过渡金属磷化物的制备、表征和肼分解性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属磷化物是一种新型的催化材料,在加氢脱硫、加氢脱氮反应中表现出良好的特性,但是现有研究中没有对高比表面磷化钼的制备方法展开考察,也很少对磷化钼在其他反应中的应用进行报道。本论文采用柠檬酸-程序升温还原法制备了高比表面的磷化物,同时以微量吸附量热为手段,用CO作为探针分子考察了MoP的表面活性位。进而考察了磷化物的肼分解性能,并利用原位红外光谱对肼分解的吸附和反应过程进行了研究。
     利用柠檬酸和Mo的螯合作用可以降低MoP的团聚程度并使产物形成中孔/微孔孔道,明显地增加了MoP的比表面积。该方法对增加其他磷化物表面积及提高MoP在氧化铝表面的分散度都有一定的作用。
     微量吸附量热实验证实非担载MoP表面只存在一种活性位。新方法增加了活性位的数目,并保持了担载或非担载MoP活性物质的分布。
     过渡金属磷化物的肼分解活性依次为:MoP~WP>CoP>Ni2P。肼在MoP催化剂上吸附和反应的红外结果表明肼主要在MoP/Al2O3催化剂的Mo位上吸附和反应的。
     肼在MoP上的分解活性比较稳定,而在Mo2N上失活明显。NH3的微量吸附量热实验表明NH3在Mo2N上的吸附强于MoP上。在N2H4和CO的共吸附原位红外实验中,可以观察到在MoP/Al2O3上CO的吸附峰红移现象,但在Mo2N/Al2O3上不存在CO的吸附峰。这说明肼分解产物在Mo2N上的吸附很强,不容易脱附,从而导致Mo2N催化剂逐渐失活。
As a novel class of catalyst, transition metal phosphide has been explored and showed highly active for hydrodesulfurization (HDS) and hydrode- nitrogenation (HDN), but few studies were reported in other catalytic reactions. This thesis focused on the synthesis of MoP with high surface area and highly dispersed MoP/Al2O3, as well as the characterization of active sites by microcalorimetry with CO as probe molecular. Decomposition of hydrazine was also explored with these phosphides, and the decomposition mechanism was studied with in-situ FTIR.
     The high surface area of MoP was prepared by the citric acid-temperature programmed reduction method. The decrease in agglomeration and the formation of pores were responsible for the increase in the surface area of MoP. This method appeared to be a versatile method for producing high surface area transition metal phosphides and supported MoP/Al2O3 catalysts.
     Studies on the chemisorption of CO by microcalorimetry gave some insights into the nature of active sites on MoP. CO was primarily adsorbed at one MoP surface site, which had high differential energy, for both MoP prepared by the two methods. The high surface area MoP had an increase in the number of active sites but there was no change in the chemical nature of MoP.
     The decomposition activity of hydrazine over a series of unsupported phosphides decreased as follow: MoP~WP>CoP>Ni2P. From the IR spectra, when N2H4 was adsorbed on MoP/Al2O3, there appeared a band at 1484 cm-1 which wasassigned to NH4+. Hydrazine was found to adsorb mainly on Mo site as revealed by co-adsorption with CO and N2H4.
     Phosphide catalysts were found to be active and stable at room temperature. Microcalorimetric adsorption of NH3 revealed that NH3 molecules were adsorbed more strongly on Mo2N than on MoP. The in-situ FTIR results of co-adsorption of CO and N2H4 over MoP/Al2O3 and Mo2N/Al2O3 exhibited two distinct features, i.e. the absence of CO adsorption band on Mo2N/Al2O3 and the lowering of frequency of CO adsorption band on the MoP/Al2O3, suggesting the relatively weaker adsorption of the intermediates or products of the decomposition of N2H4 on MoP/Al2O3 than those on Mo2N/Al2O3. The moderately adsorbed species on MoP favored to desorb from the active sites, thus a better stability of MoP was achieved.
引文
[1] E. W. Schmit, Hydrazine and Its Derivatives-Preparation, Properties, Applications, 2nd edition, John Wiley & Sons, 2001.
    [2] W. Keim, Hydrazine Decomposition, in Handbook of Heterogeneous Catalysis, Wiley-VCH, Weinheim, 1997, 1795-1799.
    [3] 李令成,蓝蕴基, 肼分解催化剂进展, 工业催化, 1994, 1, 3-7.
    [4] H. H. Voge, Catalyst for monopropellant decomposition of hydrazine, 5th Liquid Propulsion Symposium, Addendum, 1963, Vol. 3, 335-347.
    [5] R. B. Levy and M. Boudart, Platinum-like behavior of tungsten carbide in surface catalysis, Science, 1973, 181, 547-549.
    [6] S. T. Oyama, Preparation and catalytic properties of transition metal carbides and nitrides, Catalysis Today, 1992, 15, 179-200.
    [7] R. Kojima and K. Aika, Molybdenum nitride and carbide catalysts for ammonia synthesis, Applied Catalysis A: General, 2001, 219, 141-147.
