铰接式自卸车橡胶悬架系统多体动力学分析、试验研究与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以AD250铰接式自卸车橡胶悬架系统为研究对象,在江苏省自然科学基金预研项目“非公路车辆悬挂系统动态特性建模分析与优化研究”的支持下,运用有限元和多体系统动力学理论对其动态特性进行分析、试验研究和优化设计,以提高车辆的行驶平顺性。论文的主要内容和创新点如下:
     1.建立了AD250铰接式自卸车前、后悬架主弹性元件——沙漏式橡胶弹簧和夹层橡胶弹簧的非线性有限元参数化模型,对其轴向的非线性刚度进行了数值分析,得到的刚度曲线与实验结果有很好的一致性。通过沙漏式橡胶弹簧结构参数对弹簧轴向变形量的灵敏度分析,总结了不同载荷下结构参数变化对刚度影响的规律,确定了最敏感的设计变量。
     2.基于SCHENCK整车道路模拟试验台,设计和实施了AD250铰接式自卸车整车台架试验。采用路谱激励模拟车辆实际行驶状态,在不同路面、载荷与车速下,以加权加速度均方根值为指标评价了AD250自卸车的平顺性。对前后悬架橡胶弹簧上下测点的加速度响应进行频谱与隔振性能分析,掌握了不同载荷工况下前后橡胶悬架系统的非线性动态特性。
     3.在分析AD250铰接式自卸车橡胶悬架结构拓扑构型的基础上,运用多体动力学理论,建立了橡胶悬架系统及整车的非线性多刚体虚拟样机。在不同的等级路面、载荷和车速下,对模型进行了多刚体动力学仿真。通过与试验结果对比分析了多刚体模型的有效性,确定了悬架杆件的刚性化是一个主要的误差源。
     4.基于AD250铰接式自卸车多刚体动力学模型,应用修正的Craig–Bampton模态综合法,对车辆行驶过程中相对变形较大的悬架杆件进行模态分析,把生成的模态中性文件引入到多刚体模型中取代相应的刚体,建立了相对多刚体模型更符合工程实际的整车刚柔耦合多体动力学模型。通过对模型的数值仿真和实验对比,得出了悬架系统的动力学特性并验证了模型的正确性。
     5.基于整车刚柔耦合多体动力学模型,分析了悬架杆件的动应力,指出了各杆件的应力最大部位和评价了动强度。得到各悬架杆件某一瞬时的应力云图和各个节点在车辆运行过程中的动态应力—时间历程,为评估悬架杆件的疲劳寿命提供了理论依据。
     6.以改善汽车行驶平顺性和兼顾汽车操纵稳定性的原则,提出了一种考虑该车各种行驶工况和多个设计变量的悬架动态优化数学模型,和基于整车多体动力学仿真的悬架优化设计方法。
     7.基于整车刚柔耦合多体动力学模型和序列二次规划法,优化了不同载荷下的悬架系统特性参数;对不同载荷下对应的最优悬架刚度进行最小二乘拟合,得到了橡胶悬架刚度的最佳非线性特性曲线。以此曲线为优化目标,完成了新型悬架橡胶弹簧结构参数优化;优化后的橡胶悬架系统能使车辆具有良好的平顺性和稳定性。
Supported by Jiangsu province Natural Science Fundation pre-research project of dynamics modeling, analysis and optimization of off-road vehicle suspension, dynamic characteristics of AD250 articulated dump truck rubber suspension had been studied through applying multibody dynamics, finite element theory and experiment. The ride comfort of the truck was improved through optimization of the stiffness and damping of rubber suspension. In detail, the contribution of the paper is as following:
     1. The parameterized nonlinear finite-element model of Hourglass rubber springs and laminated rubber spring used as main elastic component in AD250 suspension have been built, and non-linear stiffness in vertical direction have been analyzed in this paper. The results of the analysis were consistent with experiment results very well. The sensitivity analysis of structural parameter of Hourglass rubber springs was explored to find the law of each parameter’s contribution to stiffness in vertical direction, and the most sensitive design variable was found for optimization.
