毛细管放电等离子体状态研究及低气压X光激光输出
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
X光激光由于具有其他相干光源不可替代的优越特性,因而在许多领域都有着重要的应用。但是,因为X光激光需要很高的泵浦能量,使得泵浦源庞大,带来造价昂贵、能量转换效率低等问题限制了应用的推广。
     毛细管放电泵浦方案是实现低造价的小型化X光激光最成功的机制之一。自1994年国际上首次实现毛细管放电类氖氩46.9nm激光以来,许多国家都开展了这项研究,因为其激光产生条件的复杂性,到2000-2002年才又有三个研究小组获得了成功。本课题组在独立研制的毛细管放电装置上于2004年6月实现了激光输出,成为国际上第五家在这个领域获得成功的研究小组。本文介绍了在获得激光以后,我们在理论研究、装置改进和提高激光输出能量等方面取得的进展。
     毛细管放电X光激光的增益介质是放电等离子体,通过Z箍缩过程将泵浦能量转化为激光,因此研究等离子体的演变过程和产生激光时刻的状态对于深入理解激光产生的物理过程及光束质量的决定因素非常重要。本文在这两方面进行了研究,对于等离子体演变过程,基于对Z箍缩物理过程的合理分析,提出了对雪耙模型的改进,使其能够计算更完整的演变过程,并编制了数值模拟程序,特别是通过计算得到了等离子体的多次箍缩过程,这一理论结果是毛细管放电X光激光理论研究上的一个新的观点,并且与本装置上进行的实验观察有很好的吻合。对于产生激光时刻的等离子体状态,根据X光在等离子体中传播的理论模型编制了数值计算程序,突破了解析计算的局限性,使得可以对任意等离子体密度梯度和增益分布计算出激光的空间特性,再结合实验测量结果,就可以判断出产生激光时刻的等离子体状态。本文给出了几种典型密度梯度分布的计算结果,为进行等离子体状态的判断提供了依据。
     毛细管放电装置是一个很复杂的系统,包括放电脉冲产生系统、脉冲整形系统、预脉冲产生系统和毛细管放电与探测系统。为了克服装置本身对激光输出不利的因素,提高运行的稳定性,进行了大量的维修和改造工作。利用DQ128型汽车点火线圈重新设计制造了预脉冲触发装置,比原来的触发系统更简单可靠。自制了罗可夫斯基线圈,并对其进行了标定,代替原先使用的回流器测量放电电流,解决了无法准确测量流过毛细管电流的问题,为实验分析提供了更准确的依据。改造了Blumlein传输线的前置脉冲隔离开关,消除了长期困扰实验的前置脉冲对激光输出条件的破坏,使激光达到了稳定输出。最后对主开关和放电室进行了改进,提高了放电电流的幅值,抑制了放电室中的旁路放电,提高了装置的性能。
     首先在15厘米长毛细管上完成了大量的基础实验,包括通过一系列判别实验找到了X射线二极管(XRD)干扰信号的来源,并消除了干扰信号,保证了实验的顺利进行。深入研究了装置中各气体开关的性质,找到了系统联调的方法,保证了装置的稳定运行。完成了放电电流上升沿波形和预主脉冲延时对激光输出影响的实验,确定了最佳的电流波形和预主延时范围,获得了激光的稳定输出。其次,在20厘米毛细管上实现了激光输出,使激光输出能量进一步提高。通过改变放电电极形状和预脉冲电流幅值研究了放电参数对产生激光的影响,确定了最佳预脉冲电流幅值范围。实验验证了XRD探测的多个尖峰信号的来源,提出了XRD设计的改进方案。测量了激光的增益特性、方向性,测量增益系数为0.45cm-1,增益长度积为8.28。设计实验测量了激光的束轮廓,束散角为5.3mrad,并结合理论计算结果对等离子体状态进行了判别。最后,结合实验结果计算了激光输出能量,结果表明实验中获得的低气压(25Pa)下类氖氩46.9nm激光单脉冲能量达到了3.5μJ。
     本文的内容是理论研究与实验研究紧密结合的结果。这些结果加深了对毛细管放电泵浦产生激光机理的理解,提高了激光输出的能量,完成了激光增益特性和空间特性的测量,为进一步达到激光输出增益饱和指明了方向。
X-ray laser has important application in many fields because of its predominant characteristics that can not be replaced by other coherent light sources. At the same time, the bulky pumping facility of x-ray laser for very high pumping energy brings the problems of high cost and low conversion efficiency, which limit its widespread use.
