抗稻瘟病基因pi-d2导入水稻提高稻瘟病抗性和一份条斑和颖花异常水稻突变体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ⅰ抗稻瘟病基因pi-d2导入水稻提高稻瘟病抗性的研究
     水稻稻瘟病是水稻生产中的最严重病害之一,俗称水稻“癌症”。控制稻瘟病害的方法主要是使用杀菌剂和利用抗病品种。植物基因工程的兴起为病害的控制提供了更广泛的选择余地。利用该技术可向现有栽培品种中导入外源抗病基因而不受种属限制,拓展了可利用基因的来源,这无疑为作物抗病育种工作开辟了一条崭新而有效的途径和发展空间。在水稻中已克隆了六个抗病R基因Pi-b、Pi-ta、Pi-9、Pi-2、Piz-t和Pi-d2。前5个基因蛋白属NBS-LRR类蛋白,而Pi-d2具有一个独特的B-lectin而作为新的一类抗病蛋白。本研究首次利用农杆菌介导法将Pi-d2基因转入水稻感病品种丽江新团黑谷、日本晴和抗病品种中花9号等,进行分子生物学检测、GUS活性检测和抗病性鉴定,得到了对稻瘟病抗性提高的水稻材料,为水稻以及其它禾本科植物抗病分子育种奠定基础,并为有性杂交育种提供了基因资源。主要研究结果如下:
     1以不同水稻品种的幼胚和成熟胚作为外植体,通过农杆菌介导法将目的基因三种不同的表达载体(含有长为3.2kb自身启动子驱动的Pi-d2基因组序列的pCB6.3k、含有长为2.2kb自身启动子驱动的Pi-d2基因组序列的pCB5.3k和35S驱动的Pi-d2基因全长cDNA序列的表达载体pZH01-2.72kb以及阴性对照载体pZH01-tp309)导入到水稻中,获得一批转Pi-d2基因的潮霉素抗性植株。
     2在农杆菌介导过程中首次将PSK添加在共培养基中提高了转化效率。PSK浓度为10nmol/L时,抗性愈伤出愈率比对照提高最高达11%;当PSK为200noml/L时,几乎完全抑制抗性愈伤的生长。PSK还与筛选培养基中的2,4-D浓度有关,2,4-D为2mg/L比1mg/L更有利抗性愈伤生长。
     3 PCR、RT-PCR、Southern blot杂交等分子检测结果证明外源基因以1-4个拷贝随机插入水稻基因组中,并在转基因植株中稳定遗传。对转基因植株后代的潮霉素抗性分析表明转基因的整合情况大多为单位点、单拷贝。潮霉素的抗性已稳定传至T_2代,获得转基因纯合株系。
     4对35个独立转基因株系的T_1代植株接种结果表明转基因植株对稻瘟病生理小种ZB15的抗性提高,病斑大小和数量减少,抗性呈孟德尔和非孟德尔分离。目的基因三种表达载体在受体中所表现的对ZB15抗性无明显差异。T_2代潮霉素抗性植株接种结果表明转基因株系仍然对稻瘟病ZB15具有抗性,3个株系内存在抗感分离,且T_1代抗性较好的株系在T_2代对稻瘟病仍具有较好的抗性,T_1和T_2代植株抗稻瘟病性结果较为一致。
     5连续三年的田间试验表明转基因植株抗穗颈瘟的能力大部分增强;抗叶瘟的转基因株系不一定抗颈瘟。通过田间试验,筛选到高抗稻瘟病株系。
     6用39个稻瘟病菌株测定转Pi-d2基因9个高代材料的抗谱表明不同转基因株系的抗病频率不同,目的基因在感病植株中的表达抗病频率提高十分明显,最高提高达91.7%。而在抗性品种中花9号中抗病频率基本未提高。用中国农科院收集的58个菌株对四个转基因早代纯合株系的抗谱测定表明转基因品系对81.48%以上菌株表现抗性,具有广谱抗性特点。
     7通过对目的基因不同三个表达载体在转基因植株中的表达分析,表明Pi-d2基因长为2.2kb或3.2kb自身启动子在转基因植株中具有启动子功能。具有Pi-d2基因基因组序列的转基因植株与具有cDNA序列转基因植株对稻瘟病的抗性都有提高。
     8对转基因农艺性状考查结果表明除少部分农艺性状发生变化外,大部分转基因植株农艺性状没发生显著变化。对随机抽取的一份转基因进行的稻米营养成分测定,结果表明转基因稻米中的营养成分未发生明显改变。
     Ⅱ一份条斑和颖花异常水稻突变体研究
     水稻是单子叶植物的模式植物。对水稻的发育过程进行研究具有重要的理论意义和应用价值。本实验在水稻遗传转化过程中发现一个不含外源基因的条斑和颖花异常的突变体,并对突变体进行了形态和组织学鉴定及遗传分析,为突变基因的克隆打下基础。其研究结果如下:
     1突变体表型特征:该突变体的茎、叶、穗出现条斑。在分蘖盛期,一些叶片始分岔或卷曲;花器官数目增多,表现为多内外稃,叶片状浆片,或浆片增大,雌蕊增多,颖花开裂。极端表型为同一颖花中长出几朵小花或小花枝梗伸长为花序。
     2生理特征:叶绿素总含量和净光合速率明显低于野生型。在分蘖中期、开花前期和开花后期三个时期,SOD、POD、CAT与性状表达呈一定的关系。
     3细胞学特性:透射电镜对叶片白色组织细胞超微结构观察,发现细胞壁内陷,质体结构异常,不能发育出正常叶绿体所具有的片层和类囊体。过渡区的紧靠绿色部分的细胞较大,叶绿体发育相对正常,而靠近白色区的细胞很小,叶绿体的基粒排列紊乱。突变体绿色组织部分中的细胞生长正常。利用扫描电镜对花器官形态发生过程进行观察,内外稃原基正常形成,其后突变体表现出与野生型颖花原基发育明显不同的特征。突变体开始形成额外的内/外稃原基。颖花原基出现不均等分裂,一般为二裂原基,较大部分分化较早,甚至有些颖花原基出现三个不等分裂。在雄蕊原基和内外稃之间,有膨大的浆片原基出现,后发育成类稃状浆片。雄蕊原基发育不同步,原基大小也不一样;花分生组织的较野生型大,并且一些具有永久的活性。
     4组织学特性:石蜡切片观察生长扭曲的叶片发现有维管束鞘细胞的过度生长,或一些泡状细胞增大。
     5遗传学特性:通过突变体与4个叶色正常的材料杂交和回交遗传分析,突变性状呈细胞质遗传方式。提取水稻叶绿体基因组DNA,并用180个RAPD引物PCR扩增,共扩增出1100个左右条带,其中两个有片段在突变体和野生型中存在差异。
Ⅰ. Enhanced resistance to blast fungus Magnaporthe grisea by expressionof a resistance gene Pi-d2 in transgenic rice
     Rice blast, which is caused by the fungal pathogen Magnaporthe grisea, is one of the mostdevastating diseases of rice, so it is called cancer of rice. The measures of control to the fungi diseaseare mainly to use the bactericide and the resistant varieties. Practice proved that the most economicefficient and essential way to fight against blast is breeding and use of resistant varieties. The rise ofplant genetic engineering offers the wide selection to control the fungi disease. The technologyintroduces the foreign resistant genes into cultivar and develops the gene source, which provides a newway to crop resistant breeding.
     In rice, six R genes including Pi-b、Pi-ta、Pi-9、Pi-2、Piz-t and Pi-d2 had been cloned. The former5 resistant gene proteins belong to the NBS-LRR type proteins, while the Pi-d2 protein with a specialstructure B-lectin is regarded a new type protein. In the research, we firstly introduce the Pi-d2 geneinto susceptible varieties LTH and Nipponbare and resistant variety Zhonghua 9 withagrobacterium-mediated transformation. After the molecular test, GUS histochemical assay andresistance test, some plants with high resistance to rice blast have been obtained, which establish thefoundation of molecular breeding for rice and other gramineous plants and provide gene resources forhybrid breeding. The main results were as follows:
     1 Through agrobactetium-mediated transformation with the callus from immature embryos and matureembryos of different rice varieties, three difference expression vectors including pCB6.3kb whichharbored the 3.2kb-length native promoter and genome sequence of Pi-d2, pCB6.3kb that contained the2.2kb-length native promoter and genome sequence of Pi-d2, in pZH01-2.72kb full length of cDNAsequence of was driven by promoter 35S and the negative control vector pZH01-Tp309 were introducedinto rice. Some hygromycin resistant plants containing Pi-d2 were obtained.
