 636.
    
    77. Yang XF, Ouyang Y, Kennedy BR, Rothman SM. Cooling blocks rat hippocampal neurotransmission by a presynaptic mechanism: observations using 2- photon microscopy [J]. J Physiol 2005, 567:215-224.
    
    78. Globus MY, Alonso O, Dietrich WD, Busto R, Ginsberg MD. Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. [J] J Neurochem 1995, 65:1704e11.
    
    79. Akisu M, Huseyinov A, Yalaz M, Cetin H, Kultursay N. Selective head cooling with hypothermia suppresses the generation of platelet-activating factor in cerebrospinal fluid of newborn infants with perinatal asphyxia[J]. Prostaglandins Leukotrienes Essent Fatty Acids 2003, 69:45-50.
    
    80. Qing M, Nimmesgern A, Heinrich PC, Schumacher K, Vazquez- Jimenez JF, Hess J, et al. Intrahepatic synthesis of tumor necrosis factor-alpha related to cardiac surgery is inhibited by interleukin-10 via the Janus kinase (Jak)/signal transducers and activator of transcription (STAT) pathway [J]. Crit Care Med 2003, 31:2769-75.
    
    81. Amess PN, Penrice J, Cady EB, Lorek A, Wylezinska M, Cooper CE, et al. Mild hypothermia after severe transient hypoxia- ischemia reduces the delayed rise in cerebral lactate in the newborn piglet [J]. Pediatr Res 1997;41:803-8.
    
    82. Erecinska M, Thoresen M, Silver IA. Effects of hypothermia on energy metabolism in Mammalian central nervous system [J]. J Cereb Blood Flow Metab 2003,23:513-30.
    
    83. Edwards AD, Yue X, Squier MV, Thoresen M, Cady EB, Penrice J, et al. Specific inhibition of apoptosis after cerebral hypoxiaischaemia by moderate post-insult hypothermia [J]. Biochem Biophys Res Commun 1995, 217:1193e9.
    
    84. Xu L, Yenari MA, Steinberg GK, Giffard RG. Mild hypothermia reduces apoptosis of mouse neurons in vitro early in the cascade [J]. J Cereb Blood Flow Metab 2002,22:21-8.
    
    85. Zhu C, Wang X, Cheng X, Qiu L, Xu F, Simbruner G, et al. Postischemic hypothermia-induced tissue protection and diminished apoptosis after neonatal cerebral hypoxia-ischemia [J]. Brain Res 2004, 996:67-75.
    
    86. Ning XH, Chen SH, Xu CS, et al. Hypothermic protection of the ischemic heart via alterations in apoptotic pathways as assessed by gene array analysis . [J] J Appl Physiol. 2002, 92: 2200-2207
    
    87. Zhang Z, Sobel RA, Cheng D, Steinberg GK, Yenari MA. Mild hypothermia increases Bcl-2 protein expression following global cerebral ischemia [J]. Brain Res Mol Brain Res 2001;95:75-85.
    
    88. Tomimatsu T, Fukuda H, Endoh M, Mu J, Kanagawa T, Hosono T, et al. Long-term neuroprotective effects of hypothermia on neonatal hypoxic-ischemic brain injury in rats, assessed by auditory brainstem response [J]. Pediatr Res 2003,53:57-61.
    
    89. Colbourne F, Corbett D, Zhao Z, Yang J, Buchan AM. Prolonged but delayed postischemic hypothermia: a long-term outcome study in the rat middle cerebral artery occlusion model [J]. J Cereb Blood Flow Metab 2000, 20:1702-8.
    
    90. Karkar KM., Garcia PA., Bateman LM., Smyth MD., Barbara NM., Berger M. Focal cooling suppresses spontaneous epileptiform activity without changing the cortical motor threshold [J]. Epilepsia 2002,43: 932 - 935.
    
