程序升温反应法制备氮化铁及催化肼分解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
程序升温反应法(Temperature-Programmed Reaction, TPR)制备的过渡金属氮化物或碳化物,如氮化钼、碳化钨具有良好的肼分解活性,表现出类贵金属的催化性质。然而TPR法制备氮化铁并用于催化肼分解反应的研究和报道并不多见。本论文从TPR法制备氮化铁出发,研究了不同制备条件的影响以及由氧化铁制氮化铁的反应机制;考察了氮化铁催化剂上肼分解活性和反应路径;向氮化铁中引入镍以进一步提高肼分解活性;论文还研究了VIII族金属催化剂上肼分解反应。研究发现:
     以纳米氧化铁为前体,由TPR方法可以得到相对较高比表面积的纳米尺度氮化铁,并有可能降低氮化温度。氮化过程中Fe_2O_3首先在350℃附近被还原为Fe_3O_4,继而随制备温度升高而被部分氮化为Fe_2N与Fe_3O_4混合物,最终在450℃附近被完全氮化为Fe_2N。制备过程中低的升温速率和高的氨空速有利于获得较大比表面积的氮化铁。
     氮化铁具有良好的肼分解反应催化活性。与已经报道的氮化物肼分解催化剂相比,活性顺序为Mo_2N~FeN_x>>NbN。氮化铁催化剂上肼分解途径与氮化钼上相同,存在两个阶段:在300℃以下时生成N_2和NH_3;温度高于300℃时,中间产物NH_3发生分解并在500℃附近完全分解为N_2和H_2。铁镍双金属氮化物催化剂具有明显优于任一单独组分的肼分解活性。镍的引入调变了催化剂对氢和氮的活化能力,从而显著改善了肼分解活性。
     Ni/SiO_2、Pd/SiO_2、Pt/SiO_2催化剂在室温附近能够高选择性地催化肼分解制氢,尤其以Ni/SiO_2为最佳。Ru/SiO_2、Co/SiO_2、Rh/SiO_2和Ir/SiO_2催化剂在高温下表现出很高的肼分解制氢活性,有可能用于自热催化肼分解制氢。密度泛函计算结果表明Ni/SiO_2上室温肼分解遵循分子内氮氢断键机理。
Transition metal nitrides or carbides, such as Mo_2N and WC_x, prepared by temperature-programmed reaction (TPR) have high specific surface areas. They exhibit platinum-like catalytic characters and have been reported to be efficient for the catalytic decomposition of hydrazine. However, there are few studies on preparing iron nitrides by TPR and no study on applying them into the hydrazine decomposition. This thesis firstly focused on the synthesis of iron nitrides and their catalytic behaviors for the hydrazine decomposition. Then, nickel as a promoter was introduced in order to further improve the catalytic activity. In addition, the hydrazine decomposition over group VIII metal catalysts was also investigated. The main results are presented as follows. Nano-iron nitrides having high surface areas were formed at relatively lower nitridation temperatures from some nano-iron oxide precursors and they inherited morphologies of the oxide precursors. The iron nitride from mesoporous precursor lost the porous structure. During the TPR process, iron oxide was firstly reduced into magnetite intermediate at ca. 350℃, and then was partially nitrided into a mixture of Fe_2N and Fe3O4 as a continuing increase in temperature. When the temperature reached ca. 450℃or higher, the iron oxide was converted into Fe_2N completely. It was also found that a high space velocity of ammonia and a low heating rate were beneficial for the formation of high surface iron nitride. The structures of iron nitrides were dependent on the preparation temperature and the
引文
[1] R. B. Levy and M. Boudart, Platinum-like behavior of tungsten carbide in surface catalysis, Science, 1973, 181: 547-549.
    [2] L. Volpe and M. Boudart, Compounds of molybdenum and tungsten with high specific surface area I. nitrides, J. Solid State Chem., 1985, 59: 332-347.
    [3] L. Volpe and M. Boudart, Compounds of molybdenum and tungsten with high specific surface area II. carbides, J. Solid State Chem., 1985, 59: 348-356.
    [4] E. W. Schmit, Hydrazine and Its Derivatives-Preparation, Properties, Applications, 2nd edition, John Wiley & Sons, 2001: 1267-1632.
    [5] W. Keim, Hydrazine decomposition, Handbook of Heterogeneous Catalysis, Weinheim: VCH Verlagsgeseclschatt mbH, 1997: 1795-1799.
    [6]尹燕华,金至嘉,陶好训,潜艇肼吹除技术研究,舰船科学技术, 2001 (3): 51-54.
    [7] 李令成,蓝蕴基, 肼分解催化剂进展, 工业催化,1994 (1): 3-7.
    [8] H. H. Voge, Catalyst for monopropellant decomposition of hydrazine, CPIA Publ. 37 A, Vol. 3, Addendum, 5th Liquid Propulsion Symposium, 1963 Dec, 335-347, declassified.
    [9] J. A. J. Rodrigues, G. M. Cruz, G. Bugli, M. Boudart and G. Djéga-Mariadassou, Nitride and carbide of molybdenum and tungsten as substitutes of iridium for the catalysts used for space communication. Catal. Lett., 1997, 45: 1-3.
    [10] R. Brayner, G. Djéga-Mariadassou, G. M. Cruz, J. A. J. Rodrigues, Hydrazine decomposition over niobium oxynitride with macropores generation, Catal. Today, 2000, 57: 225-229.