    [8] U. S. Ozkan, L. P. Zhang and P. A. Clark, Performance and postreaction characterization of γ-Mo2N catalysts in simultaneous hydrodesulfurization and hydrodenitrogenation reactions, Journal of Catalysis, 1997, 172, 294-306.
    [9] S. Ramanathan and S. T. Oyama, New catalysts for hydroprocessing:Transition- metal carbides and nitrides, Journal of Physical Chemistry, 1995, 99, 16365-16372
    [10] J. A. J. Rodrigues, G. M. Cruz, G. Bugli, M. Boudart and G. Djega- Mariadassou, Nitride and carbide of molybdenum and tungsten as substitutes of iridium for the catalysts used for space communication, Catalysis Letters, 1997, 45, 1-3.
    [11] R. Brayner, G. Djéga-Mariadassou, G. M. Cruz and J. A. J. Rodrigues, Hydrazine decomposition over niobium oxynitride with macropores generation, Catalysis Today, 2000, 57, 225-229.
    [12] J. A. J. Rodrigues, G. M. Cruz, G. Déjga-Mariadassou and G. Bugli, Carbides and nitrides of transition elements with controlled porosity, World Intellectual Property Organization, WO9635510, 1996.
    [13] J. A. J. Rodrigues, G. M. Cruz, G. Djéga-Mariadassou and J. N. Hinckel, Carbides and nitrides of transition elements applied on the catalytic decomposition of hydrazine, World Intellectual Property Organization, WO 9633803, 1996.
    [14] X. W. Chen, T. Zhang, P. L. Ying, M. Y. Zheng, W. C. Wu, L. G. Xia, T. Li, X. D. Wang and C. Li, A novel catalyst for hydrazine decomposition: molybdenum carbide supported on γ-Al2O3, Chemical Communications, 2002, 288-289.
    [15] X. W. Chen, T. Zhang, L. G. Xia, T. Li, M. Y. Zheng, Z. L. Wu, X. D. Wang, Z. B. Wei, Q. Xin and C. Li, Catalytic decomposition of hydrazine over supported molybdenum nitride catalysts in a monopropellant thruster, Catalysis Letters, 2002, 79, 21-25.
    [16] X. W. Chen, T. Zhang, M. Y. Zheng, Z. L. Wu, W. C. Wu and C. Li, Thereaction route and active site of catalytic decomposition of hydrazine over molybdenum nitride catalyst, Journal of Catalysis, 2004, 224, 473-478.
    [17] X. W. Chen, T. Zhang, M. Y. Zheng, L. G. Xia, T. Li, W. C. Wu, X. D. Wang and C. Li, Catalytic decomposition of hydrazine over α-Mo2C/γ-Al2O3 catalysts, Industrial & Engineering Chemistry Research, 2004, 43, 6040-6047.
    [18] W. Li, B. Dhandapani and S. T. Oyama, Molybdenum phosphide: A novel catalyst for hydrodenitrogenation, Chemistry Letters, 1998, 207-208.
    [19] S. T. Oyama, Novel catalysts for advanced hydroprocessing: Transition metal phosphides, Journal of Catalysis, 2003, 216, 343-352.
    [20] B. Aronsson, T. Lundstrom and S. Rundqvist, Borides, Silicides and Phosphides, New York, Methuen, London/Wiley, 1965.
    [21] S. Rundqvist and E. Larsson, The crystal structure of Ni12P5, Acta Chemica Scandinavica, 1959, 13, 551-560.
    [22] D. Wang, Q. Kong and J. Shui, Creep of Nanocrystaline, Scripta Metallurgica et Materialia, 1994, 31, 47-51.
    [23] K. Lu, J. Wong and W. Wei, Thermal-expansion and specific-heat capacity of nanocrystalline Ni-P alloy, Scripta Metallurgica et Materialia, 1991, 25, 619-623.
    [24] D. E. C. Corbridge, Phosphorus: Studies in Inorganic Chemistry, 1990, 10.
    [25] J. Gopalakrishnan, S. Pandey and K. K. Rangan, Convenient route for the synthesis of transition-metal pnictides by direct reduction of phosphate, arsenate, and antimonate precursors, Chemical Materials, 1997, 9, 2113-2116.
    [26] P. Clark, New catalysts for hydroprocessing: Molybdenum and tungstenphosphide, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2000.
    [27] J. C. Phillips, Bonds and Bands in Semiconductors, New York, Academic Press, 1973.
    [28] G. Z. H?gg, Temperate rules in the formation of crystal in hydrides, borides, carbides and nitrides of the transfer elements, Zeitchrift fur Physikalische Chemie-Abteilung B-Chemie der Elementarprozesse Aufbau der Materie, 1931, 12, 33.
    [29] J. A. Rodriguez, J. Y. Kim, J. C. Hanson, S. J. Sawhill and M. E. Bussell, Physical and chemical properties of MoP, Ni2P, and MoNiP hydrodesulfurization catalysts: Time-resolved X-ray diffraction, density functional, and hydrodesulfurization activity studies, Journal of Physical Chemistry B, 2003, 107, 6276-6285.