    91. Schmitt FC, Buchheim K, Meierkord H. Anticonvulsant properties of hypothermia in experimental status epilepticus [J]. Neurobiology of Disease. 2006; 23: 689 - 696
    
    92. Steven M. Rothman. The Therapeutic Potential of Focal Cooling for Neocortical Epilepsy [J]. Neurotherapeutics, 2009, 6(2): 251-257
    
    93. Polderman KH. Induced hypothermia for neuroprotection: understanding and underlying mechanisms [B] Yearbook of Intensive Care and Emergency Medicine. 2006, 328-346
    1 Treatment of convulsive status epilepticus. Recommendations of the Epilepsy Foundation of America's Working Group of Status Epilepticus. [J] JMJA 1993, 270:854-859.
    
    2 DanMillikan, Brian Rice, Robert Silbergleit. Emergency Treatment of Status Epilepticus: Current Thinking. [J] Emerg Med Clin N Am 2009,27: 101-113
    
    3 Irma E. Holopainen. Seizures in the developing brain: Cellular and molecular mechanisms of neuronal damage, neurogenesis and cellular reorganization. [J] Neurochemistry International 2008, 52:935-947
    
    4 MatthewWalker. Neuroprotection in epilepsy. [J] Epilepsia, 2007; 48 (Suppl. 8): 66-68,
    
    5 Sutula TP, Hagen J, Pitkanen A. Do epileptic seizures damage the brain? [J] Curr OpinNeuro. 2003, 16:189-195.
    
    6 Walker MC,White HS, Sander JW. Disease modification in partial epilepsy. [J]Brain 2002, 125:1937-1950.
    
    7 Chen JWY, Wasterlain CG. Status epilepticus: pathophysiology and management in adults. [J] Lancet Neurol 2006, 5:246.
    
    8 Irma E. Holopainen. Seizures in the developing brain: Cellular and molecular mechanisms of neuronal damage, neurogenesis and cellular reorganization. [J] Neurochemistry International. 2008, 52: 935-947
    
    9 Kubova, H., Druga, R., Lukasiuk, K., Suchomelova, L., Haugvicova, R., Jirmanova, I., Pitka¨nen, A., Status epilepticus causes necrotic damage in the mediodorsal nucleus of the thalamus in immature rats. [J] J. Neurosci. 2001,21:3593-3599.
    
    10 Montgomery, E.M., Bardgett, M.E., Lall, B., Csernansky, C.A., Csernansky, J.G.,Delayed neuronal loss after administration of intracerebroventricular kainic acid to preweanling rats. [J] Brain Res. 1999, 112: 107-116.
    
    11 Humphrey, W.M., Dong, H., Csernansky, C.A., Csernansky, J.G., Immediate and delayed hippocampal neuronal loss induced by kainic acid during early postnatal development in the rat. [J] Brain Res. 2002, 137: 1-12.
    
    12 Dong, H., Csernansky, C.A., Goico, B., Csernansky, J.G., Hippocampal neurogenesis follows kainic acid-induced apoptosis in neonatal rats. [J] J. Neurosci. 2003,23: 1742-1749.
    
    13 Kunz, T., Oliw, E.H. The selective cyclooxygenase-2 inhibitor rofecoxib reduces kainate-induced cell death in the rat hippocampus. [J] Eur. J. Neurosci. 2001,13:569-575.
    
    14 Jung, K.H., Chu, K., Lee, S.T., et al. Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpineinduced status epilepticus. [J] Neurobiol. Dis. 2006, 23: 237-246.
    
    15 Lee, B., Dziema, H., Lee, K.H., Choi, Y.S., Obrietan, K., CRE-mediated transcription and COX-2 expression in the pilocarpine model of status epilepticus. [J] Neurobiol. Dis. 2007,25: 80-91.
    
    16 Sankar, R., Shin, D., Liu, H., Wasterlain, C, Mazarati, A.. Epileptogenesis during development: injury, circuit recruitment, and plasticity. [J] Epilepsia 2002, 43 (Suppl. 5): 47-53.
    