    [11] J. A. J. Rodrigues, G. M. Cruz, G. Djéga-Mariadassou, J. N. Hinckel, Carbides and nitrides of transition elements applied on the catalytic decomposition of hydrazine, World Intellectual Property Organization, WO 96/33803, Oct. 31, 1996.
    [12] J. A. J. Rodrigues, G. M. Cruz, G. Déjga-Mariadassou and G. Bugli, Carbides and nitrides of transition elements with controlled porosity. World Intellectual Property Organization, WO 96/35510, Nov 14, 1996.
    [13] J. Gobbo-Ferreira, J. A. J. Rodrigues, C. E. S. S. Migueis, Hydrazine decomposition using carbides as catalysts, AIAA 97-2978, 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 6-9, 1997/Seattle, WA.
    [14] J. Gobbo-Ferreira, J. A. J. Rodrigues, J. N. Hinckel and C. E. Migueis, Controlled porosity carbides used as hydrazine decomposition catalysts, AIAA 98-3995, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 13-15, 1998/Cleveland, OH.
    [15] X. W. Chen, T. Zhang, P. L. Ying, M. Y. Zheng, W. C. Wu, L. G. Xia, T. Li, X. D. Wang, C. Li, A novel catalyst for hydrazine decomposition: molybdenum carbide supported on γ-Al2O3, Chem. Commun., 2002: 288-289.
    [16] X. W. Chen, T. Zhang, L. G. Xia, T. Li, M. Y. Zheng, Z. L. Wu, X. D. Wang, Z. B. Wei, Q. Xin, C. Li, Catalytic decomposition of hydrazine over supported molybdenum nitride catalysts in a monopropellant thruster, Catal. Lett., 2002, 79: 21-25.
    [17] X. W. Chen, T. Zhang, M. Y. Zheng, Z. L. Wu, W. C. Wu, C. Li, The reaction route and active site of catalytic decomposition of hydrazine over molybdenum nitride catalyst, J. Catal. 2004, 224: 473–478.
    [18] X. W. Chen, T. Zhang, M. Y. Zheng, L. G. Xia, T. Li, W. C. Wu, X. D. Wang, C. Li, Catalytic decomposition of hydrazine over β-mo2c/γ-al2o3 catalysts, Ind. Eng. Chem. Res. 2004, 4: 6040-6047.
    [19] J. G. Chen, Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization and reactivities, Chem. Rev., 1996, 96: 1477-1498.
    [20] S. T. Oyama, Preparation and catalytic properties of transition metal carbides and nitrides,Catal. Today, 1992, 15: 179-200.
    [21] L. I. Johansson, Electronic and structural properties of transition-metal carbide and nitride surfaces, Surf. Sci. Reports, 1995, 21: 177-250.
    [22] B. G. Demczyk, J. G. Choi and L. T. Thompson, Surface structure and composition of high-surface-area molybdenum nitrides, Appl. Surf. Sci., 1994, 78: 63-69.
    [23] K. Hada, M. Nagai, S. Omi, Characterization and HDS activity of cobalt molybdenum nitrides, J. Phys. Chem. B, 2001, 105: 4084-4093.
    [24] J. L. Calais, Band structure of transition metal compounds, Adv. Phys., 1977, 26: 847-885.
    [25] A. Neckel, Recent investigations on the electronic structure of the fourth and fifth group transition metal monocarbides, mononitrides and monoxides, Int. J. Quantum Chem., 1983, 23 (4): 1317-1353.
    [26] K. Schwarz, C. R. C. Crit., Rev. Solid State Mater. Sci., 1987, 13: 11
    [27] V. Heine, s-d interaction in transition metals, Phys. Rev., 1967, 153: 673-682.
    [28] S. A. Jansen and R. Hoffmann, Surface chemistry of transition metal carbides: a theoretical analysis, Surf. Sci., 1988, 197: 474-508.
    [29] S. T. Oyama, The Chemistry of Transition Metal Carbide and Nitrides, Blackie Academic and Professional: Glasgow, 1996.
    [30] P. Subramanya Herle,M. S. Hegde, H. Y. Vasathacharya, Sam Philip, Synthesis of TiN, VN, and CrN from ammonolysis of TiS2, VS2, and Cr2S3, J. Solid State Chem., 1997, 134: 120-127.
    [31] D. Mordenti, D, Brodzki and G. Djéga-Mariadassou, New synthesis of Mo2C 14 nm in average size supported on a high specific surface area carbon material, J. Solid State Chem., 1998, 141: 114-120.
    [32] D. Zheng, M. J. Hampden-Smith, Room-temperature synthesis of molybdenum andtungsten carbides, Mo2C and W2C, via chemical reduction methods, Chem. Mater., 1992, 4: 968-970.
    [33] P. Schaaf, C. Illgner, M. Niederdrenk, K. P. Lieb, Characterization of laser-nitrided iron and sputtered iron nitride films, Hyperfine Interact., 1995, 95 (1-4): 199-225.
    [34] S. Iwama, K. Hayakawa, T. Arizumi, J. Crystal Growth, 1984, 66, 189-194.
    [35] S. Dressler, Industry Heating, 1992, December, 33-38.
    [36] T. Koyano, C. H. Lee, T. Fukunaga, U. Mizutani, Formation of iron nitrides by mechanical alloying in ammonia atmosphere, Mater. Sci. Forum, 1992, 88-90: 809-816.
    [37] W. A. Kaczmarek, B. W. Ninham, I. Onyszkiewicz, Synthesis of Fe3N by mechano-chemical reactions between iron and organic Hx(CN)6 ring compounds, J. Mater. Sci., 1995, 30 (21): 5514-5521.
