施肥对土壤团聚体分布及其中球囊霉素的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球囊霉素是AM真菌分泌的含量丰富、分布广泛的土壤蛋白,是土壤有机碳库的重要组成部分,与团聚体的形成、稳定有密切关系。目前,国内外对球囊霉素的研究主要集中在有机质含量较高的森林、草地土壤及不同耕作方式或不同作物处理下的农田土壤中,而施肥作为农业生态系统中重要的管理措施,对于土壤的理化性质及微生物的活性等有显著影响,然而有关于不同施肥处理下全土和各粒径团聚体中球囊霉素的变化等研究甚少,基于此,本论文选用沈阳农业大学长期定位实验田土壤,通过湿筛法获取不同施肥处理下各粒径团聚体的分布情况,测定全土及各粒径团聚体中有机碳和两种形态球囊霉素的含量,进而研究不同施肥处理对于棕壤团聚体分布状况、稳定性以及全土和各粒径团聚体中有机碳、球囊霉素含量的影响情况,考察施肥处理下三者之间关系。
     研究结果表明,无论在何种施肥模式下,供试棕壤团聚体的主要分布特征均未发生改变,但是肥料的施用仍然显著影响土壤团聚体的分布。施用无机肥主要促进小团聚体的形成,有机肥以及低量有机肥与无机肥配施后有利于>0.25mm团聚体的形成,同时提高团聚体稳定性,而高量有机肥配施无机肥对大团聚体形成的促进作用不明显,但同样显著增加小团聚体在土壤中的比例。
     施肥显著提高全土及各粒径团聚体中有机碳和球囊霉素的含量。不同种类的肥料对于各粒径团聚体中球囊霉素的影响不同,无机肥促进球囊霉素大团聚体中的积累而降低了小团聚体球囊霉素含量,有机肥的添加有利于大团聚体和小团聚体中球囊霉素的积累;有机-无机配施作用下大团聚体中球囊霉素显著增加,且随着有机肥用量的不同而不同,在小团聚体中球囊霉素含量在有机-无机配施作用时受无机肥影响较大;微团聚体和粉+黏粒受施肥作用的影响较小。
     不同施肥处理下全土中球囊霉素与有机碳之间呈现显著线性相关性,而在各粒径团聚体中球囊霉素与有机碳、团聚体分布百分比及其稳定性之间,并非均呈现线性相关性,这可能与团聚体形成过程中胶结剂的不同有关系。
Glomalin, a kind of soil protein secreted by arbuscular mycorrhizal fungi, is the important component of the soil organic carbon, and is related to the aggregate formation and stability. Most researches on glomalin are focused on the forest, grassland soil which contain higher organic matter. While the fertilization, influencing the physi-chemical properties of soil and microbial activity, is an important agroecosystem management, but little attention was paid to the effect of different fertilization on the glomalin in bulk soil and aggregates Fig. .
     We investigated the distribution of aggregates in different fertilization treatments by wet sieving method, and measured the soil organic carbon and glomalin concentration in bulk soil and aggregates. The aims are to analyze the effect of fertilization on the content of soil organic carbon and glomalin in bulk soil and aggregates, to examine the relationship among the distribution and stability of aggregate, soil organic carbon and glomalin.
     The results show that, although the aggregate distributions are not change under all kinds of fertilization, but fertilizer applications still impact the distribution of soil aggregates. Mainly, inorganic applications facilitate the formation of small macro-aggregates, and organic fertilizer and inorganic with low amount of organic fertilizer are favor to the formation and stability of >0.25mm aggregates, and the high amount of organic manure with inorganic fertilizer has little effect of the formation of macro-aggregates, but correspondingly increase the ratio of small aggregates in the soil.
     Fertilizer applications significantly increase the content of soil organic carbon and glomalin in bulk soil and aggregates. Different kinds of fertilizer have various effects on the concentration of glomalin in aggregates. Inorganic fertilizers increase the content of glomalin in lager macro-aggregate but reduce the concentration of glomalin in small macro-aggregate, and organic fertilizer was useful for the accumulation of glomalin in large and small macro-aggregates; Organic-inorganic fertilizers significantly increase the content of glomalin in large macro-aggregates, and the amounts of organic fertilizer influence the glomalin content. In small macro-aggregates, inorganic fertilizer obviously affect glomalin content detected under organic-inorganic fertilizing; and the glomalin contents in micro-aggregates and silt + clay are less affected by the fertilization.