     2. Vibration experiment of AD250 articulated dump truck was designed and implemented on SCHENCK whole vehicle road simulation experimental bench. Using simulated road excitation simulated the status of practice running on different road and at different velocity, The ride comfort of the truck was evaluated according to RMS acceleration under different running status. The nonlinear dynamics properties of front & rear rubber suspension were comprehended through analyzing acceleration spectrum at the upper and lower point of rubber spring under different load.
     3. Based on topological analyses of the suspension of AD250 articulated dump truck, nonlinear virtual prototyping of the truck has been built through applying multi-rigid body dynamics theory. The multi-rigid body dynamics simulation analyses have been performed with different velocity & load by using different road spectrum excitation. Simulation error has been analyzed by contrasting test result, which indicated it was an important error source to regard suspension links as rigid body. It provided a basis for building more accurate dynamical model.
     4. Based on AD250 articulated dump truck multi-rigid body dynamics model, flexiblemulti-body models of suspension components for which the deformations are relatively important were built using finite element method. Modified Craig–Bampton modal synthesis and flexible multi-body methods were applied to build rigid-flexible coupling multi-body model of the truck. Dynamic simulations with different road profiles were performed. The results of analysis were consistent with experiment results very well, which showed the correctness of the rigid-flexible coupling multibody model.
     5. Based on the rigid-flexible coupling multi-body model of AD250 articulated dump truck, dynamic stress of suspension links was analyzed. The location of the maximum stress was indicated and the dynamic intensity of suspension links was evaluated. This research technology is useful to obtain the dynamic stress distribution characteristics of the suspension links and the dynamic stress history of nodes in the time domain. It provided a basis for evaluating the service life of suspension links in its structural design stage.
     6. In order to improve the ride comfort of AD250 articulated dump truck, optimization design theory and method of rubber suspension system was studied. An optimization model and a set of optimization method based on whole vehicle dynamics simulation are proposed for improving the truck ride comfort and ensuring handling performance at the same time.
     7. Based on the rigid-flexible coupling multibody model of AD250 articulated dump truck, the optimization design of the rubber suspension was completed under differ load by using Sequential Quadratic Programming theory. The optimum nonlinear stiffness curve of rubber suspension was obtained through least squares fitting the optimum stiffness values according to certain load. The structure parameters of the Hourglass rubber spring have been optimized for fulfilling the optimum nonlinear stiffness curve. The optimization result indicated that Using of rubber spring with optimum nonlinear elasticity character resulted in good and constant ride comfort of the truck.