    [38] T. Mitao, I. Shishikuka, M. Matsuoka and M. Nagai, CVD synthesis of alumina-supported molybdenum carbide catalyst, Chem. Lett., 1996: 561-562.
    [39] M. Nagai, T. Suda, K. Oshikawa, N. Hirano and S. Omi, CVD preparation of alumina-supported tungsten nitride and its activity for thiophene hydrodesulfurization, Catal. Today, 1999, 50: 29-37.
    [40] T. Hyeon, M. Fang and K.S. Suslick, Nanostructure molybdenum carbides: sonochemical synthesis and catalytic propertyes, J. Am. Chem. Soc., 1996, 118: 5492-5493.
    [41] S. Li, J. S. Lee, T. Hyeon, K. S. Suslick, Catalytic hydrodenitrogenation of indole over molybdenum nitride and carbides with different structure, Appl. Catal. A: General, 1999, 184: 1-9.
    [42] J. H. Kim and K.L. Kim, A study of preparation of tungsten nitride catalysts with high surface area, Appl. Catal. A: General, 1999, 181: 103-111.
    [43] S. Li and J. S. Lee, Molybdenum nitride and carbide prepared from heteropolyacids I. preparation and characterization, J. Catal., 1996, 162: 76-87.
    [44] R. Kapoor and S. T. Oyama, Synthesis high surface area vanadium nitride, J. Solid State Chem., 1992, 99: 303-312.
    [45] C. C. Yu, S. Ramanathan, F. Sherif and S. T. Oyama, Structural, surface and catalytic properties of a new bimetallic V-Mo oxynitride catalyst for hydrodenitrogenation, J. Phys. Chem., 1994, 98: 13038-13041.
    [46] C. C. Yu, S. Ramanathan and S. T. Oyama, New catalysts for hydroprocessing: bimetallic oxynitrides MI-MII-O-N (MI, MII=Mo, W, V, Nb, Cr, Mn, and Co) part I. synthesis and characterization, J. Catal., 1998, 173: 1-9.
    [47] V. Zachwieja and H. Jacobs, CuTaN2, a copper (Ⅰ) tantalum (Ⅴ) nitride with delafossite structure, Eur. J. Solid State Inorg. Chem., 1991, 28 (5): 1055-1062.
    [48] D. S. Bem and H. C. Zur Loye, Synthesis of the new ternary transition metal nitride FeWN2 via ammonolysis of a solid state oxide precursor, J. Solid State Chem., 1993, 104: 467-469.
    [49] D. S. Bem, C. P. Gibson and H. C. Loye, Synthesis of intermetallic nitrides by solid-state precursor reduction, Chem. Mater., 1993, 5 (4): 397-399.
    [50] D. W. Kim, D. K. Lee and S. K. Ihm, CoMo bimetallic nitride catalysts for thiophene HDS, Catal. Lett., 1997, 43: 91-95.
    [51] Y. Li, Y. Zhang, R. Raval, C. Li, R. Zhai and Q. Xin, The modification of molybdenum nitrides: the effect of the second metal component, Catal. Lett., 1997, 48: 239-245.
    [52] T. Bécue, J. M. Manoli, C. Potvin and G. Djéga-Mariadassou, Preparation, characterization, and catalytic behavior of molybdenum oxynitride supported on EMT zeolite (NaEMT and HEMT) catalysts, J. Catal., 1997, 170: 123-131.
    [53] T. Bécue, J. M. Manoli, C. Potvin, R. J. Davis and G. Djéga-Mariadassou, Preparation, characterization, and catalytic activity of molybdenum carbide or nitride supported on platinum clusters dispersed in EMT zeolite, J. Catal., 1999, 186: 110-122.
    [54] M. Nagai, J. Takada and S. Omi, XPS Study of nitrided molybdena/titania catalyst for the hydrodesulfurization of dibenzothiophene, J. Phys. Chem. B, 1999, 103: 10180-10188.
    [55] A. J. Brungs, A. P. E York, J. B. Claridge, C. Márquez-Alvarez and M. L. H. Green, Dry reforming of methane to synthesis gas over supported molybdenum carbide catalysts, Catal. Lett., 2000, 70: 117-122.
    [56] M. Nagai, R. Nakauchi, Y. Ono and S. Omi, CVD preparation of alumina-supported niobium nitride and its activity for thiophene hydrodesulfurization, Catal. Today, 2000, 57: 297-304.
    [57] Y. Zhang, Q. Xin, I. Rodriguez-Ramos, A. Guerrero-Ruiz, Temperature dependence of the pseudomorphic transformation of MoO3 to γ-Mo2N, Materials Research Bulletin, 1999, 34 (1): 145-156.
    [58] R. S. Wise and E. J. Markel, Catalytic NH3 decomposition by topotactic molybdenum oxides and nitrides: effect on temperature programmed γ-Mo2N synthesis, J. Catal., 1994, 145: 335-343.
    [59] R. S. Wise and E. J. Markel, Synthesis of high surface area molybdenum nitride in mixtures of nitrogen and hydrogen, J. Catal., 1994, 145: 344-355.
    [60] J. G. Choi, R. L. Curl and L. T. Thompson, Molybdenum nitride catalyst 1. Influence of the synthesis factors on structural properties, J. Catal., 1994, 146: 218-227.
    [61] L. Volpe and M. Boudart, Ammonia synthesis on molybdenum nitride, J. Phys. Chem., 1986, 90: 4874-4877.
    [62] C. J. H. Jacobsen, Novel class of ammonia synthesis catalysts, Chem. Commun., 2000: 1057-1058.