    [30] S. T. Oyama, P. Clark, V. da Silva, E. J. Lede and F. G. Requejo, XAFS characterization of highly active alumina-supported molybdenum phosphide catalysts MoP/Al203 for hydrotreating, Journal of Physical Chemistry B, 2001, 105, 4961-4966.
    [31] X. Qian, Y. Xie, Y. Qian, X. Zhang, W. Wang and L. Yang, Organo-thermal preparation of nanocrystalline cobalt phosphides, Materials Science and Engineering: B, 1997, 49, 135-137.
    [32] X. Qian, X. Zhang, C. Wang, W. Wang and Y. Qian, A new way to prepare nanocrystalline dinickel phosphide, Materials Research Bulletin, 1998, 33, 669-672.
    [33] Y. Gu, F. Guo, Y. Qian, H. Zheng, and Z. Yang, A solvothermal synthesis of ultra-fine iron phosphide, Materials Research Bulletin, 2002, 37, 1101-1105.
    [34] H. Su, Y. Xie, B. Li, X. Liu and Y. Qian, A simple, convenient, mild solvothermal route to nanocrystalline Cu3P and Ni2P, Solid State Ionics, 1999, 122, 157-160.
    [35] Y. Xie, H. Su, X. Qian, X. Liu and Y. Qian, A mild one-step solvothermal route to metal phosphides (metal = Co, Ni, Cu), Journal of Solid State Chemical Materials, 2000, 149, 88-91.
    [36] S. C. Perera, P. S. Fodor, G. Tsoi, L. Wenger and S. L. Brock, Application of de-silylation strategies to the preparation of transition metal pnictide nanocrystals: The case of FeP, Chemistry of Materials, 2003, 15, 4034-4038.
    [37] S. C. Perera, G. Tsoi, L. E. Wenger and S. L. Brock, Synthesis of MnP nanocrystals by treatment of metal carbonyl complexes with phosphines: A new, versatile route to nanoscale transition metal phosphides, Journal of the American Chemical Society, 2003, 125, 13960 -13961.
    [38] C. M. Lukehart, S. B. Milne and S. R. Stock, Formation of crystalline nanoclusters of Fe2P, RuP, Co2P, Rh2P, Ni2P, Pd5P2, or PtP2 in a Silica Xerogel Matrix from Single-Source Molecular Precursors, Chemistry of Materials, 1998, 10, 903-908.
    [39] K. L. Stamm, J. C. Garon, G. Liu and S. L. Brock, A general methodology for the synthesis of transition metal pnictide nanoparticles from pnictate precursors and its application to Iron-Phosphorus phases, Journal of the American Chemical Society, 2003, 125, 4038-4039.
    [40] P. Clark, W. Li and S. T. Oyama, Synthesis and activity of a new catalyst for hydroprocessing: Tungsten phosphide, Journal of Catalysis, 2001, 200, 140-147.
    [41] X. Wang, P. Clark and S. T. Oyama, Synthesis, characterization, andhydrotreating activity of several iron group transition metal phosphides, Journal of Catalysis, 2002, 208, 321-331.
    [42] C. Stinner, R. Prins and T. Weber, Binary and Ternary Transition-Metal Phosphides as HDN Catalysts, Journal of Catalysis, 2001, 202, 187-194.
    [43] D. Ma, T. Xiao, S. Xie, W. Zhou, S. L. Gonzalez-Cortes and M. L. H. Green, Synthesis and structure of bimetallic nickel molybdenum phosphide solid solutions, Chemistry of Materials, 2004, 16, 2697-2699.
    [44] D. C. Phillips, S. J. Sawhill, R. Self and M. E. Bussell, Synthesis, characterization, and hydrodesulfurization properties of silica-supported molybdenum phosphide catalysts, Journal of Catalysis, 2002, 207, 266-273.
    [45] P. A. Clark and S. T. Oyama, Alumina-supported molybdenum phosphide hydroprocessing catalysts, Journal of Catalysis, 2003, 218 (1), 78-87.
    [46] T. Kawai, S. Sato, S. Suzuki, W. J. Chun, K. Asakura, K. K. Bando, T. Matsui, Y. Yoshimura, T. Kubota, Y. Okamoto, Y. K. Lee and S. T. Oyama, In situ X-ray absorption fine structure studies on the structure of nickel phosphide catalyst supported on K-USY, Chemistry Letters, 2003, 32, 956-957.
    [47] Y. Shu and S. T. Oyama, Synthesis, characterization, and hydrotreating activity of carbon-supported transition metal phosphides, Carbon, 2004, 43, 1517-1532.
    [48] A. Wang, L. Ruan. Y. Teng, X. Li, M. Lu, J. Ren, Y. Wang and Y. Hu, Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported nickel phosphide catalysts, Journal of Catalysis, 2005, 29, 314-321.
    [49] S. Yang and R. Prins, New synthesis method for nickel phosphidehydrotreating catalysts, Chemical Communication, 2005, 4178-4180.