     Capillary discharge pumped soft x-ray laser is one of the most successful schemes for low cost small-scale x-ray laser. Since the first demonstration of Ne-like argon laser at 46.9nm in a capillary discharge in 1994, many countries started this investigation, but until 2000-2002 only three other groups succeeded by reason of complexity of the lasing conditions. Our group demonstrated successful experiment on independently developed capillary discharge device in 2004 and became the fifth researching group in the world that succeeded in this field. This dissertation reports the progress of theoretic research, device improvement and increasing output energy after the first observation of lasing.
     The active medium of capillary discharge pumped laser is the discharge-created plasma and the pumping energy is converted to lasing emission through Z-pinch, so that investigating the evolution of plasma and the plasma estate of lasing time is very important for deep understanding the physics process of lasing and the key determining factor for quality of laser beam. This dissertation investigates the two aspects. For the evolution of plasma an improvement of“snow-plow”model, that allows calculating the whole evolution process of plasma, has been made based on reasonable analysis of Z-pinch process. A simulation program has been worked out and the calculated result show that the plasma is pinched several times. This result is in good agreement with the time of lasing onset and other experimental phenomena. For the plasma estate of lasing time a ray tracing code, that can break through the limit of the analytic calculation and compute the spatial characteristic of laser by any gain and plasma density distributions, has been programmed. And through the comparison between the simulated results and the measurements the plasma state of lasing time can be estimated. In this dissertation the calculation for several typical plasma density distributions is reported and can serve as the base for estimating the plasma estate.
     The capillary discharge device is a very complex system that includes the sections of discharge pulse generation, current pulse transmission, predischarge pulse generation and detection. A lot of maintaining and improving works has been conducted for overcoming the disadvantage of the device for laser output and increasing the stability. A new predischarge trigger generator, that is more simple and stable than the former one, has been designed and fabricated using the car ignition loop DQ128. A Rogowski coil, that instead of the former device can much more accurately measures the current flowing through capillary, has been made and calibrated. The insulation switch of inherent prepulse of the Blumlein transmission line has been improved, that results in removing the influence of the inherent prepulse and the stability of laser output. The improvement of the main switch and the discharge chamber was also conducted, that leads to increasing the discharge current amplitude and restraining the unwished discharge paths.
     Firstly, a lot of basic experiments were conducted on 15cm-long capillary. The source of XRD disturbing signal has been found and deleted by a series of experiments. The characteristics of the gas switches in the device have been experimentally studied and the adjusting method of experimental system has been found. Moreover, the influence of the rising slope waveform of discharge current and the delay time between prepulse and main pulse on the laser output also has been experimentally studied, so that the best current waveform and the most suitable range of the delay time has been determined. On basis of preceding works the stability of laser output has been reached. Secondly, the laser output has been realized also on 20cm-long capillary and the laser energy has been increased much more. The relationship between the discharge parameters and the laser output has been investigated through changing the shape of the discharge electrode and the amplitude of prepulse current and the optimal range of the prepulse amplitude were determined. The origin of the multi-spike of XRD signal has been verified experimentally and the improved electrocircuit scheme of the XRD has been proposed. The laser properties including gain coefficient and directivity has been measured, that results in the gain of 0.45cm-1 and the gain-length product of 8.28. The measurements of the laser beam profile have been conducted and the measured divergence is 3.8mrad, furthermore, the plasma state has been estimated by comparing the measured profile with the theoretical simulations. Finally, the laser energy has been calculated according to experimental results and the calculated value proves that the Ne-like 46.9nm laser energy of per pulse obtained at low pressure (25Pa) is above 1μJ.
     The contents of this dissertation are concluded by closely combining the theoretical study and the experimental study. The effort of this dissertation completed the following achievements: the mechanism of capillary discharge pumped laser was understood more deeply, the laser energy has been increased, and the laser properties of amplification and spatial intensity distribution has been measured. And all these achievements indicate the clear direction for increasing the laser output up to a gain saturated regime.