    [63] S. T. Oyama, Kinetics of ammonia decomposition on vanadium nitride, J. Catal., 1992, 133: 358-369.
    [64] J. G. Choi, Ammonia decomposition over vanadium carbide catalysts, J. Catal., 1999, 182:104-116.
    [65] G. Djéga-Mariadassou, C. H. Shin and G. Bugli, Tamaru’s model for ammonia decomposition over titanium oxynitride, J. Molecular Catal. A: Chemical, 1999, 141: 263-267.
    [66] C. Liang, W. Li, Z. Wei, Q. Xin and C. Li, Catalytic decomposition of ammonia over nitrided MoNx/α-Al2O3 and NiMoNy/α-Al2O3 catalysts, Ind. Eng. Chem. Res., 2000, 39 (10): 3964-3967.
    [67] A. A. Hummel, A. P. Wilson, W. N. Delgass, Surface and bulk changes in iron nitride catalysis in hydrogen/carbon monoxide mixtures, J. Catal., 1988, 113 (1): 236-249.
    [68] E. Yeh, N. K. Jaggi, J. B. Butt, L. H. Schwartz, Silica-supported iron nitride in Fischer-Tropsch reactions: I Characterization of the catalyst, J. Catal., 1985, 91 (2): 231-240.
    [69] M. Saito and R. B. Anderson, The activity of several molybdenum compounds for the mathanation of CO, J. Catal., 1980, 63: 438-446.
    [70] E. J. Markel and J. W. Van Zee, Catalytic hydrodesulfurization by molybdenum nitride, J. Catal., 1990, 126: 643-657.
    [71] P. A. Aegerter, W. W. C. Quigley, G. J. Simpson, D. D. Ziegler, J. W. Logan, K. R. McCrea, S. Glazier and M. E. Bussell, Thiophene hydrodesulfurization over alumina-supported molybdenum carbides and nitride catalysts: adsorption sites, catalytic activities, and nature of the active surface, J. Catal., 1996, 164: 109-121.
    [72] K. R. McCrea, J. W. Logan, T. L. Tarbuck, J. L. Heiser and M. E. Bussell, Thiophene hydrodesulfurization over alumina-supported molybdenum carbides and nitride catalysts: effect of Mo loading and phase, J. Catal., 1997, 171: 255-267.
    [73] Y. Chu, Z. Wei, S. Yang, C. Li, Q. Xin and E. Min, NiMoNx/γ-Al2O3 catalyst for HDN of pyridine, Appl. Catal. A: general, 1999, 176: 17-26.
    [74] J. C. Schlatter, S. T. Oyama, J. E. Metcalfe, Ⅲ and J. M. Lambert, Catalytic behavior of selected transition-metal carbides, nitrides and borides in the hydrodenitrogenation of quinoline, Ind. Eng. Chem. Res., 1988, 27: 1648-1653.
    [75] C.W. Colling and L.T. Thompson, The structure and function of supported molybdenum nitride hydrodenitrogenation catalysts, J. Catal., 1994, 146: 193-203.
    [76] K. Miga, K. Stanczyk, C. Sayag, D. Brodzki and G. Djéga-Mariadassou, Bifunctional behavior of bulk MoOxNy and nitrided supported NiMo catalyst in hydrodenitrogenation of indole, J. Catal., 1999, 183: 63-68.
    [77] U. S. Ozkan, L. Zhang and P. A. Clark, Performance and postreaction characterization of γ-Mo2N catalysts in simultaneous hydrodesulfurization and hydrodenitrogenation reactions, J. Catal., 1997, 172: 294-306.
    [78] F. H. Ribeiro, M. Boudart, R. A. D. Betta and E. Iglesia, Catalytic reactions of n-alkanes on β–Mo2C and WC: the effect of surface oxygen on reaction pathways, J. Catal., 1991, 130: 498-513.
    [79] E. Iglesia, F. H. Ribeiro, M. Boudart and J. E. Baumgartner, Synthesis, characterization and catalytic properties of clean and oxygen modified tungsten carbides, Catal. Today, 1992, 15: 307-337.
    [80] C. Pham-Huu, M. J. Leloux and J. Guille, Reactions of 2-and 3-methylpentane, methylcyclopentane, cyclopentane, and cyclohexane on activated Mo2C, J. Catal., 1993, 143: 249-261.
    [81] A. P. E. York, C. Pham-Huu, P. D. Gallo and M. J. Leloux, Molybdenum oxycarbide hydrocarbon isomerization catalysts: cleaner fuels for the future, Catal. Today, 1997, 35: 51-57.
    [82] M. K. Neylon, S. Choi, H. Kwon, K. E. Curry and L. T. Thompson, Catalytic properties of early transition metal nitrides and carbides: n-butane hydrogenolysis, dehydrogenationand isomerization, Appl. Catal. A: General, 1999, 183: 253-263.
    [83] C. Bouchy, C. Pham-Huu, B. Heinrich, C. Chaumont and M. J. Leloux, Microstructure and characterization of a highly selective catalyst for the isomerization of alkanes: a molybdenum oxycarbide, J. Catal., 2000, 190: 92-103.
    [84] Z. Hao, Z. Wei, L. Wang, X. Li, C. Li, E. Min and Q. Xin, Selective hydrogenation of ethyne on γ-Mo2N, Appl. Catal. A: General, 1999, 192: 81-84.
    [85] Z. X. Hao, Selective hydrogenation of ethyne and butadiene over molybdenum nitride, Ph. D. thesis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2000.