     2 PSK-a, a biologically active peptide acting as a growth factor, was added into co-culture medium.The results showed that PSK-a indeed affected the recovery of resistant calli and the transformationfrequency of rice varieties. PSK-a with the concentration of 10 nmol/L could increase resistant calliand efficiency of transformation, with a 11% top increase, than the control. However, PSK-a with theconcentration of 200 nmol/L could inhibit the induction of the resistant calli. Further more, the effectof PSK-a on agrobacterium-mediated transformation is related with the concentration of 2, 4-D inselection medium. Higher induction rate of resistant calli was obtained from tissues treated with PSKplus 2 mg/L 2, 4-D than those treated with 1 mg/L 2, 4-D.
     3 PCR, RT-PCR, Southern blotting testing indicated that the foreign target gene randomly inserted into rice genome with 1-4 copy and stably inherited. The hygromycin resistance analysis of transgenic plantsprogeny showed that the hygromycin marker in many transformats was inserted into rice genomes withsingle loci and one copy, and already inherited to T_2 generation, and some pure hygromycin-resistancelines were obtained.
     4 The results of the inoculation with the rice blast race ZB15 in field and indoors showed that thetransgenic plants from T_1 enhanced the resistance to rice strain ZB15, the size and number of the lesionon leaf decreased, some populations showed the resistant and susceptible separation with Mendeliansegregation or non- Mendelian segregation. The resistant expression of foreign gene from threedifference expression vectors to ZB15 showed no significant difference. The transgenic lines from T_2progeny also showed susceptible-resistant segregation to ZB15. The results are corresponding withthat of T_1 progeny.
     5 Continuous field evaluation in three years showed that some transgenic plants enhanced the resistanceto neck blast, and obtained some high resistance lines to rice leaf blast and neck blast.
     6 The receptor cultivars and 9 transgenic stable lines derived from at less T_5 generation transgenic plantsharboring Pi-d2 gene were challenged in greenhouse by inoculating 39 isolates of Magnaporthe griseafrom Sichuan Province. The different transgenic rice lines had different resistant spectrum. The Pi-d2gene expressed in susceptible receptors evidently enhanced the disease-resistance frequency at above90%, while the disease-resistance frequency of transgenic plants from ZH9 almost didn't increase. Fourtransgenic homozygous lines harboring full length cDNA sequence of Pi-d2 gene were inoculated with58 isolates selected by Agricultural Science Research Institute of China. The results showed thattransgenic lines resisted more than 81.48% isolates.
     7 Analysis of resistant expression of transgenic plants haboring the intetest gene from three differentvectors showed that the native promoters about 2.2kb or 3.2kb of Pi-d2 had the fuction of promoter as35S. The resistance between transgenic plants with genome sequence of Pi-d2 and transgenic plantswith Pi-d2 full length cDNA had no difference.
     8 The results of investigation of the agronomic traits of transgenic plants showed that variation occurredin a few transformants and many plants didn't obviously change. Nutrition test of a transgenic plantsselected randomly indicated that the nutrition in transgenic rice didn't significantly change.
     Ⅱ. The study of a striped mutant with abnormal floral organs in rice
     Rice is the model of monocotyledon. The study of rice development has important values in theoryand applications. In the study, rice double mutant without the alien gene derived from the transgenicprocess was found and researched in morphology, histological characters and genetic analysis, so foundation is constructed for the cloning of the mutant gene. The results were as follows:
     1 The phenotype characters of mutant: The mutant showed white stripe on stem, leaf and spikelet. Insome growing stage, the leaf started to produce fork or curliness. The floret number increased,showing the multi-lemma/palea, palea-like and lemma-like lodicules or enlarged lodicules,additional pistil and stamen and the spited floret. The extreme types showed that the a few newflowers or spikelets derived from floret.
     2 The physiological characters: The contents of chlorophyll and net photosynthesis rate in the mutantwere obviously lower than in the wild type. At the three growing stages including tilling stages,before heading and after heading stages, the activity of SOD, POD and CAT related the expressionof mutant characters of mutant.
     3 Cytological identity: With observation of cell ultra structure using electron microscope, the whitetissue showed concaved cell wall and abnormal plastid which can not develop normal lamellae andthylakoid. The transition tissues aside the green tissues had the bigger cells with almost normalchloroplasts, while the tissues aside the white tissues showed that the cells were small and thechloroplast grana had inordinate arrangement. The cells in green sectors grow normally. Themorphogenesis of floral organs was observed by using the scanning electron microscopy (SEM).Results showed that palea and lemma normal developed, then the development programmes weredifferent between wild type and mutant. Additional palea and lemma begun to format and theflower primordium splited or formatted trifid primordium. The large part of primordium firstdeveloped. The lodicuale primordium appeared between stament primordium and palea/lemmaprimordium, and developed into palea/lemma-like lodicules. Stamen development was notsynchronal and the sizes of stamen primordium were different in mutant. The size of the floretmeristem was bigger than that of wild type, and some floret meristem had permanent activation.
     4 Histological characters: the mesophyll cells of white tissue were dyed light, and the contortedleaves had the excess growing vascular bundle cells or increscent bulliform cells.
     5 Genetic analysis: the results of the analysis with the progeny derived from the mutant crossing withnormal varieties showed that the mutant characters controlled by cytoplasts gene and inhered withmaternal inheritance way. Chloroplast genome DNA was extracted, and was amplified with 180RAPD primers. Two difference fragments between mutant and wild type were obtained.
引文
[1] 董继新,董海涛,李德葆.水稻抗瘟性研究进展.农业生物技术学报,2000,8(1):99-102.
    [2] 高坂淖尔等编著肖连成译1983《稻瘟病和抗病育种》东北师大第二印刷厂.
    [3] Sesma A, Osboum A E. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi.Nature, 2004, 431:582-586.
    [4] Hamer J E, Howard R.J, Chumley FG et al. A mechanism for surface attachment in spores of a plant pathogenic fungus [J].Science, 1988, 239:288-290.
    [5] Howard R J, Ferrari M A. Role of melanin in appressorium function [J].Experimental Mycology, 1989, 13:403-418.
    [6] Howard R J, Valent B. Breaking and entering-Host penetration by the fungal rice blast pathogen Magnaporthe grisea [J].Annu Rev Microbiol, 1996, 50:491-512.
    [7] Howard R, Ferrafi J. Penetration of hard substrates by a fungus employing enormous turgor pressures [J].Proc Nati Acad Sci USA, 1991, 88:11281-11284.
    [8] Money N P, Howard R J. Confirmation of a link between fungal pigmentation, turgot pressure, and pathogenicity using a new method of turgor measurement. Fungal Genet Biol, 1996,20:217-227
    [9] Talbot N J. Forcible entry[J].Science,1999,285:1860-1861
    [10] Talbot N J, Kershaw M J, Walley G E, et al.MPGI encodes a fungal hydrophobin involved in surface interactions during infection-related of Magnaporthe grisea[J].Plant Cell1996,8:985-999
    [11] Talbot N J, Ebbole D J, Hamer J E. Identification and characterization of MPGI,a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea [J].Plant Cell,1993,5:1575-1590.
    [12] Dean R A, Talbot N J, Ebbole D J, et al. The genome sequence of the rice blast fungus Magnaporthe grisea [J].Nature,2005, 434:980-986
    [13] Yamada M, Kiyosawa S. Proposal of a new method for differentiating races of Pyricularia oryzae Cavara in Japan. Annals of the Phytopathological Society of Japan, 1976, 42:216-219.
    [14] Mackill D J and Bonman J M. Inheritance of blast resistance in near-isogenic lines of rice, Phytopathology, 1992, 82:746-749
    [15] Hiroshi T, Mary J T Y, Ebron L A, et al. Development of monogenic lines of rice for blast resistance. Breeding Science, 2000, 50:229-234.
    [16] 凌忠专,王久林,雷财林.稻瘟病菌生理小种研究的回顾与展望.中国农业科,学2004,37(12):1849-1859
    [17] 黄富,程开禄,罗庆明,等.恢复系抗瘟性对杂交稻F1代抗瘟性的影响.植物病理学研究进展,1999,134-135
    [18] Ou, SH. Rice diseases. Kew, Surrey, Commonwealth Mycological Institute, CABI, 1985, 109-201.