引文
1 T. Makimura, Y. Kenmotsu, H. Miyamoto et al.. Nanomachining of inorganic transparent materials using an X-ray exciton method. Fifth International Symposium on Laser Precision Microfabrication, Proceedings of SPIE - The International Society for Optical Engineering, 2004, 5662: 107~112
    2 N. Izumi, R. Snavely, G. Gregori et al.. Application of imaging plates to x-ray imaging and spectroscopy in laser plasma experiments. Review of Scientific Instruments 2006, 77(10):10E325
    3 H. Tanaka, K. Akinaga, A. Takahashi et al.. Development of EUV light source by CO2 laser-produced Xe plasma. Fifth International Symposium on Laser Precision Microfabrication, Proceedings of SPIE - The International Society for Optical Engineering, 2004, 5662: 361~366
    4 C.J. Gaeta, H. Rieger, C.E. Turcu et al.. High-power collimated laser-plasma source for proximity x-ray nanolithography. Journal of Vacuum Science and Technology B, 2003, 21: 280~287
    5 R. Toth, J.C. Kieffer, A. Krol et al.. Phase contrast micro-CT with an ultrafast laser-based hard x-ray. Laser-Generated, Synchrotron, and Other Laboratory X-Ray and EUV Sources, Optics, and Applications II, Proceedings of SPIE - The International Society for Optical Engineering 2005, 5918: 1~8
    6 C. Riekel, R. J. Davies. Applications of synchrotron radiation micro-focus techniques to the study of polymer and biopolymer fibers. Current Opinion in Colloid and Interface Science 2005, 9(6): 396~403
    7 S. Eisebitt, J. Luning, W.F. Schlotter et al.. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 2004, 432(7019): 885~888
    8 O. Renner, I. Uschmann, E. Forster. Diagnostic potential of advanced X-rayspectroscopy for investigation of hot dense plasmas. Laser and Particle Beams 2004, 22(1): 25~28
    9 H. Tang, O. Guilbaud, G. Jamelot et al.. Diagnostics of laser-induced plasma with soft X-ray (13.9 nm) bi-mirror interference microscopy. Applied Physics B 2004, 78(7-8): 975~977
    10 O. Renner, E. Forster, I. Uschmann et al.. High-precision x-ray diagnostics of laser-produced plasmas. Laser Optics 2003: Superintense Light Fields and Ultrafast Processes, Proceedings of SPIE - The International Society for Optical Engineering, 2004, 5482:1~10
    11 T.H. Maiman. Stimulated Optical Radiation in Ruby. Nature.1960, 187: 493~494
    12 D.L.Matthews, P.L.Hagelstein, M.D.Rosen, M.J.Eckat, N.M.Ceglio, A.U,Hazi. Demonstration of a Soft X-Ray Amplifier. Phys.Rev.Lett. 1985, 54(2):110~113
    13 王乃彦,新兴的强激光. 原子能出版社, 1992:108~110
    14 B.J. MacGowan et al.. Proc. SPIE, 1986, 588: 36
    15 淳于书泰,沈华忠,何绍棠等. 类氖锗 X 光激光增益实验. 强激光与粒子束. 1990,2:280~290
    16 王世绩,顾援,付思祖等. 高增益类氖锗软 X 光激光实验. 强激光与粒子束. 1990,2:273
    17 王世绩,顾援,周关林等. 类氖锗等离子体 X 激光饱和增益实验研究. 光学学报. 1991,12:1135~1136
    18 Shiji Wang, Y. Gu, G.L. Zhou et al.. Experimental reseach on saturated-gain for soft-x-ray laser from neon-like germanium plasma. Chinese Phys. Lett.1991, 8: 618
    19 Shiji Wang, Y. Gu, C.S. Mao et al.. Near diffraction limit output and gain saturation of soft x-ray laser. Chinese J. Laser. 1993, B2: 481~484