引文
1 Mraz Stephen J. Rubber spring and beyond [J]. Machine design. 1998,70 (8): 86
    2 Soliman, A M A. Active suspension systems for road vehicles - A review [J]. Proceedings of the 2004 International Conference on Noise and Vibration Engineering, ISMA, 2004, p 87-101
    3 Mats Berg. A non-linear rubber spring model for rail vehicle dynamic analysis [J]. Vehicle System Dynamics, 1998,30 (3,4): 197-212
    4 M Berg. A model of rubber spring in the dynamic analysis of rail vehicle [J]. Proc Instn Mech Engrs 1997, 211(F): 95-108
    5 Mattias Sjoberg, Leif Kari.Non-linear behavior of a rubber isolator system using fractional derivatives [J]. Vehicle System Dynamics, 2002,37 (3): 217-236
    6 Alan Wineman, Timothy Van Dyke, Shi Shixiang. Nonlinear viscoelastic model for one dimensional response of elastomeric bushings [J]. International Journal of Mechanical Sciences, 1998, 40(12,):1295-1305
    7 刘惟信.汽车设计[M]. 北京:清华大学出版社,2001
    8 余志生.汽车理论第三版[M].北京.机械工业出版社.1990
    9 Karnopp, D. Active and semi-active vibration isolation [J]. Transactions of the ASME, Journal of Vibration and Acoustics, 1995,117(3B): 177-185
    10 Harrison R F ,Banks S P .A new non-linear design method for active vehicle suspension systems Intelligent Components for Vehicles (ICV'98). Proceedings volume from the IFAC Workshop, 1998. 365-70
    11 Optimum design of a passive suspension system of a vehicle subjected to actual random road excitations. Journal of Sound and Vibration[J], 1999, 219(2): 193-205
    12 I. Rajendran, S. Vijayarangan. Optimal design of a composite leaf spring using genetic algorithms[J]. Computers and Structures, 79(2001):1121-1129
    13 齐 云 芝 . 车 辆 悬 挂 系 统 研 究 的 现 状 和 未 来 [J]. 兵 工 学 报 , 坦 克 装 甲 车 与 发 动 机 分册,1998,3:53-58
    14 M. Gobbi, G. Mastinu. Analytical description and optimization of the dynamic behaviour of passively suspended road vehicles[J]. Journal of Sound and Vibration, 2001, 245(3):457-481
    15 陈家瑞.汽车构造[M].人民交通出版社.1997
    16 林逸.带有非完整约束的汽车多刚体系统动力学研究[D]:[博士学位论文] .长春:吉林工业大学,1989.5
    17 孔逢春,李德圣,李晓雷.轮胎侧偏力学的新发展[J].汽车工程,1995,17(2),65-73
    18 庄继德.汽车轮胎学[M].北京:北京理工大学出版社,1996
    19 [德] M.米奇克著. 汽车动力学[M].A 卷.第二版. 陈荫三译.北京:人民交通出版社,1992
    20 雷雨成.汽车系统动力学及仿真[M].北京:国防工业出版社,1997
    21 洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,1997
    22 陈立平,张云清,任卫群等.机械系统动力学分析及 ADAMS 应用教程[M].北京:清华大学出版社,2005
    23 刘延柱,洪嘉振,杨海兴. 多刚体系统动力学[M]. 北京:高等教育出版社,1998
    24 张越今.汽车多体动力学及计算机仿真[M].吉林:吉林科学技术出版社,1998
    25 [德]J. Wittenburg.多刚体系统动力学[M].谢传锋译.北京:北京航空学院出版社,1986
    26 陆佑方. 柔性多体系统动力学[M]. 北京:高等教育出版社,1996
    27 黄文虎等. 多柔体系统动力学[M]. 北京:科学技术出版社,1997
    28 陈欣.汽车悬架多柔体系统动力学研究[D]:[博士学位论文].长春:吉林工业大学,1995.9
    29 R Schwertasek, R E Roberson .Dynamic of multibody system[M].Berlin :Springer-Verlag,1986
    30 G Bianchi,W Schiehlen. Dynamic of multibody system[M].Berlin :Springer-Verlag,1986
    31 A A Shabana. Dynamic of multibody system[M].New York :Wiley ,1989