    [50] S. Yang, C. Liang and R. Prins, A novel approach to synthesizing highly active Ni2P/SiO2 hydrotreating catalysts, Journal of Catalysis, 2006, 237, 118-130.
    [51] E. L. Muettcrties, J. C. Sauer, Catalytic properties of metal phosphides. I. Qualitative assay of catalytic properties, Journal of the American Chemical Society, 1974, 96, 3410-3415.
    [52] F. Nozaki and M. Tokumi, Hydrogenation activity of metal phosphides and promoting effect of oxygen, Journal of Catalysis, 1983, 79, 207-210.
    [53] T. Nozaki, F. Kitoh and T. Sodesawa, Promoting effect of oxygen for hydrogenation of butadiene over Ni2P catalyst, Journal of Catalysis, 1980, 62, 286-293.
    [54] H. Li, W. Dai, W. Wang, Z. Fang and J. Deng, XPS studies on surface electronic characteristics of Ni-B and Ni-P amorphous alloy and its correlation to their catalytic properties, Applied Surface Science, 1999, 152, 25-34.
    [55] W. Wang, M. Qiao, H. Li and J. Deng, Amorphous NiP/SiO2 aeroge: Its preparation, its high thermal stability and its activity during the selective hydragenation of cyclopentadiene to cyclopentene, Applied Catalysis A: General, 1988, 166, L243-247.
    [56] D. D. Whitehurst, T. Isoda and I.Mochida, Present state of the art and future challenges in the hydrodesulfarization of polyaromatic sulfur compounds, Advanced Catalysis, 1998, 42, 345-347.
    [57] R. Prins, Catalytic hydrodenitrogenation, Advance in Catalysis, 2000, 46, 399-466.
    [58] P. A. Aegerter, W. W. C. Quigley, G. J. Simpson, D. D. Ziegler, J. W. Logan, K. R. McCrea, S. Glazier and M. E. Bussell, Thiophene hydrodesulfurization over alumina-supported molybdenum carbide and nitride catalysts: adsorption sites, catalytic activities, and nature of the active surface, Journal of Catalysis, 1996, 164, 109-121.
    [59] Z. Wu, F. Sun, W. Wu, Z. Feng, C. Liang, Z. Wei and C. Li, On the surface sites of MoP/SiO2 catalyst under sulfiding conditions: IR spectroscopy and catalytic reactivity studies, Journal of Catalysis, 2004, 222, 41-52
    [60] Z. Feng, C. Liang, W. Wu, Z. Wu, R. A. van Santen and C. Li, Carbon monoxide adsorption on molybdenum phosphides: Fourier transform infrared spectroscopic and density functional theory studies, Journal of Physical Chemistry B, 2003, 107, 13698-13702.
    [61] K. A. Layman and M. E. Bussell, Infrared spectroscopic investigation of CO adsorption on silica-supported nickel phosphide catalysts, Journal of Physical Chemistry B, 2004, 108, 10930-10941.
    [62] K. A. Layman and M. E. Bussell, Infrared spectroscopic investigation of thiophene adsorption on silica-supported nickel phosphide catalysts, Journal of Physical Chemistry B, 2004, 108, 15791-15802.
    [63] P. Liu and J. A. Rodriguez, Catalytic properties of molybdenum carbide, nitride and phosphide: A theoretical study, Catalysis Letters, 2003, 91, 247-252.
    [64] B. W. V. Milman.and R. Gomperts, Molybdenum phosphide as an o-Propylaniline hydrodenitrogenation catalyst: A first principles study, Chemistry - A European Journal, 2004, 10, 6279-6284.
    [65] S. E. Wood and J. T. Bryant, Decomposition of hydrazine on Shell-405 catalyst at high-pressure, Industrial & Engineering Chemistry Product Research And Development, 1973, 12, 117-122.
    [66] P. J. Birbara and W. Locks, Catalyst for hydrazine decomposition, US 4348303, 1982.
    [67] G. Schulz-Ekloff and R. Hoppe, Electron diffraction determination of an orientation-relationship for iridium-on-η-alumina, Catalysis Letter, 1990, 6, 383-388.
    [68] G. Schulz-Ekloff and H. G. Deppner, Modeling and simulation of monopropellant hydrazine thrusters for spacecraft position control, Chemical Engineering & Technology, 1989, 12, 426-432.
    [69] 臧璟龄,熊国兴, 用 X 光电子能谱研究铱催化剂的表面性质, 催化学报, 1980, 1, 73-80.
    [70] 倪月琴,臧璟龄,李小竹,孙孝英, 沉积氯铱酸的γ-Al2O3 的表面性质, 催化学报, 1982, 3, 81-86.
    [71] 罗洪原,初玉芝,徐翠兰,周业慎, CO 在 Ir/γ-Al2O3 催化剂上的吸附及O2 相互作用的 IR 研究, 催化学报, 1990, 11, 284-289.