    [19] Namai T, Ehara TY, Tagashi J. Changes in agressiveness of a Pyricularia oryzae isolate (race 337) by successive passage on rice cultivars with different true resistance gene [J]. Ann. Phytopath. Soc. Japan, 1990, 56:1-9.
    [20] Iwano M, Lee J L, Kong P. Distribution of pathogenic races and changes in virulence of rice blast fungus, Pyricularia oryzae Cav., in Yunnan Province, China[J]. JARQ(Japan Agricultural Research Quartedy), 1990, 23:241-248.
    [21] Latterell F M, Rossi A E. Longevity and pathogenic stability of Pyriculariaoryzae[J]. Phytopathology, 1986, 76:231-235.
    [22] Bonman J M, Vergel de, DiosT I, et al. Physiologic specialization of Pyricularia oryae in the Philippines. Plant Dis, 1986,70,767-769.
    [23] 何月秋,唐文华.水稻稻瘟病菌研究进展(二)水稻稻瘟病菌遗传与分子生物学研究进展云南农业大学学报,2001,16(2):154-159.
    [24] Suzukih. Origin of variationin Piricularia oryzae [J].In:The Rice Blast Disease. Proc.Symp.At IRRI,July1963.The Johns Hopkin Press, Baltimore, Maryland, 1965.507:111-149
    [25] Yaegashi H, Nishihara N. Production of the perfect stage in Pyricularia from cereals and grasses. Ann Phytopath Soc Japan, 1976, 42: 511-515.
    [26] Hashioka Y. Notes on Pyricularia I . Three species parasitic to Musaceae, Cannaceae and Zingiberceae. Trans. Mycol. Soc.Japan 1971,12(34):126-135.
    [27] 何月秋,唐文华.水稻稻瘟病菌研究进展(一)水稻稻瘟病菌多样性和遗传机制.云南农业大学学报,2001,16(1):60-64.
    [28] Lau GW, Chao CT, Ellingboe A H. Interaction of genes controlling avirulence/virulence of Maguaporthe grisea on rice cultivar Katy [J]. Phytopathology, 1993, 83 (4)375-382.
    [29] Saltoh. A sexual crossing of rice blast funguson plant and variability of blas traces [J].Res.Bur. Aich.Agric.Res.Ctr, 1989, 21:99-105.
    [30] 沈瑛,李成云,袁筱萍,等.稻瘟病菌的菌丝融合现象及其后代的致病性变异[J].中国农业科学,1997,30(6):16-22.
    [31] Zeigler R S, Scott R P, Leung H, et al. Evidence of parasexualex change of DNA in the rice blast fungus challenges its exclusive clonality[J].Phytopathology,1997,87:284-294.
    [32] Hebert TT. The perfect stage of Pyricularia grisea. Phytopatbology, 1971,61:83~87
    [33] Hayashi N, Li C Y, Li J R, et al. Distribution of fertile Magnaporthe grisea fungus pathogenic to rice in Yunnan Province, China. Annals of the Phytopathological Society of Japan, 1997, 63:316-323
    [34] Kumar J, Nelson R J, Zeigier R S. Population structure and dynamics of Magnaporthe grisea in the Indian Hhnalayas[J].Gnentics,1999,152:971-984.
    [35] 张传清,周明国.粤、桂、苏、皖四省稻瘟病菌有性态的研究.植物保护,2005,31(1):21-24
    [36] 黄俊丽,王贵学.稻瘟病菌致病性的分子遗传学研究进展.遗传,2005,3:492-498
    [37] Sweigard J A, Carroll A M, Kang S, et al. Identification, cloning and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell, 1995, 7(8):1221-1233.
    [38] Farman M L. Meiotic deletion at the BUF1 locus of the fungus Magnaporthe grisea is controlled by interaction with the homologous chromosome. Genetics, 2002, 160(1): 137-148.
    [39] Kachroo P. Leong S A, Chattoo B B. A sbort interspersed nuclear element from the rice blast fungus Magnaporthe grisea. Proc Natl Acad Sci USA, 1995, 92(24): 11125-11129.
    [40] Kang S, Lebrun M H, Farrall L, et al. Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol Plant Microbe Interact, 2001, φ14(5): 671-674.
    [41] Skinner D Z, Budde A D, Farman M L. Genome organization of Magnaporthe grisea: genetic map, electropboretic karyotype, and occurrence of repeated DNAs. Theor Appl Genet, 1993, 87:545-557.
    [42] Ou S H. Pathogen variability and host resistance in rice blast disease. Annual Review of Phytopatbology, 1980, 18:167-187.
    [43] Chu OMY, LI HW.Cytological studies of Piricularia oryzae Cav [J]. Bot. Bull. Acad. Sin, 1965, 6:116-130.
    [44] Suzuki, H. Origin of variation in. Piricularia oryzae. 1965,3 111-149.
    [45] Leung H, Williams P H, Nuclear division and chromosome behavior during meiosis and ascospomgenesis in Pyriculcoria oryzae[J]. Canadian Journal of Botany, 1987, 65(1):112-123.
    [46] Hamer J E, Farrall L, Orbaach M J, et al. Host Species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen. Proceedings of the National Academy of Science U. S. A. 1989,86: 9981-9985.
    [47] Talbot N J, Salch Y, Ma M, et al. Karyotype variation within clonal lineages of the rice blast fungus, Maganporthe grisea. Appl Eviron Microbiol, 1993, 59: 585-593.
    [48] Skinner H B, Alb JG Whitters EA, et al. The Cwg2 + Gene from Sckizosaccharomyces Pombe Codes for the Subunit of a Geranylgeranyl Transferase Type I Required for Glucan Synthesis [J]. EMBO J, 1993, 12:4775-4784.
    [49] Balhadere P V, Talbot N J. Fungal pathogenicity-establishing infection. In: Dickson M(ed.) Molecular Plant Pathology (Annual Plant Review), 2000,4 : 1-25
    [50] Dickman M B, Yarden O. Serine/ threonine protein kinases and phosphatases in filamentous fungi. Fung Genet Biol, .1999,26:99-117
    [51] Nishida E, Gotoh Y. The MAP kinase cascade is essential for diverse signal trans-duction pathways. TIBS, 1993,18(April): 128-131
    [52] Beckerman JL, Ebbole DJ. MPGl, a gene encoding a fungal hydrophobin of Magnaporthe grisea is involved in surface recognition. Mol. Plant Microbe Interact. 1996,9,450-456.
    [53] DeZwaan T M, Carroll A M, Valent B, Magnaporthe grisea Pthllp is a novel membrane protein that mediates appressorinm differentiation in response to inductive substrate cues. Plant Cell, 1999. 11: 2013-2030.
    [54 ] Liu S, Dean R A. G protein α-subunit genes control growth, development and pathogenicity of Magnaporthe grisea. MPMI, 1997,10:1075-1086
    [55] Xu J R, Hamer J E. MAP kinase and cAMP singaling regulate infection structure formation and pathogenic growth in the blast fungus Magnaporthe grisea. Gene Dev, 1996, 10: 2696-706.
    [56] Deising H B, Werner S, Wernitz M. The role of fungal appressoria in plant infection. Microbes Infect, 2000, 2: 1631-1641.
    [57] Motoyama T, Imanishi K, Yamaguchi I. eDNA cloning, expression and mutagensis of scytalone dehydratase needed for pathogenicity of the rice blast fungus, Pyricularia grisea. Biosei Biotechnol Biochem, 62: 564-566.
    [58] Balhadere P V, Talbot N J. PDE1 encodes a P-ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell, 2001, 13: 1987-2004.
    [59] Howard R J. Breaching the outer barrier-cuticle and cell wall penetration. In: Carroll G C, Tudzynski P(ed.), The Mycota V. Plant Relationships, Part A, Berlin/Heidelberg:Springer-Verlag. 1997,43-60.
    [60] Viand M C,Balhadere P V,.Talbot N J.A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection[J].Plant Ce11,2002,14:917-930.
    [61] 许志刚.普通植物病理学.1997.北京:中国农业出版社
    [62] Keller H., Pamboukdjian N, Ponchet M, et al. Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell, 1999, 11(2):223-35.
    [63] Tang X, Xie M, Kim Y J, et al.Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell, 1999, 11(1), 15-29.