    20 D.M. O’Neil, C.L.S. Lewis, D. Neely et al.. Characterization of soft x-ray amplification observed in Ne-like germanium. Opt. Commum. 1990, 75: 406~412
    21 C.L.S. Lewis et al.. Proc. SPIE, 1991, 1551: 49
    22 B. Rus, A. Carillon, B. Gauthe et al.. Observation of intense soft-x-ray lasingat the J=0 to J=1 transition in neonlike zinc. J. Opt. Soc. Am. B. 1994, 11: 564~573
    23 Y. Kato et al.. Inst. Phys. Conf. Ser. No 125, Section 1, 1992: 9
    24 B.J. MacGowan, S. Maxon, P.L. Hagelstein et al.. Demonstration of soft-x-ray amplification in Nickel-like ions. Phys. Rev. Lett. 1987, 59: 2157~2160
    25 B.J. MacGowan, S. Maxon, C.J. Keane et al.. Soft-x-ray amplification at 50.3 ? in nickellike ytterbium. J. Opt. Soc. Am. B. 1988, 5: 1858~1863
    26 B.J. MacGowan, S. Maxon, L.B. Da Silva et al.. Demonstration of x-ray amplifier near the carbon K edge. Phy. Rev. Lett. 1990, 65: 420~423
    27 B.J. MacGowan, L.B. Da Silva, D.J. Fields et al.. Short wavelength nickel-like x-ray laser development. IPC116, X-Ray Lasers 1990, Ed. Tallents G.J., IOP Pub. Ltd., Bristol, 1991: 221~230
    28 J.L. Porter, R.B. Spielman, M.K. Matzen et al.. Demonstration of population inversion by resonant photopumping in a neon gas cell irradiated by a sodium Z pinch. Phys. Rev. Lett. 1992, 68: 796~799
    29 C. Chenai-Popovics, R. Corbett, C.J. Hooker et al.. Laser amplification at 18.2nm in recombining plasma from a laser-irradiated carbon fiber. Phys. Rev. Lett. 1987, 59: 2161~2164
    30 C.L.S. Lewis, R. Corbett, D. O’Neil et al.. Status of soft x-ray laser research at the Rutherford-Appleton Laboratory. Plasma Phys. Contr. Fus. 1988, 30: 35
    31 Jie Zhang, M.H. Key, P.A. Norreys et al.. Demonstration of high gain in a recombination XUV laser at 18.2nm driven by a 20J, 20ps glass laser. Phys. Rev. Lett. 1995, 74: 1335~1338
    32 Y. Nagata, K. Midorikawa, S. Kabodera et al.. Soft-x-ray amplification of the Lyman-α transition by optical-field-induced ionization. Phy. Rev. Lett. 1994, 71: 3774~3777
    33 B.E. Lemoff, G.Y. Yin, C.J. Gordon, C.P. Barty and S.E. Harris. Femtosecod-pulse-driven 10-Hz 41.8nm laser in Xe Ⅸ. J. Opt. Soc. Am. B. 1996, 13: 180~184
    34 D. Attwood, G. Sommargren, R. Beguiristain, K.Nguyen et al.. Appl. Opt.1993, 32: 7022
    35 C.K. Rhodes. AIP Conf. Proc. 1982, 90: 112
    36 Z. Chang, A. Rundquist, H. Wang, M.M. Murnane, and H. Kapteyn. Phys. Rev. Lett. 1997, 79: 2967
    37 T. Ditmier, J.K. Crane, H. Nyugen et al.. Phys. Rev. A. 1995, 51: R902
    38 A. Rundquist, C.G. Durfee Ⅲ, Z. Chang et al.. Science. 1998, 280: 1412
    39 J.J. Macklin, J.D. Kmetec, and C.L. Gordon Ⅲ. Phys. Rev. Lett. 1993, 70: 766
    40 A. L’Huilier, and Ph. Balcou. Phys. Rev. Lett. 1993, 70: 774
    41 N.H. Burnett and P.B. Corkum. J. Opt. Soc. Am. B. 1989, 6: 1195
    42 P.B. Corkum and N.H. Burnett. in “Short Wavelength Coherent Radiation: Generation and Applications”, OSA, North Falmouth, MA, edited by R.W. Falcone and J. Kirz, 1988, vol. 2: 225
    43 B.E Lemoff, G.Y. Yin, C.L. Gordon Ⅲ et al.. Phys. Rev. Lett. 1995, 74: 1574