     The results show that there is a significant linear correlation between the content of glomalin and soil organic carbon in bulk soil, but in aggregates scale, it does not show linear correlation of the glomalin to soil organic carbon, the distribution and stability of aggregates, The reason maybe due to the different agents which influence the aggregates formation.
引文
[1] Schlesinger W H.Carbon balance in terrestrial detritus [J].Annual Review of Ecology and Systematic.1977, 8: 51-81
    [2] Lal R.Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect [J].Progress in Environmental Science.1999, 1: 307-326
    [3] Jenkinson DS,Adams DE,Wild A.Model estimates of CO2 emissions from soil in response to global warming [J].Nature.1991, 351: 304-306
    [4]诸葛玉平.农田黑土物理性有机碳库及其稳定性特性研究: (博士后研究工作报告).中科院沈阳应用生态研究所.2004, 1-23
    [5] Schimel DS,Coleman DC.Soil organic matter dynamics in paired rangeland and cropland toposequences in North Dakota [J].Geoderma.1985, 36: 201-204
    [6] Six J,Conant RT,Paul EA,Paustian K.Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils [J].Plant and Soil.2002, 241: 155-176
    [7] Chaney K,Swift RS.The influence of organic matter on aggregate stability in some British soils [J].Soil Science.1984, 35: 223-230
    [8] Haynes RJ,Swift RS.Stability of soil aggregates in relation to organic constituents and soil water content [J].Soil Science.1990, 40: 78-83
    [9] Oades JM.Soil organic matter and structural stability: mechanisms and implications for management [J].Plant and Soil.1984, 76: 319-337
    [10] Cheshire MV,Sparling GP,Mundie CM.Influence of soil type, crop and air drying on residual carbohydrate content and aggregate stability after treatment with periodate and tetraborate [J].Plant and Soil.1984, 76: 339-347
    [11] Tisdall JM,Oades JM.The effect of crop rotation on aggregation in a red-brown earth [J].Australian Journal of Soil Research.1980, 18: 423-433
    [12] Munkholm LJ,Sch?nning K,Debosz HE,etal.Aggregate strength and mechanical behaviour of a sandy loam soil under long-term fertilization treatments [J].European Journal of Soil Science.2002, 53: 129-137
    [13] Graham MH,Haynes RJ,Meyer JH.Changes in soil chemistry and aggregate stability induced by fertilizer applications,burning and trash retention on a long-term sugarcane experiment in South Africa [J].European Journal of Soil Science.2002, 53: 589-598
    [14]陈恩凤,周礼恺,武冠云.微团聚体的保肥供肥性能及其组成比例在评判土壤肥力中的作用[J].土壤学报.1994, 31: 18-28
    [15] Tisdall JM,Oades JM.Organic matter and water-stable aggregates in soils [J].Journal of Soil Science.1982, 33: 141-163
    [16] Elliott ET.Aggregate structure and carbon,nitrogen and phosphorus in native and cultivated soils [J].Soil Science Society of America Journal.1986, 50: 627-633
    [17] Beare MH,Cabrera ML,Hendrix PF,etal.Aggregate-protected and unprotected organic matter pools in conventional and no-tillage soils [J].Soil Science Society of America Journal.1994, 58: 787-795
    [18] Van Veen JA,Kuikman PJ.Soil structural aspects of decomposition of organic matter by micro-organisms [J].Biogeochemistry.1990, 11: 213-233
    [19] Killham K,Amato M,Ladd JN.Effect of substrate location in soil and soil pore-water regime on carbon turnover [J].Soil Biology and Biochemistry.1993, 25: 57-62
    [20] Kilbertus G.Microhabitats in soilaggrgates Their relationship with bacterial biomass and size of prokaryotes present [J].Revue d’Ecologie de Biologie du Sol.1980, 17: 543-557
    [21] Van der Linden,Jeurisson LJJ,Van Veen JA,etal.Turnover of soil microbial biomass as influence by soil compaction [M].In: Attansen J,Henriksen K.(ed.)Nitrogen in Organic Wastes Applied to Soil.Academic Press,London,UK.1989, 25-36
    [22] Hattori T.Soil aggregates as microhabitats of microorganisms [M].Rep.Inst.Agr.Res.Tohoku Univ.1988, 37: 23-26