    [64] Song W Y, Wang G L, Chert L L, et al. 1995. A receptor kinase-like protein encoded by the rice disease resistanse gene Xa21. Science, 1995,270:1804-1806.
    [65] Yoshimura S, Yamaaouchi U, Katayose Y, et al. Expression of Xal, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci U S A, 1998, 95:1663-1668.
    [66] Wang Z X, Yano M, Yamauouchi U, et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999,19: 55-64.
    [67] Bryan GT, Wu K S, Farrall L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12(11):2033-2046.
    [68] Johal G S and Briggs S P. Reductase activity encoded by the Hml disease resistance gene in maize Science, 1992,258: 985-987
    [69] Whitham S, Dinesh-Kumar S P, Choi D, et al. The product of the tobacco mosaic virus resistance gene N: similarity to toil and the interleukin-1 receptor. Cell, 1994, 78, 1101-1115.
    [70] Jones D A, Thomas C M, Hammond-Kosack K E, et al. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science, 1994, 266, 789-793.
    [71] Thomas C M, Jones D A, Parniske M, et al. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell, 1997, 9, 2209-2224.
    [72] Ellis J G, Lawrence G J, Luck J E, et al. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 1999, 11,495-506.
    [73] Anderson C M, Wagner T A, Perret M, et al. WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Mol Biol, 2001, 47, 197-206.
    [74] Nicholas C N, Jeff D, Michael A, et al. Molecular characterization of the Rp1-D rust resistance haplotype and its mutations [J]. Plant Cell, 1999, 11:1365.
    [75] Dodds P N, Lawrence G J, Ellis JG. Six amino acid changes confined to the leucine-rich repeat β-strand/βturn motif determine the difference between the P and P2 rest resistance speciiicities in flax. The Plant Cell, 2001, 13: 495-506.
    [76] Ronald P C. The molecular basis of disease resistance in rice. Plant Mol Biol. 1997,35(12):179-186
    [77] Parniske M, Hammond-Kosack K.E, Goldstein C, et al. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 1997, 91:821-832.
    [78] Martin G B, Brommonschenkel S H, Chanwongse J, et al. Mapbased cloning of a protein kinase gene conferring disease resistance in tomato. Science, 1993, 262:1432-1436.
    [79] Ellisetal J, Dodds P, Pryor T. The generation of plant disease resistance gene specificities. Trends in Plant Science, 2000, 5: 373-379.
    [80] Baker B, Zambryski P, Staskawicz B J, et al. Signaling in plant-microbe interactions [J]. Science, 1997, 276:726-733.
    [81] Warren R F, Henk A, Mowery P, et al. A mutation within the lcucine-rich repeat domain of the Arabidopsis disease resistance gene RPS2 partially suppresses multiple bacterial and downy midew resistance genes [J]. Plant Cell, 1998, 10:1439-1450.
    [82] Hwang C F, Bhakta A V, Truesdell G M, et al,. Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant Cell, 2000, 12(8):1319-1329.
    [83] Axtell M J, McNellis T W, Mudgett M B, et al. Mutational analysis of the Arabidopsis RPS2 disease resistance gene and the corresponding pseudomonas syringae avrRpt2 avirulence gene. Mol Plant Microbe Interact, 2001, 14(2), 181-188.
    [84] Dinesh-Kumar S P, Tham W H, Baker B J. Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc Nail Acad Sci U S A, 2000, 97(26), 14789-94.
    [85] Tornero P, Chao R A, Lnthin W N, et al. Large-scale structure-function analysis of the Arabidopsis RPM1 disease resistance protein. Plant Cell. 2002, 14(2):435-50.
    [86] Van der Biezen E A, Freddie C T, Kahn K, et al. Arabidopsis RPP4 is a member of the RPP5 mulfigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant J, 2002, 29(4):439-451.
    [87] Falk A, Feys B J, Frost L N, et al. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Nail Acad Sci USA, 1999, 96:3292-3297.
    [88] Feys B J, Moisan L J, Newman M A, et al. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBOJ, 2001,20(19), 5400-11.
    [89] Century K S, Shapiro A D, Repetti P P, et al. NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 1997,278, 1963-1965.
    [90] Warren R F, Henk A, Mowery P, et al. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell, 1998, 10(9), 1439-1452.
    [91] Jorgensen J H. Effect of three sup-pressors on the expression of powdery, mildew resistance in barley. Genome, 1996, 39:492-498.
    [92] Muskett P R, Kahn K, Austin M J, et al. Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defenses against multiple pathogens. Plant Cell, 2002, 14(5):979-992.
    [93] Azevedo C, Sadanandom A, Kitagawa K, et al. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance Science. 2002,295(5562):2073-2076.
    [94] Shao F, Golstein C, Ade J, et al. Cleavage of Arabidopsis PBS1 by a bacterial type Ⅲ effector [J].Science,2003,301:1230-1233.
    [95] Flor HH. Current status of the gene-for-gene concept. Annual Review of Phytopathology, 1971,9: 275-296.
    [96] Tang X, Frederick R D, Zhou J, et al. Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pro Kinase. Science, 1996, 274:2060-2063.
    [97] Jia Y, McAdams S A, Bryan GT, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal, 2000, 19: 4004-4014.
    [98] Nimchuk Z, Rohmer L, Chang J H, et al. Knowing the dancer from the dance: R-gene products and their interactions with other proteins from host and pathogen. Current Opinion in Plant Biology, 2001, 4: 288-294.
    [99] Yu I C, Parker J and Bent A F. Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dndl mutant. Proc Natl Acad Sci USA, 1998, 95:7819-7824.
    [100] Ren T, Qu F, Morris T J. HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle vires. Plant Cell, 2000, 12(10):1917-1926.
    [101] 李落叶,井金学.稻瘟病抗性基因的分子定位及克隆.中国农学通报,2006,22(1):49-53.
    [102] Wang GL, Mackill DJ, Bonman JM, et al. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics, 1994; 136: 1421-1434.
    [103] 吴建利,庄杰云,柴荣耀,等.水稻抗穗瘟基因的分子定位.植物病理学报,2000,30(2):111-115.
    [104] Wang Z X, Yanamouchi U, Yano M, et al. Expression of the Pi-b rice-blast-resistance gene family is up-regulated by environmental conditions favoring infection and by chemical signals that trigger secondary plant defenses. Plant Molecular Biology, 2001, 47:653-661.
    [105] Li X, Ning S B, Song Y C, et al. Comparative physical localization of rice Pi-b gene and its linked RFLP markers in Oryza sativa O.officinalis and Zea mays. Acta Botanica Sinica, 2002, 44(1):49-54.
    [106] Orbach M J, Farrall L, Sweigard J A, et al. Telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell., 2000, 12(11):2019-32.
    [107] Rybka K, Miyamoto M, Ando I, et al. High resolution mapping of the indica-derived rice blast resistance gene Ⅱ Pi-ta and Pi-to and a consideration of their origin. Mol Plant-Microbe Interact, 1997, 10:517-524.
    [108] 王忠华,贾育林,吴殿星,等.水稻抗稻瘟病基因Pi-ta的分子标记辅助选择.作物学报,2004,30(12):1259-1265.
    [109] Jla Y L, Wang Z H, Singh P. Development of dominant rice blast Pi-ta resistance gene markers. Crop Sci, 2002, 42:2145-2149.
    [110] Jia Y L, Wang Z H, Fjellstrom R G et al. Rice Pi-ta gene confers resistance to two major pathotypes of the rice blast fungus in the US. Phytopathology, 2004, 94:296-301.
    [111] Liu G, Lu G, Zeng L, et al. Two broad-spectrum blast resistance genes, Pi-9(t) and Pi-2(t), are physi cally linked on rice chromosome 6. Mol Genet Genomics, 2002, 267:472-480.
    [112] Qu S H, Liu G F, Zhou B, et al. The Broad-Spectrum Blast Resistance Gene Pi9 Encodes an NBS-LRS Protein and is a Member of a Multigene Family in Rice [J].Genetics, 2006, 172:1901-1914.
    [113] Zhou B, Qu S, Lin G et al. The eight amino acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe In, 2006, 19:1216-1228.
    [114] Li S G, Ma Y Q, Wang Y P, et al. Genetic analysis and mapping of a blast resistance gene in a indica rice variety, Digu. Progress in Natural Science, 2000, 10(1):44-48.