    17 Nairisma¨gi, J., Pitkanen, A., Kettunen, M.I., Kauppinen, R.A., Kubova, H., Status epilepticus in 12-day-old rats leads to temporal lobe neurodegeneration and volume reduction: a histologic and MRI study. [J] Epilepsia 2006, 47: 479-488.
    
    18 Cilio, M.R., Sogawa, Y., Cha, B.H., Liu, X., Huang, L.T., Holmes, G.L., Long-term effects of status epilepticus in the immature brain are specific for age and model. [J] Epilepsia 2003,44:518-528.
    
    19 Soriano FX, Papadia S, Hofmann F, Hardingham NR, Bading H, Hardingham GE. Preconditioning Doses of NMDA Promote Neuroprotection by Enhancing Neuronal Excitability. [J] J Neurosci .2006,26:4509- 4518.
    
    20 Delgado-Esteban M, Martin-Zanca D, Andres-Martin L, Almeida A, Bolanos JP. Inhibition of PTEN by peroxynitrite activates the phosphoinositide-3-kinase/Akt neuroprotective signaling pathway. [J] JNeurochem . 2007,102:194-205.
    
    21 Datta SR, Dudek H, Tao X, Masters S, Fu HA, Gotoh Y, Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. [J] Cell 1997, 91:231-241.
    
    22 Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC. Regulation of cell death protease caspase-9 by phosphorylation. [J] Science 1998,282:1318-1321.
    
    23 Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. [J] Cell. 1999, 96:857-868.
    
    24 V Rigau, Morin M, Rousset MC et al. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. [J] Brain 2007,130(7): 1942-1956.
    
    25 DP McCloskey, Croll SD, Scharfman HE. Depression of synaptic transmission by vascular endothelial growth factor in adult rat hippocampus and evidence for increased efficacy after chronic seizures. [J] J Neurosci 2005,25(39): 8889-8897.
    
    26 Herman M, Gozdz A. Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. [J] Eur J Biochem. 2004,271:2050-2055.
    
    27 Jin K, Mao XO, Zhu Y, Greenberg DA. MEK and ERK protect hypoxic cortical neurons via phosphorylation of Bad. [J] J Neurochem 2002, 80:119-125.
    
    28 Berkeley JL, Decker MJ, Levey AI. The role of muscarinic acetylcholine receptor-mediated activation of extracellular signal-regulated kinase 1/2 in pilocarpine-induced seizures. [J] J Neurochem 2002, 82:192-201.
    
    29 Chu CT, Levinthal DJ, Kulich SM, Chalovich EM, DeFranco DB. Oxidative neuronal injury: the dark side of ERK1/2. [J] Eur J Biochem. 2004, 271:2060-2066.
    
    30 Luo Y, DeFranco DB. Opposing roles for ERK1/2 in neuronal oxidative toxicity: distinct mechanisms of ERK 1/2 action at early versus late phases of oxidative stress. [J] J Biol Chem. 2006, 281:16436-16442.
    
    31 Merlo D, Cifelli P, Cicconi S, Tancredi V, Avoli M. 4-Aminopyridine-induced epileptogenesis depends on activation of mitogen-activated protein kinase ERK. [J] J Neurochem. 2004, 89: 654- 659.
    
    32 Foreword. Neuroprotection in epilepsy: The Holy Grail of antiepileptogenic therapy. [J] Epilepsy & Behavior 2005, 7: S1 - S2
    
    33 Meldrum BS. Implications for neuroprotective treatments. [J] Prog Brain Res . 2002, 135:487-495.
    
    34 Clifford DB, Olney JW, Benz AM, Fuller TA, Zorumski CF. Ketamine, phencyclidine, and MK-801 protect against kainic acidinduced seizure-related brain damage. [J] Epilepsia .1990, 31:382-390.
    
    35 Fujikawa DG, Daniels AH, Kim JS. The competitive NMDA receptor antagonist CGP 40116 protects against status epilepticusinduced neuronal damage. [J] Epilepsy Res 1994, 17: 207-219.
    