    44 S. Sebban, R. Haroutunian, Ph. Balcou, G. Grillo et al.. Phys. Rev. Lett. 2001, 86: 3004
    45 P. Amendt, D.C. Eder and S.C. Wilks. X-ray lasing by optical-field-induced ionization. Phys. Rev. Lett. 1991, 66: 2589~2592
    46 D.C. Eder, P. Amendt and S.C. Wilks. Optical-field-ionization plasma x-ray lasers. Phys. Rev. A. 1992, 45: 6761~6772
    47 B.M. Penetrante and J.N. Bardsley. Residual energy in plasmas produced by intense subpicosecond lasers. Phys. Rev. A. 1991, 43: 3100~3113
    48 T. Donnelly et al.. edited by D. Eder and D. Matthews. in Proceedings of the Fourth International Conference on X-ray Lasers, Williamsburg, VA, 1994, AIP Conf. Proc. No. 332: 106
    49 K. Krushelnick, W. Tighe, and S. Suckewer. J. Opt. Soc. Am. B. 1996, 13: 306
    50 D.V. Korobkin, C.H. Nam and S. Suckewer. Demonstration of Soft X-Ray Lasing to Ground State in LiⅢ. Phys.Rev.Lett.1996, 77: 5206~5209
    51 P.V. Nickles, V.N. Shlyaptsev, M. Kalacknikov, M. Schnurer et al.. Phys. Rev. Lett. 1997, 78: 2748
    52 J. Dunn, A.L. Osterheld, R. Shepherd et al.. Phys. Rev. Lett. 1998, 78: 2825
    53 J. Dunn, Y. Li, A.L. Osterheld, J. Nilsen, J.R. Hunter et al.. Phys. Rev. Lett. 2000, 84: 4834
    54 Tetsuya Kawachi, Akira Sasaki, Momoko Tanaka et al.. Observation of Strong Soft-x-ray Amplification at 8.8 nm in the Transient Collisional-Excitation Scheme. Phys. Rev. A.2004, 69:033805
    55 J.J. Rocca, D.C. Beethe, and M.C. Marconi. Opt. Lett. 1988, 13: 565
    56 J.J. Rocca, V. Shlyaptsev, F.G. Tomasel et al.. Phys. Rev. Lett. 1994, 73(16): 2192
    57 J.J. Rocca, D.P. Clark, J.L.A. Chilla, and V.N. Shlyaptsev. Phys. Rev. Lett. 1996, 77(8): 1476
    58 F.G. Tomasel, J.J. Rocca, V.N. Shlyaptsev, and C.D. Macchietto. Phys. Rev. A. 1997, 55: 1437
    59 M. Frati, M. Seminario, and J.J. Rocca. Opt. Lett. 2000, 25: 1022
    60 C.D. Macchietto, B.R. Benware and J.J. Rocca. Opt. Lett. 1999, 24(No.16): 1115~1117
    61 J.J. Rocca, F.G. Tomasel, M.C. Marconi et al.. Phys. Plasmas 1995, 2 (No.6): 2547~2554
    62 F.G. Tomasel, V.N. Shlyaptsev, and J.J. Rocca. Phys. Rev. A. 1996, 54: 2474~2478
    63 B.R. Benware, C.H. Moreno, D.J. Burd, and J.J. Rocca. Opt. Lett. 1997, 22: 796~798
    64 M.C. Marconi, J.L.A. Chilla, C.H. Moreno et al.. Phys. Rev. Lett. 1997, 79: 2799~2802
    65 C.H. Moreno, M.C. Marconi, V.N. Shlyaptsev et al.. Phy. Rev. A. 1998, 58: 1509~1514
    66 B.R. Benware, C.D. Macchietto, C.H. Morero and J.J. Rocca. Phys. Rev. Lett.1998, 81(26): 5804~5807
    67 Y. Liu, M. Seminario, F.G. Tomasel et al.. Phy. Rev. A. 2001, 63: 033802
    68 K.A. Janulewicz, J.J. Rocca, F. Bortolotto et al.. Phy. Rev. A. 2001, 63: 033803
    69 S. Le Pape, Ph. Zeitoun, M. Idir et al.. Phys. Rev. Lett. 2002, 88(18): 183901 - 136 -
    70 J.J. Gonzalez, M. Frati, J.J. Rocca et al.. Phys. Rev. E. 2002, 65: 026404
    71 A.Ben-kish, M.shuker, R.A. Nemirovsky et al.. Initial and Boundary Conditions Influnence on Z-pinch Plasma for Collisional Excitation X-ray Lasers. X-ray lasers 1998, Inst.Phys.Conf.Ser. 1998, 159: 191~196.
    72 A.Ben-Kish, M.Shuker, R.A.Nemirovsky et al.. Plasma Dynamics in Capillary Discharge Soft X-Ray Lasers. Phys. Rev. Lett. 2001, 87: 015002
