胚胎干细胞的分离培养与定向分化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,胚胎干细胞的研究主要集中在分离纯化、扩增技术和定向诱导分化几个方面。本研究以胚胎干细胞作为研究对象,研究内容共分以下两部分:
     第一部分主要是猪胚胎生殖细胞(EG)的分离培养研究。本实验室采用STO细胞作饲养层,在培养基中添加分化抑制因子的方法,已成功分离培养获得猪的EG细胞。为进一步探索猪EG细胞更为理想的培养体系,并获得能够稳定传代的EG细胞系,第一部分以三个实验展开了对猪EG细胞体外培养条件的进一步研究。
     实验一研究了条件培养基对猪EG细胞分离培养的影响。在原代分离猪PGCs的过程中,可以同时分离获得猪胎儿成纤维细胞(PEF)和胎儿心脏成纤维细胞(EHF);经培养纯化后,提取这两种细胞的RNA并反转录;RT-PCR检测结果表明,PEF和EHF中均表达猪的LIF基因。因此,分别收集两种细胞的培养液制成条件培养基,用来培养猪的EG细胞。分别使用两种条件培养基或将条件培养基与STO饲养层细胞联合使用来分离培养猪的EG细胞,结果发现条件培养基必须与饲养层细胞联合使用,才能维持EG细胞的增殖未分化状态。
     实验二研究了Knockout培养基对猪EG细胞分离培养的影响。本实验共分三组,其中实验组I为Knockout DMEM与Knockout SR组成的Knockout培养基,实验组II为Knockout DMEM/F-12+15%FCS的低渗培养基,对照组为DMEM+15%FCS的普通培养基,三个实验组中均添加了细胞生长因子。结果表明实验组I与对照组都可以获得能够传代的EG细胞,实验组I培养效果好于对照组;而实验组II不能维持EG细胞稳定传代。因此,Knockout DMEM与Knockout SR组成的Knockout培养基可以用于分离培养猪的EG细胞。
     实验三将PGCs与同源胎儿成纤维细胞共培养分离培养猪的EG细胞。培养获得的细胞经AKP染色,SSEA-1免疫荧光染色,转录因子Oct-4免疫荧光表达,核型分析,体外分化实验及电镜观察等多种方法进行鉴定,证明其具有胚胎干细胞的特征。因此,PGCs与同源胎儿成纤维细胞共培养的方法可以用于分离培养猪EG细胞。
     第二部分以小鼠ES细胞作为研究对象,分三个实验对不同诱导剂在胚胎干细胞定向分化为胰岛素分泌细胞(IPCs)中的作用以及基因转染方法诱导ES细胞分化为IPCs进行了初步探讨。实验一研究了GLP-1在诱导小鼠ES细胞向IPCs分化中的作用。诱导一周后,经DTZ染色鉴定,阳性细胞很少;诱导两周后,提取细胞总RNA,经RT-PCR检测发现,GLP-1可以使与胰腺发育相关的重要基因Pdx1的表达量上调,但诱导两周仍未能获得大量IPCs。
     实验二研究了bFGF在诱导小鼠ES细胞向IPCs分化中的作用。诱导后提取细胞总RNA,通过RT-PCR未能检测到IPCs相关基因的表达。实验结果表明,在本实验条件下,向培养基中单一添加bFGF并不能有效地诱导小鼠ES细胞向IPCs分化。
     实验三采用基因转染的方法将Pdx1基因与Isl1基因导入小鼠ES细胞诱导其分化。转染24h后,通过RT-PCR的方法检测到Pdx1基因与Isl1基因在小鼠ES细胞中过表达,其中Pdx1表达量明显上调,但是仍未检测到其它IPCs相关基因的表达。这一结果表明,转染时间不够,转染24h后过表达的基因未能诱导小鼠ES细胞的分化。但是由于过表达效果明显,如果添加其他诱导剂在培养基中,继续传代培养,将会有比较好的诱导结果。
Now,the work of Embryonic stem(ES)cells mainly focused on isolation and purification,passage and enlarge,inducement and differentiation. ES cells were research objective in this study,the research work included two parts:
     One part of the research was isolating and culturing porcine embryonic germ(EG)cells.We had got porcine EG cells when plating PGCs on STO feeder cells and adding differentiation inhibitory activities (DIA)in the medium. To find optimization culture system and get successive EG cells lines,this part was composed of three experiments to research the culture condition of porcine EG cells in.vitro.