    [23] Elliott ET,Coleman DC.Let the soil work for us [J].Ecological Bulletins.1988, 39: 23-32
    [24] Golchin A,Oades JM,Skjemstad JO,etal.Soil structure and carbon cycling [J].Australian Journal of Soil Research.1994, 32: 1043-1068
    [25] Sexstone AJ,Revsbech NP,Parkin TB,etal.Direct measurement of oxygen profiles and denitrification rates in soil aggregates [J].Soil Science Society of America Journal.1985, 49: 645-651
    [26] Sollins P,Homann P,Caldwell BA.Stabilization and destabilization of soil organic matter: mechanisms and controls [J].Geoderma.1996, 74: 65-105
    [27] Elliott ET,Anderson RV,Coleman DC,Cole CV.Habitable pore space and microbial trophic interactions [J].Oikos.1980, 35: 327-335
    [28] Priesack E,Kisser-Priesack GM.Modeling diffusion and microbial uptake of 13C-glucose in soil aggregates [J].Geoderma.1993, 56: 561-573
    [29] Emerson W.The structure of soil crumbs [J].Soil Science.1959, 10: 235-244
    [30] Quirk JP,Alymore LAG.Domins and quasi-crystalline regions in clay systems [J].Soil Science.1971, 35: 652-654
    [31] Edwards AP,Bremer JM.Microaggregate in soils [J].Soil Science.1967, 33: 141-163
    [32] Puget P,Chenu C,Balesdent J.Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates [J].Soil Science.2000, 51: 595-605
    [33]赵莹.长期不同施肥制度下黑土颗粒有机碳和酶活性的变化:(硕士学位论文).大连交通大学.2009: 1-10
    [34]彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展[J].土壤学报.2004, 41(4): 618-623
    [35] Le Bissonnais.Aggregate stability and assessment of soil crustability and erodibility: Theory and methodology [J].European Journal of Soil Science.1996, 47: 425-428
    [36] Zhang B,Horn R.Mechanisms of aggregates stabilization in Ultisols from subtropical China [J].Geoderma.2001, 99: 123-145
    [37] Harley JL,Smiths E.Mycorrhizal Symbiosis [M].London: A.academic Press.1983, 15-26
    [38] Christensen BT.Straw incorporation and soil organic matter in macro-aggregations and particle size separates [J].Soil Science.1986, 37: 125-135
    [39] Haynes RJ,Beare M H.Influence of six crop species on aggregate stability and some labile organic matter fractions [J].Soil Biology and Biochemistry.1997, 29(11-12): 1647-1653
    [40]关连珠,张伯泉.不同肥力黑土,棕壤微团聚体组成及其胶结物质的研究[J].土壤学报.1991, 28(3): 260-267
    [41] Elliott ET.Aggregate structure and carbon, nitrogen, and phosphorus in native and cuhivated soils [J].Soil Science Society of America Journal.1986, 50: 627-635
    [42] Beare MH,Hendrix PF,Coleman DC.Water-stable aggregates and organic matter fractions in conventional and no-tillage soils [J].Soil Science.1994, 58: 777-786
    [43] Beare MH,Hendrix PF,Coleman DC.Aggregate-protected and unprotected organic matter pools in conventional and no-tillage soil [J].Soil Science.1999, 58: 787-795
    [44]刘润进,陈应龙.菌根学[M].北京:科学出版社,2007: 2-10
    [45] Wright SF,Upadhyaya A.Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi [J].Soil Science.1996, 161: 575-586
    [46] Steinberg PD,Rillig MC.Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin [J].Soil Biology and Biochemistry.2000, 35: 191-194
    [47] Rillig MC,Wright SF,Nichols KA.Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils [J].Plant and Soil,2001, 233: 167-177
    [48] Halvorson JJ,Gonzalez JM.Bradford reactive soil protein in Appalachian soils: distribution and response to incubation,extraction reagent and tannins [J].Plant and Soil.2006, 286: 339-356
    [49] Comis D.Glomalin: Hiding place for a third of the world' stored soil carbon [J].Australian Farm Journal Magazine.2004, 14: 64-66
    [50] http: //invam.caf.wvu.edu/methods/mycorrhizae/glomalin_brochure.pdf
    [51] Wright SF,Upadhyaya A.A survey of soils for aggregate stability and glomalin,a glycoprotein produced by hyphae ofarbuscular mycorrhizal fungi [J].Plant and Soil.1998, 198: 97-107
    [52] Rillig MC.Arbuscular mycorrhizae,glomalin,and soil aggregation [J].Canadian Journal of Soil Science.2004, 84: 355-363.