    73 A.Ben-kish, R.A.Nemirovsky, M.Shuker et al.. Parameteric Investigation of Capillary Discharge Experiment for Collisional Excitation X-ray lasers. Proc.SPIE 1999, 3776: 166~174
    74 R.A. Nemirovsky, A.Ben-kish, M.shuker et al.. Effect of Neutral Atoms on a Capillary-Discharge Z Pinch. Phys. Rev. Lett. 1999, 82: 3436~3439
    75 G. Tomassetti, A. Ritucci, A. Reale et al.. Eur. Phys. J. D. 2002, 19: 73~77
    76 A. Ritucci, G. Tomassetti, A. Reale et al.. Contrib. Plasma Phys. 2003, 43(2): 88~93
    77 G. Tomassetti, A. Ritucci, A. Reale et al.. Optics Communications 2004, 231: 403~411
    78 A. Ritucci, G. Tomassetti, A. Reale et al.. Appl. Phys. B. 2004, DOI: 10.1007/s00340-004-1442-5
    79 A. Ritucci, G. Tomassetti, A. Reale et al.. Phys. Rev. A. 2004, 70: 023818
    80 G.Niimi, Y.Hayashi, M.Nakajima et al.. Observation of Multi-pulse Soft X-ray Lasing in a Fast Capillary Discharge. J.Phys.D:Appl.Phys. 2001, 34: 2123~2126
    81 G.Niimi, Y.Hayashi, N. Sakamoto et al.. IEEE TRANSACTION ON PLASMA SCIENCE. 2002, 30(2): 616~621
    82 Y.Hayashi, Y. Xiao, N. Sakamoto et al.. Jpn. J. Appl. Phys. 2003, 42: 5285~5289
    83 Y.Hayashi, N. Sakamoto, Y. Zhao et al.. Plasma Sources Sci. Technol. 2004, 13: 675~679
    84 C. H. Moreno, M. C. Marconi, K. Kanizay, and J. J. Rocca. Soft-x-ray laser interferometry of a pinch discharge using a tabletop laser. Phys. Rev. E. 1999, 60(1): 911~917
    85 J. Filevich, K. Kanizay, M.C. Marconi et al.. Opt. Lett. 2000, 25(5): 356~358
    86 M.C. Marconi, C.H. Moreno, J.J. Rocca et al.. Phys. Rev. E. 2000, 62(5): 7209~7218
    87 M. Seminario, J.J. Rocca, R.A. Depine et al.. Applied Optics 2001, 40(30): 5539~5544
    88 J.J. Rocca, E.C. Hammarsten, E. Jankowska et al.. Phys. Plasmas 2003, 10(5): 2031~2038
    89 M.G. Capeluto, G. Vaschenko, M. Grisham et al.. IEEE Transactions on Nanotechnology 2006, 5(1): 3~7
    90 C. Steden and H.J. Kunze. Phys. Lett. A. 1990, 151(9): 534
    91 J.J. Rocca, O. D. Cortazar, B. Szapiro, K. Floyd, and F. G. Tomasel. Phys. Rev.E. 1993, 47: 1299
    92 J.J. Rocca, O. D. Cortazar, F. G. Tomasel, and B. Szapiro. Phys. Rev. E. 1993, 48: R2378
    93 Yunfeng Shao, Guoping Zhang. Propagation of x-ray laser in plasma. High Power Laser and Particle Beams (强激光与粒子束). 1992, 4 (2): 181~185 (in Chinese)
    94 I.A. Artioukov et al.. Determination of XUV Optical Constants by Reflectometry Using a High-Repetition Rate 46.9-nm Laser. IEEE J. Sel. Topics Quantum Electron. 1999, 5(6): 1495~1501
    95 J.J. Rocca, J. Filevich, E.C. Hammarsten et al.. Nuclear and Methods in Physics Research A. 2003, 507: 515~522
    96 B.M. Luther, Y.Wang, M. C. Marconi et al.. Guiding of Intense Laser Beams in Highly Ionized Plasma Columns Generated by a Fast Capillary Discharge. Phys.Rev.Lett.2004, 92(23): 235002-1~235002-4
    97 G. Vaschenko, F. Brizuela, C. Brewer et al.. Nano-imaging with Compact Extreme Ultraviolet Lasers. Optics and Photonics News.2005, 16(12): 25
    98 E.G. Hammarsten, B. Szapiro, E. Jankowska et al.. Soft X-ray Laser Diagnostics of Exploding Aluminum Wire Plasmas. Applied Physics B. 2004, 78(7-8): 933~937