    32 Kortuem W,Sharp, R S .IAVSD review of multibody computer codes for vehicle system dynamics American Society of Mechanical Engineers[J].Dynamic Systems and Control Division (Publication) DSC, 1992,v 44, Trasportation Systems – 1992: p 1-14
    33 Sharp, R S. Application of multi-body computer codes to road vehicle dynamics modelling problems[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1994, 208(1): 55-61
    34 Schiehlen W. multibody system handbook[M].Berlin :Springer-Verlag,1990
    35 洪嘉振.多体系统动力学——理论、计算方法和应用[M].上海:上海交通大学出版社,1992
    36 洪嘉振,贾书惠.多体系统动力学与控制[M].北京:北京理工大学出版社,1996
    37 Huston R L. Multibody Dynamics-Model and Analysis Methods[J]. Appl Mech Rev. 1991,44(3): 109-117
    38 [美]R.罗森伯.离散系统分析动力学[M].程迺巽,郭坤译.北京:人民教育出版社,1996
    39 贾书惠.刚体动力学[M].北京:高等教育出版社.1987
    40 袁士杰,吕哲勤编著.多刚体系统动力学[M].北京:北京理工大学出版社.1996
    41 Haug E J. Computer aided analysis and optimization of mechanical system dynamics [M]. Berlin : Spr -inger-Verlag,1990
    42 Haug E J. Element and methods of Computational dynamics [J]. NATO ASI Series, Series F: Computer and Systems Sciences. 1984, v9:3-38
    43 Haug E J. Computer aided analysis and optimization of mechanical system dynamics[J]: NATO ASI Series, Series F: Computer and Systems Sciences.1984, v9: 700
    44 Chace M A. Methods and experience in computer aided design of large displacement mechanical systems[J] .NATO ASI Series, Series F: Computer and Systems Sciences, 1984, 9:233-259
    45 詹文章.汽车独立悬架多体系统动力学仿真及转向轮高速摆振研究[D]:[博士学位论文].长春:吉林大学,2000.12
    46 Kortuem W. Review of multibody computer codes for vehicle system dynamics[J]. Vehicle System Dynamics.1993,22(suppl.issue):3-31
    47 R J Antoun, P B Hackert, M C O'leary,et al.Simulating Vehicle Dynamic Handling[J]. Automotive Engineering (Warrendale, Pennsylvania). 1986, 94(10): 72-76
    48 Yi Lin, Wenzhang Zhan, Yan Liu,et al. Dynamics Simulation Research on Rigid-Elastic Coupling System of Car Suspension.SAE2000-01-1622
    49 王国强,张进平,马若丁.虚拟样机技术及其在 ADAMS 上的实践[M].西安:西北工业大学出版社.2002
    50 郑建荣.ADAMS 虚拟样机技术入门与提高[M].北京:机械工业出版社.2002
    51 李军,刑俊文,覃文浩.ADAMS 实例教程[M].北京:北京理工大学出版社.2002
    52 张越今.多体系统动力学在轿车动力学仿真及优化研究中的应用[D]:[博士学位论文].北京:清华大学,1997.11
    53 张洪欣.汽车系统动力学[M].上海:同济大学出版社,1996
    54 王其东,方锡邦,卢建伟等. 汽车钢板弹簧多体动力学建模及动特性仿真研究[J]. 合肥工业大学学报(自然科学版),1999,22(6):35-39
    55 宋健,石磊. 多连杆式前悬架主销轴线的确定[J]. 公路交通科技,2001,18(6):9-12
    56 Ren Weiqun, Zhang Yunqing, Song Jian. Virtual Prototyping Technology in Automotive Concurrent Design[C]. In: Proc of the International Conference on Vehicle Electronics, 1999: 421-424
    57 仲昕,杨汝清. 刚弹耦合建模在汽车转向轮摆振问题的应用[J]. 机械设计与研究,2000,16(4):63-65.
    58 赵亦希,黄宏成,刘奋. 悬架侧倾特性参数及动力学仿真[J]. 传动技术,2001(1):40-42
    59 沈浩,吴光强,李智峰等. 制造精度对悬架运动特性影响的研究[J]. 机械设计与制造,2001(6):72-73
    60 刘岩,丁玉兰,林逸. 汽车转向机构高速振动的研究[J]. 中国公路学报,2001,14(2):123-126
    61 王树凤,张俊友,余群. 应用 ADAMS 设计车辆操纵稳定性试验[J]. 中国农业大学学报,2001,6(6):81-84
    62 姚寿文,钱立新. 长大货物列车智能型电控空气制动动力学性能分析[J]. 中国铁道科学,2001,22(2):41-50
    63 王其东,方锡邦,卢建伟等. 汽车钢板弹簧多体动力学建模及动特性仿真研究[J]. 合肥工业大学学报(自然科学版),1999,22(6):35-39
    64 秦洪武,刘军. 多连杆式前悬架的转向定位参数仿真计算研究[J]. 机械设计与研究,2002,18(3):19-20
    65 马吉胜,阎石. 基于 ADAMS 履带车辆工具箱的自行火炮行军试验仿真[J]. 系统仿真学报,2002,14(7):939-941
    66 贾小平,邢俊文,李军等. 用 ADAMS 对叉式座椅垂向振动的建模仿真[J]. 兵工学报,2000(3):22-24
    67 李军,孟红,张洪康等. 汽车悬架参数对操纵稳定性影响的仿真分析研究[J]. 车辆与动力技术,2001(4):24-27