    36 Fujikawa DG, Shinmei SS, Cai B. Seizure-induced neuronal necrosis: implications for programmed cell death mechanisms. [J] Epilepsia 2000, 41(Suppl. 6):S9-S13.
    
    37 Fujikawa DG. Prolonged seizures and cellular injury: understanding the connection. [J] Epilepsy Behav 2005, 7:3.
    38 Cock HR, Tong X, Hargreaves IP, et al. Mitochondrial dysfunction associated with neuronal death following status epilepticus in rat. [J] Epilepsy Res. 2002, 48:157.
    
    39 Henshall DC, Simon RP. Epilepsy and apoptosis pathways. [J] J Cereb Blood Flow Metab. 2005, 25:1557.
    
    40 B Murphy, Dunleavy M, Shinoda S et al. Bcl-w protects hippocampus during experimental status epilepticus. [J] Am J Pathol 2007, 171(4): 1258-1268.
    
    41 E Rios, Pizarro G. Voltage sensor of excitation-contraction coupling in skeletal muscle. [J] Physiol Rev 1991,71(3): 849-908.
    
    42 M Raza, Blair RE, Sombati S et al. Evidence that injury-induced changes in hippocampal neuronal calcium dynamics during epileptogenesis cause acquired epilepsy. [J] Proc Natl Acad Sci 2004, 101(50): 17522-17527.
    
    43 F Mori, Okada M, Tomiyama M et al. Effects of ryanodine receptor activation on neurotransmitter release and neuronal cell death following kainic acid-induced status epilepticus. [J] Epilepsy Res 2005, 65(1-2): 59-70.
    
    44 BO Popescu, Oprica M, Sajin M et al. Dantrolene protects neurons against kainic acid induced apoptosis in vitro and in vivo. [J] J Cell Mol Med 2002, 6(4):555-569.
    
    45 Guo X,Dillman 3rd JF, DawsonVL, Dawson TM. Neuroimmunophilins: novel neuroprotective and neuroregenerative targets. [J] Ann Neurol 2001, 50: 6-16.
    
    46 Liu H, Cao Y, Basbaum AI, Mazarati AM, Sankar R, Wasterlain CG. Resistance to excitotoxin-induced seizures and neuronal death in mice lacking the preprotachykinin A gene. [J] Proc Natl Acad Sci 1999, 96:12096 - 101.
    
    47 Marsicano G, Goodenough S, Monory K, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. [J] Science 2003, 302:84-8.
    
    48 Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D. Antioxidant therapy in acute central nervous system injury: current state. [J] Pharmacol Rev 2002,54:271-84.
    
    49 Narkilahti S, Nissinen J, Pitkanen A. Administration of caspase 3 inhibitor during and after status epilepticus in rat: effect on neuronal damage and epileptogenesis. [J] Neuropharmacology. 2003; 44:1068.
    
    50 Fujikawa DG, Shinmei SS, Zhao S, Aviles JER. Caspasedependent programmed cell death pathways are not activated in generalized seizure-induced neuronal death. [J] Brain Res. 2007, 1135:206.
    
    51 Narkilahti S, Pirttila TJ, Lukasiuk K, Tuunanen J, Pitkanen A. Expression and activation of caspase 3 following status epilepticus in the rat. [J] Eur J Neurosci 2003,18:1486-1496.
    
    52 Boeckeler K, Adley K, Xu X, Jenkins A, Jin T,Williams RSB. The neuroprotective agent, valproic acid, regulates the mitogen-activated protein kinase pathway through modulation of protein kinase A signaling in Dictyostelium discoideum. [J] Eur J Cell Biol. 2006, 85:1047.
    
    53 JA Goiter, van Vliet EA, Aronica E et al. Potential new antiepileptogenic targets indicated by microarray analysis in a rat model for temporal lobe epilepsy. [J] J Neurosci 2006,26(43): 11083-11110.
    