    [72] R. Vieira, C. Pham-Huu, N. Keller and M. J. Ledoux, New carbon nanofiber/graphite felt composite for use as a catalyst support for hydrazine catalytic decomposition, Chemical Communications, 2002, (9), 954-955.
    [73] S. Lee, C. Fan, T. Wu and S. L. Anderson, Hydrazine decomposition over Irn/Al2O3 model catalysts prepared by size-selected cluster deposition, Journal of Physical Chemistry B, 2004, 109, 381-388.
    [74] J. Gobbo-Ferreira, J. A. J. Rodrigues and C.E.S.S. Migueis, Hydrazine decomposition using carbides as catalysts, AIAA 97-2978, 33rdAIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 1997, Seattle, WA.
    [75] D. D. Davis, R. C. Wedlich and N. B. Martin, Transition metal catalysis of the heterogeneous decomposition of hydrazine adiabatic kinetics by accelerating rate calorimetry, Thermochimica Acta, 1991, 175, 175-188.
    [76] 郑明远, 程序升温反应法制备氮化铁及催化肼分解研究, 中国科学院大连化学物理研究所博士论文, 大连, 2005.
    [77] M. Zheng, X. Chen, R. Cheng, N. Li, J. Sun, X. Wang and T. Zhang, Catalytic decomposition of hydrazine on iron nitride catalysts, Catalysis Communications, 2006, 7, 187-191.
    [78] J. B. O. Santos, G. P. Valenca and J. A. J. Rodrigues, Catalytic decomposition of hydrazine on tungsten carbide: the influence of adsorbed oxygen, Journal of Catalysis, 2002, 210, 1-6.
    [79] K. I. Aika, T. Ohhata and A.Ozaki, Hydrogenolysis of hydrazine over metals, Journal of Catalysis, 1970, 19, 140-143.
    [80] J. Contour and G. Pannetie, Hydrazine decomposition over a supported Iridium catalyst, Journal of Catalysis, 1972, 24, 434-445.
    [81] R. Maurel and J. C. Menezo, Catalytic decomposition of 15N-labeled hydrazine on alumina-supported metals, Journal of Catalysis, 1978, 51, 293-295.
    [82] J. Block and G. Schulzek, Catalytic decomposition of 15Nitrogen-labeled hydrazine on MgO-supported iron, Journal of Catalysis, 1973, 30, 327-329.
    [83] J. L. Falconer and H. Wise, Temperature programmed desorption spectroscopy of N2H4 decomposition on Al2O3-supported Ir catalyst, Journal of Catalysis, 1976, 43, 220-233.
    [84] C. F. Wells and M. A. Salam, The kinetics of the reaction of chromium (Ⅱ) with hydrazine, hydroxylamine and hydrazoic acid in perchlorate media: the formation of halogeno-and sulphato-complexes of chromium (Ⅱ), Journal of the Chemical Society: A Inorganic Physical Theoretical, 1968, 1568-1575.
    [1] W. Li, B. Dhandapani and S. T. Oyama, Molybdenum phosphide: A novel catalyst for hydrodenitrogenation, Chemistry Letters, 1998, 207-208.
    [2] P. Clark, W. Li and S. T. Oyama, Synthesis and activity of a new catalyst for hydroprocessing: Tungsten phosphide, Journal of Catalysis, 2001, 200, 140-147.
    [3] C. Stinner, R. Prins and Th. Weber, Binary and Ternary Transition-Metal Phosphides as HDN Catalysts, Journal of Catalysis, 2001, 202, 187-194.
    [4] 郑明远, 程序升温反应法制备氮化铁及催化肼分解研究, 中国科学院大连化学物理研究所博士论文, 大连, 2005.
    [5] 李林, 吸附量热装置的建立及其在金属催化剂研究中的应用, 中国科学院大连化学物理研究所博士论文, 大连, 2005.
    [6] Z. Feng, C. Liang, W. Wu, Z. Wu, R. A. van Santen and C. Li, Carbon monoxide adsorption on molybdenum phosphides: Fourier transform infrared spectroscopic and density functional theory studies, Journal of Physical Chemistry B, 2003, 107, 13698-13702.
    [1] J. Gopalakrishnan, S. Pandey and K. K. Rangan, Convenient route for the synthesis of transition-metal pnictides by direct reduction of phosphate, arsenate, and antimonate precursors, Chemical Materials, 1997, 9, 2113-2116.
    [2] W. Li, B. Dhandapani and S. T. Oyama, Molybdenum phosphide: A novel catalyst for hydrodenitrogenation, Chemistry Letters, 1998, 207-208.
    [3] S. T. Oyama, Novel catalysts for advanced hydroprocessing: Transition metal phosphides, Journal of Catalysis, 2003, 216, 343-352.
    [4] J. Wienold, E. Jentoft and T. Ressler, Structural investigation of the thermal decomposition of ammonium heptamolybdate by in situ XAFS and XRD, European Journal of Inorganic Chemistry, 2003, 6, 1058-1071.