    [53] Nichols KA,Wright SF.Carbon and nitroge inoperationally defined soil organic matter pools [J].Biology and Fertility of Soils.2006, 43: 215-220
    [54] Gadkar V,Rillig MC.The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60 [J].FEMS Microbiology Letters.2006, 263: 93-101
    [55] Rosier CL,Hoye AT,Rillig MC.Glomalin-related soil protein: assessment of current detection and quantification tools [J].Soil Biology and Biochemistry.2006, 38: 2205-2211
    [56] Janos DP,Garamszegi S,Beltran B.Glomalin extraction and measurement [J].Soil Biology and Biochemistry.2008, 40: 728-739
    [57] Purin S,Rillig MC.Immuno-cytolocalization of glomalin in the mycelium of the arbuscular mycorrhizal fungus Glomus intraradices.Soil Biology and Biochemistry.2008, 40: 1000-1003
    [58] Lovelock CE,Wright SF,Clark DA.Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape [J].Journal of Ecology.2004, 92: 278-287
    [59] Wright SF,Nichols KA,Schmidt WF.Comparison of efficacy of three extractants to solubilize glomalin on hyphae and in soil [J].Chemosphere.2006, 64: 1219-1224
    [60]刘晓蕾.球囊霉素测定方法的研究及初步应用:(硕士学位论文).中国农业大学.2006, 21-35
    [61] http: //invam.caf.wvu.edu/methods/mycorrhizae/glomalin_extract.pdf
    [62] Wright SF,Franke–Snyder M,Morton JB.Time–course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots [J].Plant and Soil.1996, 181: 193-203
    [63] Schindler FV,Mercer EJ,Rice JA.Inorganic characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content [J].Soil Biology and Biochemistry.2007, 39: 320-329
    [64] Whiffen LK,Midgley DJ,McGee PA.Polyphenolic compounds interfere with quantification of protein in soil extracts using the Bradford method [J].Soil Biology and Biochemistry.2007, 39: 691-694
    [65] Harner MJ,Ramsey PW,Rillig MC.Protein accumulation and distribution in floodplain soils and river foam [J].Ecology Letters.2004, 7: 829–836
    [66] Rillig MC,Maestre FT,Lamit LJ.Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid Mediterranean steppes.Soil Biology and Biochemistry.2003, 35: 1257-1260
    [67]王玲莉,韩晓日,杨劲峰,等.长期施肥对棕壤有机碳组分的影响[J].植物营养与肥料学报.2008, 14(1): 79-83
    [68] Bossuyt H,Six D.Influence of microbial populations and residue quality on aggregate stability [J].Applied Soil Ecology.2001, 16: 195-208
    [69] Bronick CJ,Lal R.Soil structure and management: a review [J].Geoderma.2005, 124: 3-22
    [70] Krull E,Baldock J,Skjemstad J.Soil Texture Effects on Decomposition and Soil Carbon Storage.Nee Workshop Proceedings.2001, 41: 103-110
    [71]陈利军,周礼恺,土壤保肥-供肥机理及其调节Ⅱ-棕壤型菜园土的腐殖质结合形态及其肥力学意义[J].应用生态学报.1999, 10: 427-429
    [72]陈盈.长期施肥对土壤团聚体中碳水化合物分布特征的影响: (博士学位论文).中科院沈阳生态应用研究所.2007:51-63
    [73] Driver JD,Holben WE,Rillg MC.Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi [J].Soil Biology and Biochemistry.2005, 37: 101-106
    [74] Elliott ET,Paustian K,Frey SD.Modeling the measurable or measuring the modelable: A hierarchical approach to isoltating meaningful soil organic matter fractions [J].Berlin Heidelberg.1996, 7: 161-179
    [75]李江涛,张斌,彭新华,等.施肥对红壤性水稻土颗粒有机物形成及团聚体稳定性的影响[J].土壤学报.2004, 41(6): 912-917
    [76]刘鸿翔,王德禄,王守宇,等.黑土长期施肥及养分循环再利用的作物产量及土壤肥力质量变化作物产量[J].应用生态学报.2001, 12(1): 43-46
    [77]王凯荣,刘鑫,周卫军,等.稻田系统养分循环利用对土壤肥力和可持续生产力的影响[J].农业环境科学学报.2004, 23(6): 1041-1045
    [78] Six J,Bossuyt H,Degryze S.A history of research on the link between (micro) aggregates,soil biota, and soil organic matter dynamics [J].Soil and Tillage Research.2004, 79: 7-31