    68 王其东.基于多体理论的汽车悬架系统分析、设计与控制研究[D]:[博士学位论文].合肥:合肥工业大学,2002.10
    69 张建文.空气弹簧非线性有限元分析和空气悬架大客车隔振性能的研究. [D]:[博士学位论文].长春:吉林大学,2003.12
    70 陈潇凯. 多体系统动力学应用于轻型客车数字化模型的研究. [D]:[硕士学位论文].长春:吉林大学,2002.2
    71 李智峰. 汽车整车多体系统动力学仿真研究. [D]:[硕士学位论文].上海:同济大学,2000.1
    72 陆佑方.汽车柔性多体系统动力学建模综述[J].汽车技术,1997,(4):1-7
    73 夏长高.汽车高速行驶操纵性柔性多体动力学预测方法[J].交通运输工程学报,2004,4(4):30-33
    74 程海涛,王成国,钱立新. 考虑车体柔性的货车动力学仿真[J]. 铁道学报,2000,22(6):40-45
    75 胡平,王成国,庄茁.虚拟工程与科学[M].北京:气象出版社.2001
    76 何献忠,李萍.优化技术及其应用[M].北京:北京理工大学出版社.1995
    77 龚微寒.现代汽车设计制造[M].北京:人民交通出版社.1995
    78 郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社.1991
    79 Esmailzadeh E.Design synthesis of a vehicle suspension system using multi-parameter optimization [J].Vehicle System Dynamics. 1978, 7(2):83-96
    80 Xiao peilu,Heng lungli ,Papalambros. Design procedure for the optimization of vehicle suspensions[J]. International Journal of Vehicle Design. 1984, 5(1-2):129-142
    81 Pintado P,Benitez F G .Optimization for vehicle suspension 1. Time domain[J].Vehicle System Dynamics. 1990, 19(5):273-288
    82 Del Castillo J M, Pintado P,Benitez F G. Optimization for vehicle suspension II. Frequency domain[J].Vehicle System Dynamics. 1990.19(6):331-352
    83 Hrovat D. Optimal suspension performance for 2-D vehicle models[J]. Journal of Sound and Vibration. 1991,146(1):93-110
    84 Bhave S Y,Kaual V.Optimization of vehicle suspension parameters by minimizing rms acceleration at a definite point[J].Journal of the Institution of Engineers (India): Mechanical Engineering Division. 1999, 80(3):111-116
    85 Park S ,Popov A A ,Cole D J .Vehicle suspension optimisation for heavy vehicles on deformable ground[J]. Vehicle System Dynamics. 2004, 41( SUPPL):3-12
    86 Naude A F ,Snyman J A .Optimisation of road vehicle passive suspension systems. Part 1. Optimisation algorithm and vehicle model[J].Applied Mathematical Modelling.2003,27(4): 249-261
    87 Naude A F ,Snyman J A .Optimisation of road vehicle passive suspension systems. Part 2. Qualification and case study[J]. Applied Mathematical Modelling. 2003, 27(4):263-274
    88 郑军,钟志华.非线性汽车行驶平顺性模型的神经网络优化[J].汽车工程.2001,23(3):172-176
    89 韩波,王庆丰,路甬祥.非线性液压阻尼悬架的优化设计及最优控制[J].汽车工程.1998,20(2):96-100
    90 Barbieri N .The optimal active suspension systems for an offroad vehicle[J]. International Journal of Vehicle Design. 1995,16(2-3):219-228
    91 Martinus D ,Soenarko B ,Nazaruddin Y Y .Optimal control design with preview for semi-active suspension on a half-vehicle model[J].Proceedings of the 35th IEEE Conference on Decision and Control. 1996,3(3):2798-803
    92 Goncalves Joao P C,Ambrosio Jorge A C . Optimization of Vehicle Suspension Systems for Improved Comfort of Road Vehicles Using Flexible Multibody Dynamics[J] .Nonlinear Dynamics. 2003 34(1-2): 113-131
    93 喻 凡,郭孔辉.自适应悬架对车辆性能改进的潜力[J].中国机械工程.1998,9(6):6-10
    94 陈大跃.汽车半主动悬架的多目标优化设计[J].机械工程学报.2000,36(6):91-94
    95 章一鸣,曾志华,金达锋,车辆悬挂阻尼的微机控制[J].汽车工程.1990,12(3):58-65
    96 陈无畏.汽车半主动悬架的神经网络自适应控制[J]. 汽车工程.1998,20(3):31-36
    97 刘新亮,张建武,林忠钦。主动汽车悬架的非线性控制[J]. 汽车工程.1997,19(3):175-179
    98 谢俊,刘军,郭晨海,马履中.汽车半主动悬架的多目标遗传优化[J]. 农业机械学报.2003,34(5):28-31