    [115] Chert X W, Li S G Xu J C, et al. Identification of two blast resistance genes in a rice variety, Digu. Journal of Phytopathology. 2004, 152:77-85
    [116] Pan Q H., Wang L, Ikehashi H, et al. Identification of a New Blast Resistance Gene in the indica Rice Cultivar Kasalath Using Japanese Differential Cultivars and Isozyme Markers. Phytopathology 1996, 86(10):1071-1075.
    [117] Nagato Y, Yoshimura A. Report of the committee on gene symbolization, nomenclature and linkage group. Rice Genet Newsletter 1998, 15:13-74.
    [118] Chen X W, Shang J J, Chen DX,et al. A B-lectin receptor kinase gene conferring rice blast resistance. Plant Journal, 2006, 46(5):794-804.
    [119] 蒋婉如,王久林,庞汉华,等.野生稻抗瘟性鉴定抗病基因推断及抗性导入.中国农业科学,1996,29(6):21-28.
    [120] 王金英,江川.野生稻资源研究及其在水稻育种上利用现状.福建稻麦科技,2005,23(2):1-4.
    [121] 唐乐尘,张学博,邱红芳.杂交水稻抗瘟性的遗传系谱分析与优化组合.福建农业大学学报(自然科学版),1994,23(3):286-292.
    [122] 陈璋.水稻抗稻瘟病育种新技术新方法的研究.福建农业科技,1994,(1):24-25.
    [123] 郑祖玲,褚启人,张承妹,等.利用水稻花药培养筛选稻瘟病抗性突变体.植物学通报,1984,2(4):41-43.
    [124] 陈启峰,陈璋,王金陵,等.运用致病毒素筛选抗稻瘟病细胞突变体.遗传学报,1993,20(4):340-347.
    [125] 赵虔华,钟鸣,马慧,等.粳稻抗稻瘟病细胞突变体筛选技术体系的建立.安徽农业科学,2005,33(5):757-758.
    [126] 朴钟泽,牛景,李艳萍,等.利用病菌培养液离体筛选水稻抗稻瘟病植株研究.华北农学报,2002,17(3):94-98
    [127] 覃静萍,易自力,蒋建雄,等.转溶菌酶基因水稻转育籼稻亲本MH63的抗瘟性.湖南农业大学学报(自然科学版),2005,31(4):409-411.
    [128] 易自力,王紫萱,覃静萍,等.转溶菌酶基因水稻回交转育籼型杂交稻亲本.中国水稻科学2006,20(2)147-152.
    [129] 冯道荣,许新萍,卫剑文,等.使用双抗真菌蛋白基因提高水稻抗病性的研究.植物学报,1999,41(10):1187-1191.
    [130] 许明辉,唐柞舜,谭亚玲,等.几丁质酶-葡聚糖酶双价基因导入滇型杂交稻恢复系提高稻瘟病抗性的研究.遗传学报,2003,30(4):330-334.
    [131] 刘梅,覃宏涛,孙宗修,等.转基因水稻中ThEn-42基因的稳定遗传及其抗病性的提高[J].农业生物技术学报,2003,11(5):444-449.
    [132] 明小天,王莉江,安成才,等.利用土壤农杆菌将天花粉蛋白转入水稻植株并检测抗稻瘟病活性.科学通报.2000,45(19):1774-1778.
    [133] 王莉江,明小天,安成才,等.籼稻明恢63成熟种子愈伤组织的诱导及转基因水稻的抗性检测.生物工程学报,2002,18(3):323-326.
    [134] Sehaffrath U, Mauch F, Freydl E, et al. Constitutive expression of the defense-related Rrilb gene in transgenic rice plants confers enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol, 2000, (43):5966-5971.
    [135] 彭昊,王志兴,窦道龙,等.由根癌农杆菌介导将葡萄糖氧化酶基因转入水稻.农业生物技术学报,2003,11(1):16-29.
    [136] 黎军英,郭泽建,张炳欣.转PLA基因水稻抗稻瘟病性和过氧化物酶活性的研究.中国水稻科学,2004,18(4):303-308.
    [137] Gandikota M, de Kochko A, Chert L, et al. Development of transgenic rice plants expressing maize anthocytnin genes and increased blast resistance. Mol Breed, 2001, (7):73-83.
    [138] 田文忠,丁力,曹守云,等.植物抗毒素转化水稻和转基因植株的生物鉴定.植物学报,1998(10):801-805.
    [139] Krishnamurthy K, Balconi C, Sherwood J E, et al. Wheat puroindolines enhance fungal disease resistance in transgenic rice. Mol Plant-Microbe Interact, 2001, 14:1255-1260.
    [140] 徐晓晖,郭泽建,程志强,等.铁蛋白基因的水稻转化及其功能初步分析.浙江大学学报(农业与生命科学版),2003,29(1):49-54.
    [141] 许明辉,李成云,李进斌等.转溶菌基因水稻稻瘟病抗谱分析.中国农业科学,2003,36(4):387-392.
    [142] Tanksley S D,Young N D,Paterson A H,et al . RFLP mapping in plant breeding:new tools for old sciences. Biotechnology, 1989, (7):257-264.
    [143] 李仕贵,马玉清,王玉平,等.利用微卫星标记鉴定水稻的稻瘟病抗性.生物工程学报,2000,16(3):324-327.
    [144] Liu S P, Li X, Wang C Y, et al. Improvement of Resistance to Rice Blast in Zhenshan 97 by Molecular Marker-aided Selection. Acta Botanica Sinicu, 2003, 45 (11): 1346-1350.
    [145] 陈志伟,郑燕,吴为人,等.抗稻瘟病基因Pi-2(t)紧密连锁的SSR标记的筛选与应用.分子植物育种,2004。2(3):321-325.
    [146] 官华忠,陈志伟,潘润森等.通过标记辅助回交育种改良优质水稻保持系金山B-1的稻瘟病抗性.分子植物种,2006,4(1):49-53.
    [147] Narayanan, N N, Baisakh N, Veto Cruz C M ,et al .Molecular breeding for the development of blast and bacterial blight resistance in rice IR50 .Crop Science 2002,(42):2072-2079
    [148] Hittalmini S, Parco A, Mew T V, et al. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl. Genet, 2000,100: 1121-128.
    [149] 郑康乐,黄宁.遗传标记辅助选择在水稻改良中的应用前景.中国水稻科学,1997,19(2):40-44
    [150] 陈学伟,李仕贵,马玉清,等.水稻抗稻瘟病基因Pi-d(t)、Pi-b,Pi-ta2的聚合及分子标记选择[J].生物工程学报,2004,20(5):708-714.
    [151] 潘素君,戴良英,刘雄伦等.广谱抗稻瘟病基因Pi-9对籼稻的转化研究.分子植物育种,2006,4(5):650-654.
    [152] DeWit PJGM (1992). Molecular characterization of gene-forgene systems in plant-fungus interactions and theapplication of avirulence genes in control of plant pathogens. Annu Rev Phytopathol, 30: 391-418.
    [153] Hammond-Kosack K E, Harrison K, Jones J D G Developmentally regulated cell death on expression of the fungal avirulence gene Avr9 in tomato seedlings carrying the diseaes-reststance gene Cf9. Proc Natl Acad Sci USA.1994, 91:10445-10449.
    [154] Stirpe F, Barbieri M G Battelli M G, et al .Ribosome-inactivating proteins leads to increased fungal protection in transgenic tobacco plants. Bio/Teehnology, 1992, 10:405-412.
    [155] Strittmatter G. Inhibition of fungal disease development in plants by engineering controlled cell death. Bio Technology, 1995, 13: 1085-1089.[156] 毛盛勋,顾红雅,瞿礼嘉等.利用人工控制细胞死亡策略培育抗稻瘟病水稻.科学通报,2003,48(11):1169-1175.
    [157] Jefferson R.A.,Kavanagh T.A.,and Bevan M.W.,1987,GUS fusions:beta-glucuronidase as a sensitive and versatile gene fusion mrker in higher plants,EMBO J.,6(13):3901-3907
    [158] 凌忠专,孙昌其译,林世成校.稻瘟病与抗病育种.北京:农业出版社,1990
    [159] Silue D,Notteghem J L, Tharreau D.Evidence for a gene for gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem.Phytopathology,1992,82:577-580
    [160] 刘文萍,刘丽艳,吕晓波,等稻瘟病菌粗毒素的设备及其致病力的测定黑龙江农业科学1997,6:14-17
    [161] 俞朝,冯英,薛庆中.转基因抗虫水稻后代农艺性状变异的比较研究中国农学通报2006,22(10):75-79
    [162] Zhang J, Boone L, Kocz R, et al. At the maize/Agrobacterium interfaces: natural factors limiting host transformafion.Chem Biol, 2000, 7:611-621.