    [5] C. Stinner, R. Prins and Th. Weber, Formation, structure, and HDN activity of unsupported molybdenum phosphide, Journal of Catalysis, 2000, 191 (2), 438-444.
    [6] C. Thomazeau, V. Martin and P. Afanasiev, Effect of support on the thermal decomposition of (NH4)6Mo7O24.4H2O in the inert gas atmosphere, AppliedCatalysis A: General, 2000, 199, 61-72.
    [7] G. D. Khattak, M. A. Salim, A. S. Al-Harth, D. J. Thompson and L. E. Wenger, Structure of molybdenum-phosphate glasses by X-ray photoelectron spectroscopy (XPS), Journal of Non-Crystalline Solids, 1997, 212, 181-191.
    [8] 孙院军, 王林, 孙军, 唐丽霞, 陈强和罗建海, 前驱粉团聚度对钼粉及后期制品性能的影响, 中国钼业, 2006, 30, 31-34.
    [9] R. Takahashi, S. Sato, T. Sodesawa, M. Kawakita and K. Ogura, High Surface-Area Silica with Controlled Pore Size Prepared from Nanocomposite of Silica and Citric Acid, Journal of Physical Chemistry B, 2000, 104, 12184-12191.
    [10] R. Takahashi, S. Sato, T. Sodesawa, M. Suzuki and N. Ichikuni, Ni/SiO2 prepared by sol-gel process using citric acid, Microporous and Mesoporous Materials, 2003, 66, 197-208.
    [11] A. J. ven Dillen, R. J. A. M. Ter?rde, D. J. Lensveld, J. W. Geus and K. P. de Jong, Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes, Journal of Catalysis, 2003, 216, 257-264.
    [12] S. R. Dhage, S. P. Gaikwad, P. Muthukumar and V. Ravi, Synthesis of Ce0.75Zr0.25O2 by citrate gel method, Materials Letters, 2004, 58, 2704- 2706.
    [13] S. P. Gaikwad, V. Samuel, R. Pasricha and V. Ravi, Preparation of nanocrystalline ferroelectric BaBi2Nb2O9 by citrate gel method, Materials Letters, 2004, 58, 3729-3731.
    [14] A. Samotus, A. Kanas, M. Dudek, R. Grybos and E. Hodorowicz, 1-1 molybddenum(VI) citric-acid complex, Transition Metal Chemistry, 1991, 16, 495-499.
    [15] N. W. Alcock, M. Dudek, R. Grybo, E. Hodorowicz, A. Kanas and A.Samotus, Complexation between molybdenum(VI) and citrate: structural characterisation of a tetrameric complex, K4[(MoO2)4O3(cit)2]·6H2O, Journal of the Chemical Society Dalton Transactions, 1990, 707-711.
    [16] Z. Zhou, H. Wan and K. Tsai, Molybdenum(VI) complex with citric acid: Synthesis and structural characterization of 1:1 ratio citrate molybdate K2Na4[(MoO2)2O(cit)2·5H2O, Polyhedron, 1997, 1, 75-79.
    [17] Z. Zhou, H. Wan and K. Tsai, Syntheses and spectroscopic and structural characterization of molybdenum(VI) citrato monomeric raceme and dimer, K4[MoO3(cit)]·2H2O and K4[(MoO2)2O(Hcit)2]·4H2O, Inorganic Chemistry, 2000, 39, 59-64.
    [18] M. Maruo, N. Hirayaman, A. Shiota and T. Kuwamoto, Elution behavior of tungsten and molybdenum in ion chromatography using organic-acid eluents having alpha-hydroxyl groups, Analytical Sciences, 1992, 8, 511-516.
    [19] V. N. Andreev, S. E. Nikitin, V. A.Klimov, F. A. Chudnovskii, S. V. Kozyrev and D. V. Leshchev, Photochromic effect in molybdenum-oxide cluster systems, Physics of the Solid State, 1999, 41, 1210-1215.
    [20] E. Uekawa, K. Murase, E. Matsubara, T. Hirato and Y. Awakura, Determination of chemical species and their composition in Ni-Mo alloy plating baths by factor analysis of visible absorption spectra, Journal of the Electrochemical Society, 1998, 145, 523-528.
    [21] Y. Yoshimura, N. Matsubayashi and T. Sato, H. Shimada and A. Nishijima, Molybdate catalysts prepared by a novel impregnation method: Effect of citric acid as a ligand on the catalytic activities, Applied Catalysis A: General, 1991, 79, 145-159.
    [22] P. Atanasova and T. Halachev, Influence of phosphorus concentration on thetype and structure of the compounds formed in the oxide form of phosphorus-nickel-molybdenum/alumina catalysts for hydrodesulphurization, Applied Catalysis, 1989, 48, 295-306.
    [23] S. Damyanova, L. M. Gomez, M. A. Baňares and J. L. G. Fierro, Thermal behavior of 12-Molybdophosphoric acid supported on zirconium-loaded silica, Chemical Materials, 2000, 12, 501-510.
    [24] S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd edition, 1982.