    [86] A. Guerrero-Ruiz, Y. Zhang, B. Bachiller-Baeza and I. Rodriguez-Ramos, Hydrogenation of crotonaldehyde over carbon-supported molybdenum nitrides, Catal. Lett., 1998, 55: 165-168.
    [87] G. S. Ranhotra, A. T. Bell and J. A. Reimer, Catalysis over molybdenum carbides and nitrides II. Studies of CO hydrogenation and C2H6 hydrogenolysis, J. Catal., 1987, 108: 40-49.
    [88] M. Nagai, T. Kurakami and S. Omi, Activity of carbided molybdena-alumina for CO2 hydrogenation, Catal. Today, 1998, 45: 235-239.
    [89] M. Nagai, K. Oshikawa, T. Kurakami, T. Miyao and S. Omi, Surface properties of carbided molybdena-alumina and its activity for CO2 hydrogenation, J. Catal., 1998, 180: 14-23.
    [90] A. P. E. York, J. B. Claridge, A. J. Brungs, S. C. Tsang and M. L. H. Green, Molybdenum and tungsten carbides as catalysts for the conversion of methane to synthesis gas using stoichiomtric feedstocks, J. Chem. Soc. Chem. Commun., 1997: 39-40.
    [91] J. B. Claridge, A. P. E. York, A. J. Brungs, C. Marquez-Alvarez, J. Sloan, S. C. Tsang and M. L. H. Green, New catalysts of the conversion of methane to synthesis gas: molybdenum and tungsten carbide, J. Catal., 1998, 180: 85-100.
    [92] A. J. Brungs, A. P. E. York, J. B. Claridge, C. Marquez-Alvarez and M. L. H. Green, Dry reforming of methane to synthesis gas over supported molybdenum carbide catalysts, Catal. Lett., 2000, 70: 117-122.
    [93] F. Bozso, G. Ertl, M. Grunze, and M. Weiss, Interaction of nitrogen with iron surfaces: I. Fe(100) and Fe(111), J. Catal. 1977, 49: 18-41.
    [94] G. Ertl, M. Huber, Mechanism and kinetics of ammonia decomposition on iron, J. Catal. 1980, 61: 537-539.
    [95] R. Schl?l, in: Handbook of Heterogeneous Catalysis, vol. 4 Ed. by G. Ertl, H. Kn?zubgerm, J. Weitkamp (VCH, Federal Republic of Germany, 1997) 1697.
    [96] J. P. Hindermann, A. Razzaghi, R. Breault, R. Kieffer, A. Kiennemann, Orientation towards alcohols in carbon monoxide, hydrogen reactions on some iron catalysts, React. Kinet. Catal. Lett., 1984,26(3-4): 221-226.
    [97] A. Razzaghi, J. P. Hindermann, A. Kiennemann, Synthesis of C1 to C5 alcohols by carbon monoxide + hydrogen reaction on some modified iron catalysts, Appl. Catal., 198413(1): 193-210.
    [98] J. G. Choi, J. R. Brenner, C. W. Colling, B. G. Demczky, J. L. Dunning and L. T. Thompson, Synthesis and characterization of molybdenum nitride hydrodenitrogenation catalysts, Catal. Today, 1992, 15: 201-222.
    [99] R. Maurel and J. C. Menezo, Catalytic decomposition of 15N-labeled hydrazine on alumina-supported metals, J. Catal., 1978, 51: 293-295.
    [100] S. Balcon, Preparation, characterization and activity of decomposition of hydrazine on Ir/Al2O3 catalyst: control the size of metal particles, Ph. D Thesis. University of Poitiers, Faculty of sciences 1996.
    [101] S. E. Wood and J. T. Bryant, Decomposition of hydrazine on Shell 405 catalyst at highpressure, Ind. Eng. Chem. Prod. Res. Develop., 1973, 12 (2): 117-122.
    [102] P. J. Birbara, W. Locks, Catalyst for hydrazine decomposition, U. S. Pat., 1982, No. 4,348,303.
    [103] G. Schulz-Ekloff, R. Hoppe, Electron diffraction determination of an orientation-relationship for iridium-on-η-alumina, Catal. Lett., 1990, 6: 383-388.
    [104] C. F. Sayer, et al., The comparative testing of the shell 405, CNESRO-1 and RPE 72/1- hydrazine decomposition catalysts, AIAA Paper No. 75-1266.
    [105]臧璟龄,熊国兴,用 X 光电子能谱研究铱催化剂的表面性质, 催化学报,1980, 1 (1): 73-80.
    [106]倪月琴,臧璟龄,李小竹,孙孝英, 沉积氯铱酸的γ-Al2O3 的表面性质, 催化学报,1982, 3 (2): 81-86.
    [107]罗洪原,初玉芝,徐翠兰,周业慎, CO 在 Ir/γ-Al2O3 催化剂上的吸附及 O2 相互作用的 IR 研究, 催化学报,1990, 11 (4): 284-289.
    [108] K.W. Burke, Monolithic high activity catalyst bed for a catalytic gas generator for rocket engines, U. S. Pat., 1990, No. 4,938,932.
    [109] R. Vieira, C. Pham-Huu, N. Keller, M. J. Ledoux, New carbon nanofiber/graphite felt composite for use as a catalyst support for hydrazine catalytic decomposition, Chem. Commun., 2002: 954-955.
    [110] W. F. Taylor, M. Liaberman, M. S. Cohen, Development of a low cost catalyst for hydrazine (U), Quarterly progress report, 1968, No. 2.