    [163] Matsubayashi Y, Takagi, L, Sakagami, Y. Phytosulfokine-α, a sulfated pentapeptide, stimulates the proliferation of rice cells by means of specific high-and low-affinity binding sites. Proc NatlAcad Sci USA, 1997, 94:13357-13362
    [164] Yang H, Matsubayashi Y, Nakamura K., Sakagami Y. Oryza sativa PSK gene encodes a precursor of phytosulfokine-α, a sulfated peptide growth factor found in plants. Proc. Natl. Acad Sci USA, 1999, 96:13560-13565
    [165] Matsubayashi Y, Goto T and Sakagami Y. Chemical nursing: phytosulfokine improves genetic transformation efficiency by promoting the proliferation of surviving cells on selective media.Plant cell reports, 2004, 23(11)155-158
    [166] Toki S, Hara N, Ono K, et al. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice The Plant Journal, 2006, 47 (6), 969-976.
    [167] Nishizawa Y, Nishio Z, Nakazono K, et al. Enhanced resistance to blast (Magnaporthe grisea) in transgenic japonica rice by constitutive expression of rice chitinase [J]. Theoretical and Applied Genetics,1999,99(3~4):383-390.
    [168] Konduru K, Michael J.Expression of wheat puroindoline genes in transgenic rice enhances grain softeness[J].Nature Biotechnology,2001,19:162-166.
    [169] Uchimiya H, Fujii S, Huang J, et al. Transgenic rice plants conferring increased tolerance to rice blast and multiple environmental stresses. MolBreed 2002, 9: 25-31.
    [170] Kankazi H, Nirasawa S, Saitoh H, et al. Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet 2002, 105: 809-814.
    [171] Coca M, Bortolotti C, Rnfat M, et al. Transgenic rice plants expressing the antifungal AFP protein fromAspargillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol, 2004 54: 245-259.
    [172] Coca M, Penas G, Gomez J, et al. Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta,2006,223(3):392-406.
    [173] Iloh K, Nagajima M, Shimamoto K. Silencing of waxy genes in rice containing wx transgenes. Mlol Gen Genel, 1997, 255:351-358.
    [174] Brich, R. G, Plant transformation: Problems and strategies for practical application, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, 48: 297-326.
    [175] Emani C, Sunilkumar G, Rathore KS. Transgenic silencing mad reactivation in sorghum[J]. Plant Science, 2002, 162: 181-192.
    [176] Arencibia A, Gentinetta E, Cuzzoni, et al. Molecular manlysis of the genome of transgenic rice (Oryza sativa L.) plants produced via particle bombardment or intact cell electroporation. MolecularBreeding, 1998, 4: 99-109.
    [177] 孙伯铮,冉学忠,王立敏.水稻转基因再生植株突变体筛选的研究.辽宁农业科学,1998,(6):7-9.
    [178] 覃静萍.转溶菌霉基因水稻转育籼稻亲本MH63的抗瘟性鉴定.湖南农业大学学报报,2005,31(4),409-411.
    [179] 易自力,王紫萱,覃静萍,等.转溶菌酶基因水稻回交转育籼型杂交稻亲本.中国水稻科学,2006,20(2):147-152.
    [180] Cao M X, Huang J Q Wei ZM, et al. Agrobacterium-mediated multiple gene transformation in rice using a single vector. Journal of Integrative Plant Biology.2005, 47(2): 233-242.
    [181] Kohli A, Griffiths S,Palacios N,Twyman R M,Vain P, Laurie D A, Christou P.Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals are.combination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology-mediated recombination.Plant J,1999,17:591-601.
    [182] Cuwming J, Ho M W, Ryan A. Hazardous CaMV promoter? Nature Biotechnol, 2000, 18:363.
    [1] Itoh, J I, Nonomura, K I, Ikeda K, et al., Rice plant development: from zygote to spikelet. Plant Cell Physiol, 2005, 46(1): 23-47.
    [2] Han C D,Coe E H, Martienssen R A. Molecular cloning and characterization of iojap(ij), a pattern striping gene of maize. EMBO J, 1992, 11(11):4037-4046.
    [3] Carol P D, Stevenson C Bisanz J, et al. Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene de, saturation. Plant Cell, 1999, 11:57-68.
    [4] Chatterjce, M, Sparvoli S, Edmunds C, et al. DAG, a gone required for chloroplast diferentiafion and palisade development inAntirrhinum majus. EMBO J, 1996, 15, 4194-4207.
    [5] Keddie, J S, Carroll B, Jones J D. The DCL gene of tomato is required for chloroplast development and palisade cell morphogenesis in leaves. EMBO J, 1996, 15: 4208-4217.
    [6] 白素兰,刘永胜,孙敬三,等.水稻颖花开裂SRS突变体的鉴定.植物学报,2000,42(2):122-125.
    [7] 吴先军,王彬,韩赞平,等.水稻长颖花突变体LRS的鉴定.中国农业科学,2004,37(3):453-455.
    [8] Zhang X M, Li S G, Wang Y P, et al. Morphogenesis, anatomical observation and genetic analysis of a long hull floral organ mutant in rice. Journal of Integrative Plant Biology, 2004, 46 (4): 451-456.
    [9] Jcon J S, Jang S, Lee S, et al. Leafy hull sterilel is a homeotic mutation in a rice MADS box gene affecting rice flower development. The Plant Cell, 2000, 12, 871-884.
    [10] 罗琼,周开达,刘国庆,等.水稻无内稃突变体的遗传分析和基因定位.遗传学报,2002,29(3):230-234.
    [11] 李云峰,罗洪发,杨正林,等.水稻雄蕊雌蕊化突变体的遗传分析.中国水稻科,2004,18(6):4995-5002.
    [12] Wang W M, Xing S C, Zheng X W, et al. Study on the homologous sequences of copia-like retrotransposons in a twin-ovary mutant of rice. Journal of Integrative Plant Biology, 2000, 42(1):43-49.
    [13] Jiango L, Qian O, Mao, Let al. Characterization of the rice floral organ number mutant fon3. Journal of Integrative Plant Biology, 2005, 47 (1): 100-106.
    [14] Librojo A L and Khush G S. Chromosomal location of some mutant genes through the use of primary trisomics in rice. Rice Genetics, 1986, 245-249.
    [15] Nagasawa, N, Miyoshi, M, Sano Y, et al. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development, 2003, 130, 705-718.
    [16] 罗琼,周开达,王文明,等.一个新的水稻叶片和雌蕊发育异常突变体的遗传分析及其基因的分子标记定位.科学通报,2001,46(5):1277-1280
    [17] Leung H, Wu C, Baraoidan M, et al, Deletion mutants for functional genomics:progress in phenotyping, sequence assignment,and database development,In:Khush G,Brat D.,and Hardy B.(eds.),Rice Genetics Ⅳ,New Delhi Science Publishers,Inc. 2001,pp.239-251
    [18] 朱旭东,陈红旗,罗达,等.水稻中花11辐射突变体的分离与鉴定.中国水稻科学,2003,17:205-210
    [19] Maluszynski M, Nichterlein K, van Zanten L, et al. Official released mutant varieties-the FAO/IAEA database. Mutation Breed. 2000, 12: 1-88.
    [20] Hirochika H, Sugimoto K, Otsuki Y, et al. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA ,1996, 93 (15):7783-7788
    [21] 林钰琼,刘松,傅亚萍,等.T-DNA插入水稻突变体库的叶绿素和净光合速率变化[J]中国水稻科学,2003,(04):369-372
    [22] Jung H K, Jung H R, Chong H Y. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol,2003,5:463-472
    [23] 黄晓群,赵海新,董春林,等.水稻叶绿素合成缺陷突变体及其生物学研究进展.西北植物学报2005,25(8):1685-1691
    [24] 吴殿星,夏英武,舒庆尧.植物叶绿素突变体的研究及其应用探讨.中国农学通报,1995,11(4):36-39.