    54 I Manno, Antonucci F, Caleo M, Bozzi Y. BoNT/E prevents seizure-induced activation of caspase 3 in the rat hippocampus. [J] Neuroreport 2007,18(4): 373-376.
    
    55 F Antonucci, Di Garbo A, Novelli E et al. Botulinum neurotoxin E (BoNT/E) reduces CAl neuron loss and granule cell dispersion, with no effects on chronic seizures, in a mouse model of temporal lobe epilepsy. [J] Exp Neurol 2008, 210(2): 388-401.
    
    56 Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. [J] Curr Opin Neurobiol. 2004, 14:311.
    
    57 Rice AC, Floyd CL, Lyeth BG, Hamm RJ, DeLorenzo RJ. Status epilepticus causes long-term NMDA receptor-dependent behavioral changes and cognitive deficits. [J] Epilepsia .1998, 39:1148- 1157.
    
    58 Prasad A, Williamson JM, Bertram EH. Phenobarbital and MK- 801, but not phenytoin, improve the long-term outcome of status epilepticus. [J] Ann Neurol .2002, 51:175-181.
    
    59 Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. [J] Science 1999, 283:70 - 4.
    
    60 Brandt C, Potschka H, Loscher W, Ebert U. N-methyl-aspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy. [J] Neuroscience 2003,118:727-712.
    
    61 Niebauer M, Gruenthal M. Topiramate reduces neuronal injury after experimental status epilepticus. [J] Brain Res 1999, 837:263 - 9.
    
    52 Rigoulot MA, Koning E, Ferrandon A, et al. Neuroprotective properties of topiramate in the lithium - pilocarpine model of epilepsy. [J] J Pharmacol Exp Ther 2004, 308:787 - 95.
    
    63 KohS, Tibayan FD, Simpson JN, et al.NBQXor topiramate treatment after perinatal hypoxia-induced seizures prevents later increases in seizure-induced neuronal injury. [J] Epilepsia 2004,45:569 - 75.
    
    64 D. Azzopardi, A.D. Edwards. [M] Hypothermia. Seminars in Fetal & Neonatal Medicine .2007,12,303-310
    
    65 Smith SL, Hall ED. Mild pre- and posttraumatic hypothermia attenuates blood-brain barrier damage following controlled cortical impact injury in the rat. [J] J Neurotrauma 1996, 13:1-9.
    
    66 Busto R, Globus MY, Dietrich WD, Martinez E, Valdes I, Ginsberg MD. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. [J] Stroke. 1989,20:904-10.
    
    67 Nakashima K, Todd MM. Effects of hypothermia on the rate of excitatory amino acid release after ischemic depolarization. [J] Stroke 1996,27:913-8.
    
    68 Trevelyan AJ, Jack J. Detailed passive cable models of layer 2/3 pyramidal cells in rat visual cortex at different temperatures. [J] J Physiol 2002, 539 (2): 623- 636.
    
    69 Yang XF, Ouyang Y, Kennedy BR, Rothman SM. Cooling blocks rat hippocampal neurotransmission by a presynaptic mechanism: observations using 2- photon microscopy. [J] J Physiol 2005, 567:215-224.
    
    70 Globus MY, Alonso O, Dietrich WD, Busto R, Ginsberg MD. Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. [J] J Neurochem 1995, 65:1704-11.
    
    71 Akisu M, Huseyinov A, Yalaz M, Cetin H, Kultursay N. Selective head cooling with hypothermia suppresses the generation of platelet-activating factor in cerebrospinal fluid of newborn infants with perinatal asphyxia. [J] Prostaglandins Leukotrienes Essent Fatty Acids 2003, 69:45-50.
    
    72 Qing M, Nimmesgern A, Heinrich PC, Schumacher K, Vazquez- Jimenez JF, Hess J, et al. Intrahepatic synthesis of tumor necrosis factor-alpha related to cardiac surgery is inhibited by interleukin-10 via the Janus kinase (Jak)/signal transducers and activator of transcription (STAT) pathway. [J] Crit Care Med 2003, 31: 2769 -75.
    