    [111] D. D. Davis, R. C. Wedlich, N. B. Martin, Transition metal catalysis of the heterogeneous decomposition of hydrazine adiabatic kinetics by accelerating rate calorimetry, Thermochimica Acta, 1991, 175: 175-188.
    [112] 816、8141 催化剂工艺、性能及使用说明, 中国科学院大连化学物理研究所报告,1978, No. 78301614.
    [113] K. I. Aika, T. Ohhata and A.Ozaki, Hydrogenolysis of hydrazine over metals, J. Catal., 1970, 19: 140-143.
    [114] J. P. Contour and G. Pannetier, Hydrazine decomposition over a supported iridium catalyst, J. Catal., 1972, 24: 434-445.
    [115] J. Block and G. Schulz-Ekloff, The catalytic decomposition of nitrogen-15-labeled hydrazine on MgO-supported iron, J. Catal., 1973, 30: 327-329.
    [116] J. L. Falconer and H. Wise, Temperature programmed desorption spectroscopy of N2H4 decomposition on Al2O3-supported Ir catalyst, J. Catal., 1976, 43: 220-233.
    [117] C. F. Wells and M. A. Salam, The kinetics of the reaction of chromium (Ⅱ) with hydrazine, hydroxylamine and hydrazoic acid in perchlorate media: the formation of halogeno-and sulphato-complexes of chromium ( Ⅱ ), J. Chem. Soc. (A), 1968: 1568-1575.
    [118] M. Levy, H. Perdew, Density-Functional Method in Physics, edited by R. H. Dreizler and J. da Providencia (Plenum, New York, 1985).
    [119] R. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University, New York, 1989).
    [120] J. P. Perdew and K. Schmidt, Density Functional Theory and Its Applications to Materials, edited by V. E. van Doren, K. van Alseoy and P. Geerlings (American Institute of Physics, 2001).
    [121] H. Stoll, C. M. E. Pavlidou and H. Preuss, The calculation of correlation energies in the spin-density functional formation, Theor. Chim. Acta 1978, 49, 143-149.
    [122] J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation-energy, Phys. Rev. B 1992, 45, 13244-13249.
    [123] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 1988, 38(6), 3098-3100.
    [1] L. Volpe and M. Boudart, Compounds of molybdenum and tungsten with high specific surface area I. nitrides, J. Solid State Chem., 1985, 59: 332-347.
    [2] J. G. Choi, R. L. Curl and L. T. Thompson, Molybdenum nitride catalyst 1. Influence of the synthesis factors on structural properties, J. Catal., 1994, 146: 218-227.
    [3] Y. Zhang, Q. Xin, I. Rodriguez-Ramos, A. Guerrero-Ruiz, Temperature dependence of the pseudomorphic transformation of MoO3 to γ-Mo2N, Materials Research Bulletin, 1999, 34 (1): 145-156.
    [4] J. H. Kim and K. L. Kim, A study of preparation of tungsten nitride catalysts with high surface area, Appl. Catal. A: General, 1999, 181: 103-111.
    [5] 张立德,牟季美,纳米材料学, 沈阳: 辽宁科技出版社, 1994: 8-24.
    [6] M. Valden, X. Lai, D. W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science, 1998, 281 (5383): 1647-1650.
    [7] 阎子峰,纳米催化技术,化学工业出版社,2003 年 5 月第一版: 366-428.
    [8] Z. Y. Yuan, T. Z. Ren, B. L. Su, Surfactant mediated nanoparticle assembly of catalytic mesoporous crystalline iron oxide materials, Catalysis Today, 2004, 93–95: 743–750.
    [9] 刘志强,李小斌,彭志宏,童斌,刘桂华,湿化学法制备超细粉末过程中的团聚机理及消除方法,化学通报(网络版),1999,7.
    [10] W. T. Dong, S. X. Wu, D. P. Chen, X. W. Jiang, C. S. Zhu, Preparation of α-Fe2O3 nanoparticles by sol-gel process with inorganic iron salt, Chem. Lett. 2000: 496-497.
    [11] D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300angstrom pores, Science 1998,279 (5350): 548-552.
    [12] S. J. Gregg, K. S. W. Sing, In Adsorption Surface Area and Porosity, 2nd Edition, Academic Press: London, 1982.
    [13] 丛昱,超细 Cu-ZnO-ZrO2 催化剂的制备及其 CO2 加氢合成甲醇催化性能的研究,中国科学院大连化物所博士学位论文,1999.
    [14] A. A. Hummel, A. P. Wilson, W. N. Delgass, Surface and bulk changes in iron nitride catalysts in H2/CO mixtures, J. Catal. 1988, 113: 236-249.
    [15] M. Kopcewicz, J, Jagielski, A. Turos, D. L.Williamson, Phase transformations in nitrogen-implanted α-iron, J. Appl. Phys., 1992, 71 (9): 4217-4226.
    [16] E. D. Cabanillas, J. Desimoni, G. Punte, R. C. Mercader, Formation of carbides by electro-discharge machining of alpha iron, Materials Science and Engineering 2000, A276: 133–140.
    [17] 夏元复,刘荣川,穆斯堡尔谱学常用数据手册,江苏科学技术出版社,1990年7月第一版: 178-179.
    [18] C. R. F. Lund, J. A. Dumesic, Strong oxide-oxide interactions in silica-supported magnetite catalysts I. X-ray diffraction and Mossbauer spectroscopy evidence for interaction, J. Phys. Chem., 1981, 85: 3175-3180.