    [25] 赵孔南,陈秋方.植物辐射遗传育种研究进展.北京:原子能出版社,1989:28-30.27.
    [26] Nasyrov YS. Genetic control of photosynthesis and improving of crop productivity. Annual Review of Plant Physiology, 1978,29, 215-237.
    [27] Kevin C Vaughn and Kenneth G Wilson. An ultrastruetural survey of plastome mutant of hosta. Cytobios, 1980,28(110):71-83.
    [28] 郭蔼光,王振镒,王保莉.植物生理学报,1996,22(2):130-136.
    [29] Falbel TG, Staehelin LA, Adams WW Ⅲ. Analysis of xanthophyll cycle carotenoidls and chlorophyll-deficient mutants of wheat and barley. Photosynth Res, 1994, 42: 191-202.
    [30] 何瑞锋,丁毅,余金洪.水稻温敏叶绿素突变体叶片蛋白的双向电泳分析.作物学报 2001,27(6):875-879.
    [31] 苏小静,汪沛洪.小麦突变体返白系返白机理的研究Ⅰ返白阶段叶绿体超微结构观察[J].西北农业大学学报,1990,18(2):73-76.
    [32] 孙敬三,王敬驹,朱自清.水稻白化苗的亚显微结构。中国科学,1974,6:628-633.
    [33] 陈湘宁,李玉湘,李继耕.水稻、小麦花药培养白化苗质体亚显微结构和蛋白质的研究[J].遗传学报,1988,15(2):95-101.
    [34] 吴殿星,舒庆尧,夏英武,等.水稻转绿型白化突变系W25的叶绿体超微结构研究.浙江农业大学学报,1997,23(4):451-452.
    [35] 邵继荣,王玉忠,刘永胜,等.水稻温敏型突变体叶片间断失绿的超微结构。植物学报,1999,41(1):20-24.
    [36] Schwarz HP and Kloppstech K. Effects of nuclear gen mutations on the structure and function of plastids in pea.The fight-harvesting chlorophyll a/b protein. Planta 1982, 155: 116-123.
    [37] 翁晓燕.水稻Rubisco活化酶及其光合作用调节机理的研究.浙江农业大学学报,1999,25:263-266.
    [38] 林植芳,彭长连,徐信兰.兼性CAM植物长叶景天叶片在C3和CAM型时的光氧化作用.植物学报,2003,45(3):301-306.
    [39] 谭新星,许大全,汤泽生.叶绿素缺乏的大麦突变体的光合作用和叶绿素荧光[J].植物生理学报.1996,22(1):51-57.
    [40] Nasyrov Y S. Genetic control of photosynthesis and improving of crop productivity. Ann Rev Plant Physiol,1978,29: 215-237.
    [41] Williams N D, Joppa L R, Duysen M E. Inheritance of three chlorophyll-deficient mutant of common wheat. Crop Science.1985, 25: 1023-1025.
    [42] Correns C. Vererbungsversuche mit blass (gelb) grunen und buntblat-trigen Sippen bei Mirabilis Jalapa, Urtica pilulifera, und Lunaria annua, Zeitsch.Ind.Abst.Vererb, 1909, 1:291-329.
    [43] Ris H, Plant W. Ultrastructure of DNA containing area in the chloroplast of Chlamydomonas.J Cell Biol, 1962,13:383-391.
    [44] Maliga, P. Mobile plastid genes. Nature, 2003, 422, 31-32.
    [45] Sugiura M. The chloroplast genome [J].Plant Mol Biol, 1992, 19:149-168.
    [46] Ogihara Y, Ohsawa T. Molecular analysis of the complete set of length mutations found in the ploastomes of Triticum-Aegilops species. Genome, 2002, 45: 956-962
    [47] Hagemann R, Schroder M B. The cytological basis of plastid inheritance in angiosperms[J]. Protoplasma, 1989, 152: 57-64
    [48] 李玉湘,李继耕.玉米叶绿体突变系中叶绿素蛋白复合体的研究[J].遗传学报,1982,9(5):344-349.
    [49] Palmer R G and Maseia P N. Genetics and ultra-structure of a cytoplasmically inherited yellow mutant in soybeans. Genetics, 1980, 95: 985-1000.
    [50] Shoemaker R. C, Palmer R G, Atherly A G. Preparation of chloroplast DNA-enriched DNA samples from soybean. Plant Molecular Biology Reporter,1984, 2: 15-20.
    [51] Ray, DT and McCreight J D. Yellow-tip: a cytoplasmically inherited trait in melon (Cucumis melo L.). Hered 1996, 87: 245-247.
    [52] 于海莉,孙志强.一个新的大豆细胞质黄化突变体的初步研究.大豆科学,1992,11(2):120-126.
    [53] 刘友杰.激光诱变水稻新品种湘早籼8号的选育.中国激光遗传育种与激光生物学研究,1992,湖南师范大学出版社.
    [54] Martinez-Zapater J M. Genetic analysis of variegated mutants in Arabidopsis. Journal of Heredity, 1993, 84, 138-140.
    [55] Chen M, Jensen M & Rodermel S R. The yellow variegated mutant of Arabidopsis is plastid autonomous and delayed in chloroplast biogenesis. Journal of Heredity, 1999, 90, 207-214.
    [56] Chen M, Choi Y, Voytas D F et al. Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease. Plant Journal, 2000, 22, 303-313.
    [57] Redei G P. Somatic instability caused by a cysteine-sensitive gene in Arabidopsis. Science, 1963,139, 767-769.
    [58] Aluru M, Bae H, Wu D et al. The Arabidopsis immutans mutation affects plastid differentiation and the morphogenesis of white and green sectors in variegated plants. Plant Physiology, 2001, 127, 67-77.
    [59] Rosso D, Ivanov A G, Fu A, et al. IMMUTANS does not act as a stress-induced safety valve in the protection of the photosynthetic apparatus of Arabidopsis thaliana during steady state photosynthesis. Plant Physiology, 2006, 142, 574-585.
    [60] Fei Y, Aigen F, Maneesha A. Variegation mutants and mechanisms of chloroplast biogenesis. Plant Cell and Environment, 2007, 30, 350-365.
    [61] Mlk Nilan RA. The cytology and genetics of barley, 1951-1962 Research Studies (Washington State University), 1964,3,2:1-278.
    [62] Von Wettstein, D, Henningsen K W, Boynton J E, et al. The genic control of chloroplast development in barley. In Autonomy and Biogenesis of Mitochondria and Chloroplasts, N.K. Boardman, A. W. Linane, and R. M. Smillie, Eds (Amsterdam: North Holland), 1971, pp. 205-223.
    [63] Melvin D Epp. Nuclear gene-induced plastome mutations in Oenothera hookeri. I. Genetic analysis. Genetics, 1973, 75: 465-483.
    [64] Lin BY, Yu H J. Inheritance of a striped-leaf mutant is associated with cytoplasmic genome in maize TAG, 1995, 91: 915-920.
    [65] Stroup D, Genic induction and maternal transntssion of variegation in Zea nays. Hered 1970, 61: 139-111.
    [66] Redei GP. Extra-chromosomal mutability determined by a nuclear gene locus in Arabidopsis. Mutation Research, 1973, 18, 149-162.
    [67] Martinez-Zapater J M, Gil P, Capel Jet al. Mutations at the Arabidopsis CHM locus promote rearrangements of the mitochondrial genome. Plant Cell1, 992, 4, 889-899.
    [68] Abdelnoor RV, Yule R, Elo A, et al. Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to routs. Proceedings of the National Academy of Sciences of the USA, 2003, 100, 5968-5973.
    [69] Newton K. & Coe E J. Mitochondrial DNA changes in abnormal growth mutants of maize. Proceedings of the National Academy of Sciences of the USA, 1986,83, 7363-7366.
    [70] Newton K J, Knudsen C, Gabay-Laughnan S, et al. An abnormal growth mutant in maize has a defective mitochondrial cytochrome oxidase gene. Plant Cell, 1990, 2, 107-113.
    [71] Gabay-Laughnan S & Newton K J. Mitochondrial mutations in maize. Maydica 2005,50, 349-359.
    [72] Lauer M, Knudsen C, Newton K J, et al. A partially deleted mitochondrial, cytochrome oxidase gene in the NCS6 abnormal growth mutant of maize. New Biol, 1990, 2: 179-186.