    [25] G. Liu, M. Jia, Z. Zhou, W. Zhang, T. Wu and D. Jiang, Synthesis of amorphous mesoporous aluminophosphate materials with high thermal stability using a citric acid route, Chemical Communication, 2004, 1960-1961.
    [26] P. A. I. Bezverkhyy and M. Lacroix, Promotion of highly loaded MoS2/Al2O3 hydrodesulfurization catalysts prepared in aqueous solution, Journal of Catalysis, 2005, 230, 133-139.
    [27] J. A. Rodriguez, J. Y. Kim, J. C. Hanson, S. J. Sawhill and M. E. Bussell, Physical and chemical properties of MoP, Ni2P, and MoNiP hydrodesulfurization catalysts: Time-resolved X-ray diffraction, density functional, and hydrodesulfurization activity studies, Journal of Physical Chemistry B, 2003, 107, 6276-6285.
    [28] P. Clark, W. Li and S. T. Oyama, Synthesis and activity of a new catalyst for hydroprocessing: Tungsten phosphide, Journal of Catalysis, 2001, 200, 140-147.
    [29] Z. Feng, C. Liang, W. Wu, Z. Wu, R. A. van Santen and C. Li, Carbon monoxide adsorption on molybdenum phosphides: Fourier transform infraredspectroscopic and density functional theory studies, Journal of Physical Chemistry B, 2003, 107, 13698-13702.
    [30] Z. Wu, A. Maroto-Valiente, A. Guerrero-Ruiz, I. Rodriguez-Ramos, C. Li and Q. Xin, Microcalorimetric and IR spectroscopic studies of CO adsorption on molybdenum nitride catalysts, Physical Chemistry Chemical Physics, 2003, 5, 1703-1707.
    [31] C. Stinner, R. Prins and T. Weber, Binary and Ternary Transition-Metal Phosphides as HDN Catalysts, Journal of Catalysis, 2001, 202, 187-194.
    [32] X. Wang, P. Clark and S. T. Oyama, Synthesis, characterization, and hydrotreating activity of several iron group transition metal phosphides, Journal of Catalysis, 2002, 208, 321-331.
    [33] R. Takahashi, S. Sato, T. Sodesawa, M. Suzuki and N. Ichikuni, Ni/SiO2 prepared by sol-gel process using citric acid, Microporous and Mesoporous Materials, 2003, 66, 197-208.
    [1] S. T. Oyama, Novel catalysts for advanced hydroprocessing: transition metal phosphides, Journal of Catalysis, 2003, 216, 343-352.
    [2] W. Keim, Hydrazine Decomposition, in Handbook of Heterogeneous Catalysis, Wiley-VCH, Weinheim, 1997, 1795-1799.
    [3] R. Maurel and J. C. Menezo, Catalytic decomposition of 15N-labeled Hydrazine on alumina-supported metals, Journal of Catalysis, 1978, 51,293-295.
    [4] S. E. Wood and J. T. Bryant, Decomposition of hydrazine on Shell-405 catalyst at high-pressure, Industrial & Engineering Chemistry Product Research and Development, 1973, 12, 117-122.
    [5] C. Stinner, R. Prins and T. Weber, Formation, structure, and HDN activity of unsupported molybdenum phosphide, Journal of Catalysis, 2000, 191, 438-444.
    [6] 郑明远, 程序升温反应法制备氮化铁及催化肼分解研究, 中国科学院大连化学物理研究所博士论文, 大连, 2005.
    [7] S. Mary, C. Kappenstein, S. Balcon, S. Rossignol and E. Gengembre, Monopropellant decomposition catalysts. I. Ageing of highly loaded Ir/Al2O3 catalysts in oxygen and steam. Influence of chloride content, Applied Catalysis A: General, 1999, 182, 317-325.
    [8] J. B. O. Santos, G. P. Valenca and J. A. J. Rodrigues, Catalytic decomposition of hydrazine on tungsten carbide: the influence of adsorbed oxygen, Journal of Catalysis, 2002, 210, 1-6.
    [9] K. K. B. Winkler, M. Hytha, V. Milman, V. Soto and M. Avalos, Crystal chemistry of molybdenum phosphides from density functional theory calculations, Journal of Physics and Chemistry of Solids, 2003, 64, 405-411.
    [10] 陈小伟, 氮化钼和碳化钼催化剂上肼分解反应的研究, 中国科学院大连化学物理研究所博士论文, 大连, 2002.
    [11] S. T. Oyama, Preparation and catalytic properties of transition metal carbides and nitrides, Catalysis Today, 1992, 15, 179-200.
    [12] P. Clark, X. Wang and S. T. Oyama, Characterization of silica-supported molybdenum and tungsten phosphide hydroprocessing catalysts by P-31nuclear magnetic resonance spectroscopy, Journal of Catalysis, 2002, 207, 256-265.
    [13] D. J. Alberas, J. Kiss, Z. M. Liu and J. M. White, Surface chemistry of hydrazine on Pt(111), Surface Science, 1992, 278, 51-61.