    [1] S. E. Wood and J. T. Bryant, Decomposition of hydrazine on Shell 405 catalyst at high pressure, Ind. Eng. Chem. Prod. Res. Develop., 1973, 12 (2): 117-122.
    [2] S. T. Oyama, Preparation and catalytic properties of transition metal carbides and nitrides, Catal. Today, 1992, 15: 179-200.
    [3] J. A. J. Rodrigues, G. M. Cruz, G. Bugli, M. Boudart and G. Djéga-Mariadassou, Nitride and carbide of molybdenum and tungsten as substitutes of iridium for the catalysts used for space communication. Catal. Lett., 1997, 45: 1-3.
    [4] R. Brayner, G. Djéga-Mariadassou, G. M. Cruz, J. A. J. Rodrigues, Hydrazine decomposition over niobium oxynitride with macropores generation, Catal. Today, 2000, 57: 225-229.
    [5] J. A. J. Rodrigues, G. M. Cruz, G. Djéga-Mariadassou, J. N. Hinckel, Carbides and nitrides of transition elements applied on the catalytic decomposition of hydrazine, World Intellectual Property Organization, WO 96/33803, Oct. 31, 1996.
    [6] J. A .J. Rodrigues, G. M. Cruz, G. Déjga-Mariadassou and G. Bugli, Carbides and nitrides of transition elements with controlled porosity. World Intellectual Property Organization, WO 96/35510, Nov 14, 1996.
    [7] J. Gobbo-Ferreira, J. A. J. Rodrigues, C. E. S. S. Migueis, Hydrazine decomposition using carbides as catalysts, AIAA 97-2978, 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 6-9, 1997/Seattle, WA.
    [8] J. Gobbo-Ferreira, J. A. J. Rodrigues, J. N. Hinckel and C. E. Migueis, Controlled porosity carbides used as hydrazine decomposition catalysts, AIAA 98-3995, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 13-15, 1998/Cleveland, OH.
    [9] X. W. Chen, T. Zhang, P. L. Ying, M. Y. Zheng, W. C. Wu, L. G. Xia, T. Li, X. D. Wang and C. Li, A novel catalyst for hydrazine decomposition: molybdenum carbide supported on γ-Al2O3, Chem. Commun., 2002: 288-289.
    [10] X. W. Chen, T. Zhang, L. G. Xia, T. Li, M. Y. Zheng, Z. L. Wu, X. D. Wang, Z. B. Wei, Q. Xin and C. Li, Catalytic decomposition of hydrazine over supported molybdenum nitride catalysts in a monopropellant thruster Catal. Lett., 2002, 79: 21-25.
    [11] X. W. Chen, T. Zhang, M. Y. Zheng, Z. L. Wu, W. C. Wu, and Can Li, The reaction route and active site of catalytic decomposition of hydrazine over molybdenum nitride catalyst, J. Catal. 2004, 224: 473–478.
    [12] X. W. Chen, T. Zhang, M. Y. Zheng, L. G. Xia, T. Li, W. C. Wu, X. D. Wang, and C. Li, Catalytic decomposition of hydrazine over γ-Mo2C/γ-Al2O3 Catalysts, Ind. Eng. Chem. Res. 2004, 4: 6040-6047.
    [13] J. B. O. Santos, G. P. Valen?a and J. A. J. Rodrigues, Catalytic decomposition of hydrazine on tungsten carbide: the influence of adsorbed oxygen, J. Catal., 2002, 210 (1): 1-6.
    [14] R. Schl?l, in: Handbook of Heterogeneous Catalysis, vol. 4 Ed. by G. Ertl, H. Kn?zubgerm, J. Weitkamp (VCH, Federal Republic of Germany, 1997) 1697.
    [15] G. Ertl, M. Huber, Mechanism and kinetics of ammonia decomposition on iron, J. Catal. 1980, 61, 537-539.
    [16] L. Volpe and M. Boudart, Ammonia synthesis on molybdenum nitride, J. Phys. Chem., 1986, 90: 4874-4877.
    [17] 傅献彩,沈文霞,姚天扬,物理化学(第四版),高等教育出版社:700-726.
    [18] 马如璋等,穆斯堡尔谱学手册,1993 年第一版,冶金工业出版社:209-210,355,359.
    [19] Slavoj Cerny, Adsorption microcalorimetry in surface studies sixty years of itsdevelopment into a modern powerful method, Surface Science Reports, 1996, 26: 1-59.
    [20] S. T. Oyama, The Chemistry of Transition Metal Carbide and Nitrides, Blackie Academic and Professional: Glasgow, 1996:1-24.
    [21] P. Nordlander, S. Holloway, J. K. Norskov, Hydrogen adsorption on metal surfaces, Surface Science, 1984, 136 (1), 59-81.
    [1] V. C. Y Kong, F. R. Foulkes, D. W. Kirk, J. T. Hinatsu, Development of hydrogen storage for fuel cell generators i: Hydrogen generation using hydrolysis hydrides, Int. J. Hydrogen Energy 1999, 24(7): 665-675.
    [2] A. Y. Esayed, Metal hydrides, Energy Sources 2001, 23(3): 257-265.
    [3] P. Dantzer, Properties of intermetallic compounds suitable for hydrogen storage applications, Materials Science & Engineering A, 2002, 329–331: 313-320.
    [4] F. L. Darkrim, P. Malbrunot, G. P. Tartaglia. Review of hydrogen storage by adsorption in carbon nanotubes, Int. J. Hydrogen Energy 2002, 27: 193-202.
    [5] U. Bünger, W. Zittel, Hydrogen storage in carbon nanostructures - still a long road from science to commerce? Appl. Phys. A Mater. Sci. & Processing 2001, 72 (2): 147-151.