    [73] Bonnett H T, Djurberg I, Fajardo M, et al. A mutation causing variegation and abnormal development in tobacco is associated with an altered mitochondrial DNA. Plant Journal, 1993, 3, 519-525.
    [74] Bonnema A B, Castillo C, Reiter N, et al. Molecular and Ultrastructural analysis of a nonchromosomal variegated mutant. Tomato mitochondrial mutants that cause abnormal leaf development. Plant Physiology, 1995, 109, 385-392.
    [75] Sakamoto W, Zaltsman A, Adam Z, et al. Coordinated regulation and complex formation of yellow variegated 1 and yellow variegated 2, chloroplastic FtsH metalloproteases involved in the repair cycle of photosystem Ⅱ in Arabidopsis thylakoid membranes. Plant Cell, 2003, 15, 2843-2855.
    [76] 马国荣,刘佑斌,盖钧镒,等.大豆细胞质遗传芽黄突变体的发现.作物学报,1994,20(3):334-337.
    [77] Simon B, Yair H, Ali N, et al. The peroxisomal glycolate oxidase gene is differentially expressed in yellow and white sectors of the DP1 variegated tobacco mutant. Physiologia Plantarum, 110(1): 120-126.
    [78] 钱前,朱旭东,曾大力,等.细胞质基因控制的新特异材料白绿苗的研究[J].作物品种资源,1996,(4):11-12.
    [79] Haughn G W, Somerville C R. Genetic control of morphogenesis in Arabidopsis. Dev Genet 1988, 9:73-89.
    [80] Schwatrz-Sommer Z, Huijser P, Nacken W, et al. Genetic control of development: homeotic genes in Antirrhinum majus. Science, 1990, 250: 931-936.
    [81] Coen E S and Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353: 31-37.
    [82] Colombo L, Franken J, Koetje E, et al. The petunia MADS box gene FBP11 determines ovule identity [J].Plant Cell, 1995, 7:1859-1868.
    [83] Angenent G C, Colombo L. Molecular control of ovule development [J]. TRENDS Plant Sci, 1996, 1: 228-232.
    [84] Thiessen G and Saedler H. Floral quartets. Nature, 2001, 409: 469-471.
    [85] Ditta G, Pinyopich A, Rubles P. The gene of arabidopsis thaliana functions in floral organ and meristem identify. Curr Biol, 2004, 14: 1935-1940.
    [86] Krizk B A and Fletcher J C. Molecular mechanisms of flower development: an armchair guide. Nature Reviews Genetics, 2005,6: 688-698.
    [87] 李贵生,孟征,孔宏智,等.ABC模型与进化研究.科学通报,2003,48(23):2415-2422.
    [88] Sessions A, Yanofsky M F, Weigel D. Patterning the floral medstem. Semin Cell Dev Biol, 1998, 9:221-226.
    [89] Parcy F, Nilsson O, Busch M, et al. A genetic frame work for floral patterning Nature 1998, 395:561-566.
    [90] Kyozuka, J, Shimamoto K. Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol, 2002, 43, 130-135.
    [91] Komatsu M, Mackawa M, Shimamoto K. et al. Genes determine the inflorescence, The LAX1 and FRIZZY PANICLE 2architecture of rice by controlling rachis-branch and spikelet development. Dev. Biol,2001,21(2): 364-73.
    [92] Ma H, Pampilis C D. The ABCs of floral evolution. Cell, 2000, 101: 569-579.
    [93] Ambrose B A, Lerner D R, Ciced P, et al. Molecular and genetics analyses of Silkyl gene reveal conservation in floral organ specification between eudicots andmonocots. Molecular Cell, 2000, 5:569-579.
    [94] Kang HG, Jeon J S. Identity genes from Lee S, et al. Identification of class B and class C floral organ rice. Plant Mol Biol, 1998, 38: 1021-1029.
    [95] Kempin, SA, Savidge, B, Yanofsky, M F. Molecular basis of the cauliflower phenotype in Arabidopsis, Science, 1995. 267: 322-32.
    [96] Gregis V, Sessa A, Colombo L, et al. AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell, 2006, 18: 1372-1382.
    [97] Kyozuka J, Takeshi K, Masakazu M, et al. Spatially and temporally regulated expression of rice MARS box gene with similarity to Arabidopsis class A, B and C genes. Plant Cell Physio, 2000, 41(6):710-718.
    [98] Jeon J S, Lee S, Jung K H, et al. T-DNA insertional mutagenesis for functional genomics in rice. Plant J, 2000, 22(6):561-570.
    [99] Lopez-Dee Z P, Wittich P, Enrico Pe-M, et al. OsMADS13, anovel rice M.ADS-box gene expressed during ovule development. Dev Genet, 1999. 25: 237-244.
    [100] Jeon J S, Jang S, Lee S, et al. Leafy hull sterilel is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell, 2000, 12: 871-884.
    [101] Prasad K, Sritam P, Kumar C S, et al. Ectopic expressionof rice reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Dev Genes Evol, 2001, 211: 281-290.
    [102] Pelucchi N, Fornara} F, Favalli C, et al. Comparative analysis of rise MADS-box genes expressed during flower development. Sex Plant Reprod. 2002, 15: 113-122.
    [103] Yamaguchi T, Nagasawa N, Kawasald S, et al. The YABBY gene DROOPINGLEAF regulates carpel specification and midrib development in Oryza saliva. The Plant Cell, 2004, 16: 500-510.
    [104] Suzaki T, Sato M, Ashikari M, et al. The gene FLORAL ORGAN NUMBERI regulates floral meristem size in rice and encodes a leucine-rich repeat receptorkinase orthologous to Arabidopsis CLAVATAI. Development, 2004, 131: 5649-5657.
    [105] Li J, Qian Q, Long M, et al. Characterization of the Rice Floral Organ Number Mutant fon3. Journal of Integrative Plant Biology, 2005, 47(1):100-106.
    [106] Chu H, Qian O, Liang W, et al. The FLORAL ORGAN NUMBER4 Gene Encoding a Putative Ortholog of Arabidopsis CLAVATA3 Regulates Apical Meristem Size in Rice Plant Physiol, 2006, 142: 1039-1052.
    [107] 何瑞锋,丁毅,余金洪,等.水稻温敏叶绿素突变体叶片超微结构的研究.武汉植物学研究,2001,19(1):1-5.
    [108] Lichtenthaler H K, Wellburn A R. Determinations of tota[carotenoids and chlorophyll a and h of leaf extracts in different sotvents[J]. Biochemica]Society Transaction. 1983, 603: 591-592.
    [109] Giannopolitis C N, Ries S K (1977). Superoxide dismutase. I occurrence in higher plants. Plant Physiol 59: 309-314.
    [110] 李合生,孙群,赵世杰,等.植物生理生化实验原理与技术。高等教育出版社,2000.
    [111] 王霞 候平 植物在干旱下的生理适应性 干旱区研究 2000,18(2)42-26
    [112] Whatley, J M. The ultrastructure of plastids in roots.Int. Rev. Cytol., 1983, 85: 175-220.
    [113] Steven R. Arabidopsis Variegation Mutants. In The Arabidopsis Book (Somerville, C.R. and Meyerowitz, E.M., eds) 1-28
    [114] 傅汀,王丽辉,林伟强,等.核基因突变引起的拟南芥菜叶片花斑及其机制.细胞生物学杂志,2005,27(5):505-508.
    [115] Burk DH, Liu B,Zhong R et al,2001.Katenin-like protein regulates normal cell biosythesis and elongation. Plant cell,13:807-827.
    [116] Thitamadee S, Tsachihara K, Hashimoto T, 2002. Microtubule basis for left-hand helical growth in Arabidopsis. Nature, 417: 193-196.
    [117] 汪得凯,傅亚萍,胡国成,等.水稻茎秆螺旋突变体ts-ta的鉴定及其遗传分析。中国水稻科学,2005,19(5):393-398.
    [118] Clark S E, Running M P, Meyerowitz E M. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development, 1993, 119: 397-418.
    [119] Kayes J M, Clark S E. CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development,1998,125:3 843-851.
    [120] Clark S E, Running M P, Meyerowitz E M. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting same processes as CLAVATA1. Development, 1995, 121: 2057-2067.
    [121] Kim C, Jeong D, An G. Molecular cloning and characterization of OsLRK1 encoding a putative receptor-like protein kinase from Oryza sativa. Plant Sci, 2000,152, 17-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700