    73 Amess PN, Penrice J, Cady EB, Lorek A, Wylezinska M, Cooper CE, et al. Mild hypothermia after severe transient hypoxia- ischemia reduces the delayed rise in cerebral lactate in the newborn piglet. [J] Pediatr Res 1997, 41:803-8.
    74 Erecinska M, Thoresen M, Silver IA. Effects of hypothermia on energy metabolism in Mammalian central nervous system. [J] J Cereb Blood Flow Metab 2003,23:513-30.
    
    75 Edwards AD, Yue X, Squier MV, Thoresen M, Cady EB, Penrice J, et al. Specific inhibition of apoptosis after cerebral hypoxiaischaemia by moderate post-insult hypothermia. [J] Biochem Biophys Res Commun 1995,217:1193-9.
    
    76 Xu L, Yenari MA, Steinberg GK, Giffard RG. Mild hypothermia reduces apoptosis of mouse neurons in vitro early in the cascade. [J] J Cereb Blood Flow Metab 2002,22: 21-8.
    
    77 Zhu C, Wang X, Cheng X, Qiu L, Xu F, Simbruner G, et al. Postischemic hypothermia-induced tissue protection and diminished apoptosis after neonatal cerebral hypoxia-ischemia. [J] Brain Res 2004, 996: 67-75.
    
    78 Ning XH, Chen SH, Xu CS, et al. Hypothermic protection of the ischemic heart via alterations in apoptotic pathways as assessed by gene array analysis. [J] J Appl Physiol. 2002; 92: 2200-2207
    
    79 Zhang Z, Sobel RA, Cheng D, Steinberg GK, Yenari MA. Mild hypothermia increases Bcl-2 protein expression following global cerebral ischemia. [J] Mol Brain Res 2001;95:75-85.
    
    80 Tomimatsu T, Fukuda H, Endoh M, Mu J, Kanagawa T, Hosono T, et al. Long-term neuroprotective effects of hypothermia on neonatal hypoxic-ischemic brain injury in rats, assessed by auditory brainstem response. [J] Pediatr Res 2003, 53:57-61.
    
    81 Colbourne F, Corbett D, Zhao Z, Yang J, Buchan AM. Prolonged but delayed postischemic hypothermia: a long-term outcome study in the rat middle cerebral artery occlusion model. [J] J Cereb Blood Flow Metab 2000, 20:1702-8.
    
    82 Karkar, K.M., Garcia, P.A., Bateman, L.M., Smyth, M.D., Barbara, N.M., Berger, M., Focal cooling suppresses spontaneous epileptiform activity without changing the cortical motor threshold. [J] Epilepsia 2002;43: 932 - 935.
    
    83 F.C. Schmitt, K. Buchheim, H. Meierkord. Anticonvulsant properties of hypothermia in experimental status epilepticus. [J] Neurobiology of Disease. 2006; 23: 689 - 696
    
    84 Steven M. Rothman. The Therapeutic Potential of Focal Cooling for Neocortical Epilepsy. [J] Neurotherapeutics, 2009; 6(2): 251-257
    1. Mitchell WG. Status epilepticus and acute serial seizures in children. J Child Neurol. 2002;17(Suppl 1):S36-S43.
    
    2. Commission on Classification and Terminology of the International League against Epilepsy. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. From the Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1981 ;22:489-501.
    
    3. Dodson, W. Edwin, and John M. Pellock Pediatric Epilepsy - Diagnosis and Therapy 1993,446p.
    
    4. Lowenstein DH, Bleck T, Macdonald RL. It's time to revise the definition of status epilepticus. Epilepsia 1999;40:120-122.
    
    5. Delorenzo RJ, Hauser WA, Towne AR, et al. A prospective, population-based epidemiologic study of status epilepticus in Richmond, Virginia. Neurology 1996;46;1029-1035.
    