    [14] J. Contour and G. Pannetie, Hydrazine decomposition over a supported Iridium catalyst, Journal of Catalysis, 1972, 24, 434-445.
    [15] P. Liu and J. A. Rodriguez, Catalytic properties of molybdenum carbide, nitride and phosphide: A theoretical study, Catalysis Letters, 2003, 91, 247-252.
    [16] G. W. Haddix, D. H. Jones, J. A. Reimer and A. T. Bell, Characterization of NH3 adsorbed on γ-Mo2N by NMR spectroscopy, Journal of Catalysis, 1998, 112, 556-564.
    [17] D. Ma, T. Xiao, S. Xie, W. Zhou, S. L. Gonzalez-Cortes and M. L. H. Green, Synthesis and structure of bimetallic nickel molybdenum phosphide solid solutions, Chemistry of Materials, 2004, 16, 2697-2699.
    [1] 倪月琴,臧璟龄,李小竹,孙孝英, 沉积氯铱酸的γ-Al2O3 的表面性质, 催化学报, 1982, 3, 81-86.
    [2] 陈小伟, 氮化钼和碳化钼催化剂上肼分解反应的研究, 中国科学院大连化学物理研究所博士论文, 大连, 2002.
    [3] 王桂茹, 催化剂与催化作用, 大连理工大学出版社, 2000.
    [4] Z. Wu, A. Maroto-Valiente, A. Guerrero-Ruiz, I. Rodriguez-Ramos, C. Li and Q. Xin, Microcalorimetric and IR spectroscopic studies of CO adsorption on molybdenum nitride catalysts, Physical Chemistry Chemical Physics, 2003, 5, 1703-1707.
    [5] Z. Feng, C. Liang, W. Wu, Z. Wu, R. A. van Santen and C. Li, Carbon monoxide adsorption on molybdenum phosphides: Fourier transform infrared spectroscopic and density functional theory studies, Journal of Physical Chemistry B, 2003, 107, 13698-13702.
    [6] J. Contour and G. Pannetie, Hydrazine decomposition over a supported iridium catalyst, Journal of Catalysis, 1972, 24, 434-445.
    [7] G. Frapper, M. Pelissier and J. Hafner, CO adsorption on molybdenum nitride's -Mo2N(100) surface: Formation of N=C=O species? A density functional study, Journal of Physical Chemistry B, 2000, 104, 11972-11976.
    [1] P. A. Clark and S. T. Oyama, Alumina-supported molybdenum phosphide hydroprocessing catalysts, Journal of Catalysis, 2003, 218, 78-87.
    [2] A. J. v. Dillen, R. J. A. M. Ter?rde, D. J. Lensveld, J. W. Geus and K. P. d. Jong, Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes, Journal of Catalysis, 2003, 216, 257-264.
    [3] Z. Feng, C. Liang, W. Wu, Z. Wu, R. A. van Santen and C. Li, Carbon monoxide adsorption on molybdenum phosphides: Fourier transform infrared spectroscopic and density functional theory studies, Journal of Physical Chemistry B, 2003, 107, 13698-13702.
    [4] J. A. R. v. Veen, P. A. J. M. Hendriks, R. R. Andréa and E. J. G. M. Romers, Chemistry of phosphomolybdate adsorption on alumina surfaces. 2. The molybdate/phosphated alumina and phosphomolybdate/alumina systems, Journal of Physical Chemistry, 1990, 94, 5282-5285.
    [5] Z. Wu, A. Maroto-Valiente, A. Guerrero-Ruiz, I. Rodriguez-Ramos, C. Li and Q. Xin, Microcalorimetric and IR spectroscopic studies of CO adsorption on molybdenum nitride catalysts, Physical Chemistry Chemical Physics, 2003, 5, 1703-1707.
    [6] Y. Shu and S. T. Oyama, Synthesis, characterization, and hydrotreating activity of carbon-supported transition metal phosphides, Carbon, 2004, 43, 1517-1532.
    [7] G. Mestl and T. K. K.Srinivasan, Raman spectroscopy of monolayer-type catalysts: Supported molybdenum oxides, Catalysis Reviews: Science and Engineering, 1998, 40, 451-570.
    [8] C. Stinner, R. Prins and T. Weber, Formation, structure, and HDN activity of unsupported molybdenum phosphide, Journal of Catalysis, 2000, 191, 438-444.
    [9] T. V. J. A. Bergwerff, B. R. G. Leliveld, B. D. Rossenaar, K P. de Jong.Bert and M. Weckhuysen, Envisaging the physicochemical processes during the preparation of supported catalysts: Raman microscopy on the impregnation of Mo onto Al2O3 extrudates, Journal of American Chemistry Society, 2004, 126, 12548-12556.
    [10] M. Fournier, C. Louis, M. Che, P. Chaquin and D. Masure, Polyoxo- metallates as models for oxide catalysts: Part I. An UV-visible reflectance study of polyoxomolybdates: Influence of polyhedra arrangement on theelectronic transitions and comparison with supported molybdenum catalysts, Journal of Catalysis, 1989, 119, 400-414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700