    [79]冷延慧汪景宽李双异.长期施肥对黑土团聚体分布和碳储量变化的影响[J].生态学杂志.2008, 27(12): 2171-2177
    [80] Su YZ,Wang F,Suo DR.Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat–wheat–maize cropping system in northwest China [J]. Nutrient Cycling in Agroecosystems.2006, 75: 285-295
    [81] Yang XM, Zhang XP,Fang HJ.Long-term effects of fertilization on soil organic carbon changes in continuous corn of northeast china: RothC model simulations [J].Environmental Management.2003, 32: 459-465
    [82] Oades JM . Soil organic matter and structural stability: mechanisms and implications for management.Plant and Soil.1984, 76: 319-337
    [83] Haynes RJ,Naidu R.Influence of lime fertilizer and manure applications on soil organic matter content and soil physical condition: A review [J].Nutrient Cycling in Agroecosystems.1998, 42: 35
    [84] Wright SF.A fluorescent antibody assay for hyphae and glomalin from arbuscular mycorrhizal fungi [J].Plant and Soil.2000, 226: 171-177
    [85] RilligM C, Ramsey PW,Morris S, et al.Glomalin,an arbuscular mycorrhizal fungal soil protein, responds to landuse change [J].Plant and Soil.2003, 253: 293-299
    [86] Rillig MC,Wright SF,Eviner VT.The role of arbuscularmycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species [J].Plant and Soil.2002, 238: 325-333
    [87] Bedini S,Avio L,Argese E,et al. Effects of long2term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein [J].Agriculture,Ecosystems and Environment.2006, 120: 463-466
    [88] Wright SF,Starr JL,Paltineanu IC.Changes in aggregate stability and concentration of glomalin during tillage management transition [J].Soil Science.1999, 63: 1825-1829
    [89] Borie F,Rubio R,Rouanet J L,et al.Effects of tillage systems on soil characteristics,glomalinand mycorrhizal propagules in a Chilean Ultisol [J].Soil and Tillage Research.2006, 88: 253-261
    [90] Wright SF,Anderson RL.Aggregate stability and glomalin in alternative crop rotations for the central Great Plains.Biology and Fertility of Soils.2000, 31: 249-253
    [91]聂军,周健民,王火焰,等.长期施肥条件下不同粒径土壤团聚体中Bradford反应土壤蛋白质含量的差异[J].土壤学报.2009, 45(6): 1072-1079
    [92] Nichols KA,Wright SF.Comparison of glomalin and humic acid in eight native US soils [J].Soil Science.2005, 170: 985-997
    [93] Debosz KL,Vognsen,Labouriau.Carbohydrates in hot water extracts of soil aggregates as influenced by long-term management [J].Communications in Soil Science and Plant Analysis.2002, 33: 623-634
    [94]张旭红,朱永官,王幼珊,等.不同施肥处理对丛枝菌根真菌生态分布的影响[J].生态学报.2006, 26(9): 3081-3087
    [95]孙瑞莲,朱鲁生,赵炳强,等.长期施肥对土壤微生物的影响及其在养分调控中的作用[J].应用生态学报.2004, 15(10): 1907-1910
    [96]李登武,贺学礼,余仲东.施钾量与AM真菌接种效应的关系[J].西北植物学报.2002, 22(4): 889-893
    [97]王淼焱,徐倩,刘润进.长期定位施肥土壤中AM真菌对寄主植物的侵染状况[J].菌物学报.2006, 25(1): 131-137
    [98] Wright SF,Green VS.Cavigell Glomalin in aggregate size classes from three different farming systems [J].Soil and Tillage Research.2007, 94: 546-549
    [99] Muthukmar T,Udaiyan K.Influence of organic manures mycorrhizal fungi associated withVigna unguiculata(L) Walp.in relation to tissue nutrients and soluble carbohydrate in roots under field condtions.Biology and Fertility of Soils.2000, 312: 114-120
    [100] Ryan MH,Chilvers GA,Dumaresq DC.Colonization of wheat by VA-mycorrihizal fungi was fouced to be higher on a farm managed in all organic manure than on a conventional neighbour [J].Plant and Soil.1994, 160: 33-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700