    [6] Z. S. Wronski, Materials for rechargeable batteries and clean hydrogen energy sources, Int. Mater. Rev. 2001, 46(1): 1-49.
    [7] D. J. Liu, T. D. Kaun, H. K. Liao, S. Ahmed, Characterization of kilowatt-scale autothermal reformer for production of hydrogen from heavy hydrocarbons, Int. J. Hydrogen Energy 2004, 29 (10): 1035-1046.
    [8] F. Joensen, J. R. Rostrup-Nielsen, Conversion of hydrocarbons and alcohols for fuel cells, J. Power Sources 2002, 105(2): 195-201.
    [9] T. V. Choudhary, C. Sivadinarayana, D. W. Goodman, Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications, Catal. Lett. 2001, 72 (3-4): 197-201.
    [10] S. F. Yin, Q. H. Zhang, B. Q. Xu, W. X. Zhu, C. F. Ng, C. T. Au. Investigation on the catalysis of COx-free hydrogen generation from ammonia, J. Catal. 2004, 224: 384-396.
    [11] C. H. Liang, Z. L. Li, J. S. Qiu, C. Li, Graphitic nanofilaments as novel support of Ru-Ba catalysts for ammonia synthesis, J. Catal. 2002, 211(1): 278-282.
    [12] S. Dahl, P. A. Taylor, E. Tornqvist, I. Chorkendorff, The synthesis of ammonia over a ruthenium single crystal. J. Catal. 1998, 178 (2): 679-686.
    [13] T. G. S, Neto, A. J. G. Cobo, G. M. Cruz. Textural properties evolution of Ir and Ru supported on alumina catalysts during hydrazine decomposition in satellite thruster, Appl. Catal. A Gen. 2003, 250 (2) 331-340.
    [14] J. A. J. Rodrigues, G. M. Cruz, G. Bugli, M. Boudart, G. DjegaMariadassou, Nitride and carbide of molybdenum and tungsten as substitutes of iridium for the catalysts used for space communication, Catal. Lett. 1997, 45(1-2): 1-3.
    [15] X. W. Chen, T. Zhang, P. L. Ying, M. Y. Zheng, W. C. Wu, L. G. Xia, T. Li, X. D. Wang, C. Li. A novel catalyst for hydrazine decomposition: molybdenum carbide supported on gamma-Al2O3, Chem. Commun. 2002: 288-289.
    [16] D. J. Alberas, J. Kiss, Z. M. Liu, J. M. White, Surface chemistry of hydrazine on Pt(111), Surf. Sci. 1992, 278: 51-61.
    [17] R. Schl?l, in: Handbook of Heterogeneous Catalysis, vol. 4 Ed. by G. Ertl, H. Kn?zubgerm, J. Weitkamp (VCH, Federal Republic of Germany, 1997) 1697-1698.
    [18] S. T. Oyama, The Chemistry of Transition Metal Carbide and Nitrides, Blackie Academic and Professional: Glasgow, 1996:1-24.
    [19] Slavoj Cerny, Adsorption microcalorimetry in surface studies sixty years of its development into a modern powerful method, Surface Science Reports, 1996, 26: 1-59.
    [20] P. Nordlander, S. Holloway, J. K. Norskov, Hydrogen adsorption on metal surfaces, Surface Science, 1984, 136 (1), 59-81.
    [1] CERIUS 2, Version 4.2, DMOL3, Molecular Simulations, Inc., 2000.
    [2] P. Hu, D. A. King, S. Crampin, M. H. Lee, M. C. Payne, Ab initio diffusional Potential energy surface for CO chemisorption on Pd(110) at high coverage : Coupled transition and rotation, J. Chem. Phys., 1997, 107(19), 8103-8109.
    [3] C. Adamo and P. Maldivi, A Theoretical Study of Bonding in Lanthanide Trihalides by Density Functional Methods, J. Phys. Chem. A, 1998, 102, 6812-6820.
    [4] L. Joubert and P. Maldivi, A Structural and Vibrational Study of Uranium(III) Molecules by Density Functional Methods, J. Phys. Chem. A 2001, 105, 9068-9076.
    [5] S. Cerny, Adsorption microcalorimetry in surface studies sixty years of its development into a modern powerful method, Surface Science Reports, 1996, 26: 1-59.
    [6] S. X. Huang, T. S. Rufael, and J. L. Gland, Diimide formation on the Ni(100) surface, Surf. Sci. Lett. 1993, 290, L673-676.
    [7] R. W. Mccabe, Kinetic of ammonia decomposition on nickel, J. Catal., 1983, 79, 445-450.
    [8] C. Bassignana, K. Wagemann, J. Küppers and G. Ertl, Adsorption and thermal decomposition of ammonia on a Ni (110) surface: Isolation and identification of adsorbed NH2 and NH, Surf. Sci., 1986, 175, 22-44.
    [9] C. Klauber, M. D. Alvey and T. Yates, NH3 adsorption on Ni(110) and the production of the NH2 species by electron irradiation, Surf. Sci., 1985, 154, 139-167.
    [10] Hüttinger and J. Küppers, Intermediate product identification for ammonia decomposition at Ni (110): Surface Science, 1983,130, L277-L282.
    [11] 吴越著《催化化学》上册(增补重印)科学出版社 1998 年,976 页.
    [12] R. Maurel, J. C. Menezo, Catalytic decomposition of N15-labeled hydrazine on alumina-supported metals, J. Catal., 1978, 51, 293-295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700