    6. Pellock JM. Use of midazolam for refractory status epilepticus in pediatric patients. J Child Neurol 1998;13:581-587.
    
    7. Shinnar S, Berg AT, Moshe SL, Shinnar R. How long do new-onset seizure in children last? Ann Neurol. 2001 ;49:659-664.
    
    8. De Negri M, Baglietto MG. Treatment of status epilepticus in children. Pediatr Drugs 2001;3:411-420.
    
    9. Brevoord JC, Joosten KF, Arts WF, van Rooij RW, de Hoog M. Status epilepticus: clinical analysis of a treatment protocol based on midazolam and phenytoin. J Child Neurol. 2005;20:476-481.
    
    10. Volgushev M, Vidyasagar TR, Chistiakova M, et al. Membrane properties and spike generation in rat visual cortical cells during reversible cooling. J Physiol 2000;522:59-76.
    
    11. Turski W, Cavalheiro EA, Bortolotto ZA. Seizures produced by pilocarpine in mice; a behavioral, electroencephalographic and morphological analysis. Brain Res 1984;321:237-253.
    
    12. Rincon F, Mayer SA. Therapeutic hypothermia for brain injury after cardiac arrest Semin Neurol. 2006 Sep;26(4):387-95
    
    13. Jatana M, Singh I, Singh AK, Jenkins D .Combination of systemic hypothermia and N-acetylcysteine attenuates hypoxic-ischemic brain injury in neonatal rats. Pediatr Res. 2006 May;59(5):684-689.
    14. Rothman S, Yang XF. Local cooling: A therapy for intractable neocortical epilepsy currents. Epilepsy Curr. 2003;3:153-156.
    
    15. Bagic A, Theodore WH, Boudreau EA, Bonwetsch R, Greenfield J, Elkins W, Sato S. Towards a non-invasive interictal application of hypothermia for treating seizures: a feasibility and pilot study. Acta Neurol Scand 2008; 118:240-244
    
    16. Schmitt FC, Buchheim K, Meierkord H., et al. Anticonvulsant properties of hypothermia in experimental status epilepticus. Neurobiol Dis 2006;23:689-696.
    
    17. Yukito T, Nishikawa Y; Tachibana M, et al. Hypothermia during kianic acid-induced seizures reduces hippocampal lesions and cerebral nitric oxide production in immature rabbits. Brain& Devel 2004;26:176-183.
    
    18. Fugikawa DG Prolonged seizures and cellular injury: understanding the connection. Epilepsy Behav 2005; Suppl 3:S3-11.
    
    19. Mitani A, Kataoka K. Critical levels of extracellular glutamate mediating gerbil hippocampal delayed neuronal death during hypothermia: brain microdialysis study. Neuroscience 1991;42:661-670.
    
    20. Raza M, Pal S, Rafiq A, et al. Long-term alteration of calcium homeostatic mechanisms in the pilocarpine model of temporal lobe epilepsy. Brain Res 2001;903:l-12.
    
    21. Kil HY, Zhang J, Piantadosr CA. Brain temperature alters hydroxyl radical production during cerebral ischemia/reperfusion in rats. J Cerebra Blood Flow Metab 1996;16;100-106.
    
    22. Widmann R, Miyazawa T, Hossmann KA. Protective effect of hypothermia on hippocampal injury after 30 minutes of forebrain ischemia in rats is mediated by post-ischemic recovery of protein synthesis. J Neurochem 1993;61:200-209.
    
    23. Sakurai T, Itoh K, Liu Y, et al. Low temperature protects mammalian cells from apoptosis initiated by various stimuli in vitro. Exp Cell Res 2005;309:264-272.
    
    24. Fu T, Blei AT, Takamura N, et al. Hypothermia inhibits Fas mediated apoptosis of primary mouse hepatocytes in culture. Cell Transpl 2004;13:667-676.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700