    99 Kenneth N.Morman,Jr. Application of finite –element analysis in the design of automotive elastic component[J].Rubber chemistry and technology,1998,61(3):503-533
    100 J.Harris and A.Stevenson. On the role of non-linearity in the dynamic behaviour of rubber components.[J] Int.j.of vehicle design, 1987.8(nos4/5/6),:553-577
    101 L-R wang,Z-H Lu and I Hagiwara. Finite element simulation of the static characteristics of a vehicle rubber mount. [J] Proc Instn Engrs .2002,Vol 216 Part D:965-973
    102 Arruda E M,Boyce M C.A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials [J].Mech phys solids.1993,41(2):127-130
    103 周福霖. 工程结构减震控制[M]. 北京:地震出版社.1997.4.66-68
    104 徐州工程机械集团有限公司技术中心鉴定资料.结构振动疲劳试验台.1998.12
    105 刘习军,贾启芬,张文德.工程振动与测试技术[M].天津:天津大学出版社.1999
    106 胡志强.随机振动试验应用技术[M].北京:中国计量出版社.1996
    107 International Organization for Standardization, "ISO2631-1 Mechanical vibration and shock -evaluation of human exposure to whole-body vibration", 1997.
    108 林茂成,赵济海起草.GB7031-1987 车辆振动输入—路面平度表示.北京:中国标准出版社.1987
    109 [苏]Я.М.别符兹聂尔著. 汽车振动的试验与研究[M].于长林译.北京:机械工业出版社,1987
    110 [苏]亚岑科著.载货汽车的振动、强度和强化试验[M].徐涛等译. 北京:机械工业出版社,1982
    111 H.J.Yim,E.J.Haug,Sang-Sup Kim. An efficient computational method for dynamic stress analysis of flexible multibody systems[J].computers &structures.1992,42(6):969-977
    112 Khoukhi,A,Ghoul,A. On the maximum dynamic stress search problem for robot manipulators [J] Robotica. 2004,22(5):513-522
    113 Yim,Hong Jae, Haug,Edward J. Dopker,Bernhard. Computational methods for stress analysis of mechanical components in dynamic systems[J] American Society of Mechanical Engineers, Design Engineering Division (Publication) DE.1990 ,v 22, Concurrent Engineering of Mechanical Systems: 79-87
    114 Stamps,F.R, Bagic,C. Dynamics of planar, elastic, high-speed mechanisms considering three- dimensional offset geometry: analytical and experimental investigations[J].Journal of Mechanisms, Transmissions, and Automation in Design.1983 ,105(3):498-510
    115 Southerland, George H. Elastic-member mechanism dynamics[C]. Proceedings-OSU Applied Mechan- sms Conference. Oklahoma State University, 1981. 48. 1-48. 3
    116 Tanaka,Masataka, Nakamura, Masayuki,Aoki, Kazuhiko,et al. Computation of dynamic stress intensity factors using the boundary element method based on LAPLACE transform and regularized boundary integral equations[J].JSME International Journal, Series A: Mechanics and Material Engineering.1993,36(3):252-258
    117 Dominguez,J.Gallego,R.Time domain boundary element method for dynamic stress intensity factor computations[J] International Journal for Numerical Methods in Engineering. 1992,33(3): 635-647
    118 Martin,T, Espanol,P, Rubio,M.A. Mechanisms for dynamic crack branching in brittle elastic solids: Strain field kinematics and reflected surface waves[J] Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 2005, 71(3): 1-17
    119 朱文学,郑惠强,石来德.桑塔纳 2000 型轿车前悬架结构强度有限元分析[J].汽车技术,1998,(11):1-4
    120 林逸,陈潇凯,秦民等.整合的虚拟产品开发技术应用研究[J]. 公路交通科技,2005,22(2):131-134
    121 詹特 A N.橡胶工程——如何设计橡胶配件[M].北京:化学工业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700