    99 B.M. Luther, Y. Wang, M. Berrill et al.. Highly Ionized Ar Plasma Waveguides Generated by a Fast Capillary Discharge. IEEE Transactions on Plasma Science, v 33, n 2 I, April, 2005, Images in Plasma Science: 582~583
    100 M. Grisham, G. Vaschenko, C.S. Menoni et al.. Damage to Extreme-Ultraviolet Sc/Si Multilayer Mirrors Exposed to Intense 46.9-nm Laser Pulses. Optics Letters. 2004, 29(6): 620~622
    101 G. Vaschenko, M. Grisham, C.S. Menoni et al.. Study of Irradiation Damage of Sc/Si Multilayer Mirrors With a 46.9 nm Tabletop Laser. Proceedings of SPIE - The International Society for Optical Engineering, v 5534, Fourth Generation X-Ray Sources and Optics II, 2004: 53~57
    102 A. Ritucci, G. Tomassetti, A. Reale. Investigation of a Highly Saturated Soft X-ray Amplification In a Capillary Discharge Plasma Waveguide. Applied Physics B. 2004, 78(7-8): 965~969
    103 Y. Wang, B.M. Luther, M. Berrill. Capillary Discharge-Driven Metal Vapor Plasma Waveguides. Physical Review E. 2005, 72(2): 1~6
    104 G. Tomassetti, A. Ritucci, A. Reale. Two-Beam Interferometric Encoding of Photoluminescent Gratings in LiF Crystals By High-Brightness Tabletop Soft X-ray Laser. Applied Physics Letters. 2004, 85(18): 4163~4165
    105 Y. Wang, B.M. Luther, F. Pedaci. Dense Capillary Discharge Plasma Waveguide Containing Ag Ions. IEEE Transactions on Plasma Science. 2005, 33(2 I): 584~585
    106 王世绩,顾援,付思祖等. 双靶对接高增益类氖锗软 X 光激光实验研究.中国科学. 1991,A 缉(2):151
    107 S.J. Wang, Y. Gu, G.L. Zhou et al.. Experimental investigation of high-gain Ne-like Ge soft-x-ray laser by double-massive target coupling. J.Opt.Soc.Am. 1992, B9 (9): 360
    108 王世绩,顾援,周关林等. 多靶串接饱和增益软 X 光激光实验研究. 强激光与粒子束. 1992,4(2):165
    109 S.J. Wang, Y. Gu, G.L. Zhou et al.. Experimental study of a nearly saturated Ne-like Ge soft-x-ray laser by multi-target series coupling. in X-Ray lasers, 1992: p49
    110 王世绩,顾援,周关林等. 反射镜多靶串接增益饱和软 X 光激光实验. 强激光与粒子束. 1993,5(4):557
    111 熊岳南,周正良,倪云龙等. X 光激光行波放大实验对接技术. 强激光与粒子束.1995,7(3):557
    112 王世绩,顾援,林尊琪等. 双靶对接方法产生高强度 7.9nm 类镍钕 X 射线激光. 中国激光.1999,A26(4):299~302
    113 Z.Z. Xu, Z.Q. Zhang, P.Z. Fan et al.. Appl. Phys. B. 1990, 50(3): 147
    114 Z.Z. Xu, Z.Q. Zhang, P.Z. Fan et al.. Science in China A. 1990, 33(11): 1346
    115 陈时胜,徐至展,林礼煌等. 类锂铝离子 4f-3d 跃迁的软 X 射线 ASE 增益实验. 光学学报. 1990,10(9):769
    116 Z.Z. Xu, Z.P. Zhang, P.Z. Fan et al.. Soft-x-ray lasing and its spatial characteristics in a lithium-like silicon plasma. Appl. Phys. Lett. 1990, 56(24): 2370
    117 范品忠,徐至展,张正泉等. 类锂硅离子的软 X 射线放大. 中国激光. 1991,18(1):9
    118 徐至展,范品忠,张正泉等. 复合泵浦类锂硅离子软 X 射线激光. 中国科学. A 辑 1991,(4):414
    119 Z.Z. Xu, Z.P. Zhang, L.H. Lin et al.. Space- and time-resolved investigation of short wavelength x-ray laser in Li-like Ca ions. Appl. Phys. Lett. 1993, 63(8): 1023
    120 何绍堂,沈华忠,魏晓峰等.类锂铝 10.57 和 15.47 纳米 X 光激光增益研究. 强激光与粒子束.1990,2:291
    121 徐至展,张正泉,范品忠等.类铝硅离子 6f-3d 与 6d-3p 软 X 射线激光.中国激光.1990,17:104
    122 王骐,张杉杉,卢兴发等.光场电离类镍氪等离子体参数研究. 光学学报. 1999,19(2):201~205
    123 卢兴发,陈德应,张杉杉等. 强光场中原子的电离速率. 光学学报. 1999, 19(8):1014~1018
    124 陈德应, 卢兴发, 夏元钦等. 圆偏振光场电离电子能量分布的计算.光学学报. 1999,19(7):884~888
    125 Wang Qi, Yuanli Cheng, YongPeng Zhao et al.. X-Ray and Extreme Ultraviolet Emission from Small-Sized Kr Clusters. Chinese Physics Letters. 2003,20(8):1309~1311
    126 陈建新,王骐,夏元钦.激光偏振参量对光场感生电离电子碰撞机制等离子体电离参量的影响.光学学报.2003,3:66~70
    127 R.Li, Z. Z. Xu. Highly Efficient Transient Collisional Excitation X-ray Laser in Ni-like Mo Ions. Journal De Physique. 2001, 11(2): 227~234
    128 Shiji Wang, Y. Gu, C. S. Mao et al.. Chinese J. Laser. 1993, B2(6): 481~484
    129 崔大复,张杰. 中红外超短脉冲的产生及其研究的最新进展. 物理.1994, 23(3):173~178
    130 李玉同,张杰,陈黎明等.飞秒激光等离子体的光学诊断.中国科学.A 辑 2000,31(1):85~89
    131 李玉同,张杰,陈黎明等.对飞秒激光等离子体中成丝现象的研究. 物理学报.2001,50(2):204~208
    132 杨宏,张铁桥,王树峰等.钛蓝宝石飞秒超快光谱技术及其应用进展. 物理学报. 2000,49(7):1292~1296
    133 Z.Z. Xu, Y.S. Wang, K. Zhai et al.. Direct experimental evidence of influence of ionizations on high-order harmonic generation. Optics Communications. 1998, 158(15): 89~92
    134 王琛,傅思祖,顾援等.用于高温等离子体电子密度测量的摩尔偏折仪. 强激光与粒子束. 2000,12(4):467~470
    135 杨军,孙今人,王韬等.全面诊断 X 射线激光空间特性的研究. 中国科学.A辑 2000,30(11):1011~1018
    136 李承德,王丹翎,罗乐等.飞秒激光在三维微细体系中的应用. 物理. 2000,29(12):719~723
    137 韩国强,张覃鑫,吴江等.柱状等离子体状态的时空分辨诊断.强激光与粒子束 1993,5(2):165
    138 陈万年,王树森,陈斌等.用于 X 射线激光实验研究的列阵柱面透镜线聚焦系统.光学学报.1991,11(9):829
    139 张正泉,范品忠,赵世诚等.消像散掠入射光栅光谱仪和激光等离子体极紫外发射光谱.光学学报.1988,8(8):762
    140 何绍堂,陈渊,淳于书泰等.一台高分辨袖珍式掠入射光栅谱仪.强激光与粒子束.1990,2(4):455
    141 倪云龙,毛楚生,吴江等.平焦场光栅光谱仪.强激光与粒子束.1991,3(2):242
    142 范品忠,张正泉,赵世诚等.激光等离子体空间分辨 XUV 光谱技术.中国激光.1991,18(1):26 - 141 -
    143 范品忠,张正泉,周锦智等.消像散掠入射平场光栅谱仪及其在激光等离子体 XUV 光谱诊断中的应用.光学学报.1992,12(2):118
    144 周正良,倪云龙,顾援等.软 X 光消像散光栅谱仪.中国激光.1994,21(1):31
    145 付思祖,毛楚生,顾援等.用于线状等离子体观测的 X 光双狭缝相机. 强激光与粒子束.1991,3(1):79
    146 李英俊,张保汉,杨建伦等.一台入射距离为 155mm 的 XUV 平场光谱仪.强激光与粒子束.2000,12:582
    147 山冰,常增虎等.四通道 X 射线 MCP 行波选通分幅相机. 光子学报.1997, 26(5):722~724
    148 刘鹏,余祺祺,王骐等.抽运 X 光激光的台式毛细管快放电装置. 中国激光.2001,28(12):1071
    149 王骐,刘鹏,赵永蓬等.毛细管的阻抗特性研究. 中国激光. 2003,30(6):497~500
    150 程元丽,赵永蓬,高英建等. 低气压毛细管放电特性研究. 中国激光.2004,
    31(5):43~48
    151 王骐,程元丽,张新路等. 毛细管放电软 X 射线激光研究. 中国激光.2002,29(2):97~10
    152 李思宁,程元丽,余祺祺等. 毛细管放电软 X 光激光装置设计及分析. 哈尔滨工业大学学报.2005,37(5):604~607
    153 赵永蓬,程元丽,王骐等. 激励软 X 光激光的毛细管预—主脉冲放电装置. 强激光与粒子束. 2004,16(6):733~736
    154 吴辉,吴建强,赵永蓬等. 毛细管放电软 X 光激光预-主脉冲延时电路. 强激光与粒子束.2004,16(10):1255~1258
    155 郑无敌,彭惠民.毛细管放电类氖氩 X 光激光中的准稳态增益.强激光与粒子束.2002,14(1):1~5
    156 李英俊,许爱国,彭翰生等. X 射线激光在等离子体中传播过程的简化模拟研究. 计算物理.1998,15(1):48~52
    157 蓝可,张毓泉. 柱对称等离子体中逃逸概率近似公式. 计算物理.1995,12:401~406
    158 王骐,张新路,程元丽. X 射线激光在柱状等离子体中传播的理论研究.中国激光.2002,29(6):537~540
    159 李思宁,程元丽,赵永蓬等. 毛细管放电条件下类氖序列原子参量计算与分析. 光学学报 2004,24(11):1581~1584
    160 杜世刚. 等离子体物理. 原子能出版社,1998:85~87
    161 P.Vrba, M.Vrbova. Z-Pinch Evolution in Capillary Discharge. Contrib.Plasma Phys.2000, 40(5-6): 581~595
    162 R.A.London.Beam Optics of Exploding Foil Plasma X-Ray Lasers. Phys. Fluids. 1988, 31:184~192
    163 A 哈瑟加瓦著. 等离子体不稳定性和非线形效应. 王水译. 科学出版社, 1981:145~156
    164 刘鹏. 毛细管放电泵浦 X 光激光装置及荧光谱实验研究. 哈尔滨工业大学博士论文.2002:38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700