     The first experiment discussed the effect of condition medium(CM)on isolating and culturing porcine EG cells.When isolating the PGCs,the porcine embryonic fibroblas(tPEF)and embryonic heart fibroblast(EHF)could be got. After culturing and purifying,we extracted RNA from two cells,then reverse transcripted them to cDNA. The results of RT-PCR showed that LIF gene expressed both in PEF and EHF. So, we collected the cell mediums and mixed them with DMEM to get CM. We cultured porcine EG cells using CM only or together with STO feeder cells. The results indicated porcine EG cells could be got only while using CM together with STO feeder cells.
     The second experiment discussed the effect of knockout medium on isolating and culturing porcine EG cells. The experiment group I was composed of Knockout DMEM and Knockout SR, the group II was Knockout DMEM/F-12+15%FCS,the control group was DMEM+15%FCS. The growth factors were supplemented in three groups. The results indicated that group I and control group could get the porcine EG cells,group I was better than control group;but group II could not maintain the EG cells. So group I could be used to isolate and culture porcine EG cells.
     The third experiment was isolating PGCs in co-culture with homologous fetal fibroblast to get porcine EG cells. The EG colonies were AKP-positive, reacted with SSEA-1 antibody and their immunity fluorescence staining of Oct-4 was positive. The EG cells had correct karyotype. The colonies placed in suspension culture in medium without growth factors differentiated into simple embryoid bodies(EBs)in vitro. The EG cells were adhesive by observing them using the scanning and transmission electron microscope. So we confirmed these cells have many characteristics of embryonic stem cells as described previously and they were EG cells. So porcine EG cells could be obtained by isolating PGCs in co-culture with homologous fetal fibroblast.
     Another part of the research included three experiments. It briefly discussed the effect of different inducers and different method on inducing mouse ES cells to insulin-producing cells(IPCs). The first experiment discussed the function of glucagons-like peptide-1(GLP-1)to inducing MES cells to IPCs. After one week,the DTZ-positive cells was little. Two weeks later,we extracted RNA from cells,the results of RT-PCR showed that GLP-1 improved the expression of Pdx1,but it could not induce MES to IPCs in two weeks.
     The second experiment discussed the function of bFGF to induce MES cells to IPCs. We extracted RNA from cells after inducing and checking the related genes expression of IPCs using RT-PCR. The results indicated,in this condition,MES could not be induced to IPCs when only adding bFGF into medium.
     The third experiment used a method of gene transfection to induce MES cells differentiation. Pdx1 gene and Isl1 gene were transfected to MES cells. About 24h later,Pdx1 gene and Isl1 genes overexpessed in MES cells,Pdx1 gene improved obviously,but other relational genes of IPCs could not be checked by RT-PCR.The results showed transfection time was not enough and the gene overexpressed for 24h in MES cells could not induce the cells differentiation. But the effect of gene overexpression was visibly. So the results maybe better,if we added the inducer into medium more and cultured the cells continuly.
引文
1. 安立龙,效梅,窦忠英,等. 分化抑制物对动物胚胎干细胞克隆率的影响. 动物医学进展,2001,22(2):45~48.
    2. 曹宁,熊舒原,江一平. 胚胎干细胞向皮肤细胞诱导分化研究进展. 国际生物医学工程杂志,2007,30(2):108~112.
    3. 曹谊林,周广东. 21世纪组织工程面临的机遇与挑战. 中华医学杂志,2005,85(36):2523~2525.
    4. 陈永珍,李芳,陈谦,等. 人胚胎成纤维细胞对人胚胎生殖细胞的作用. 解剖学杂志,2005,28(6):625~628.
    5. 丛笑倩,夏汉顺,徐露露,等. 外源 TGF-β1 基因在小鼠 ES 细胞中的表达及其对细胞分化的影响. 实验生物学报,1995,28:173~189.
    6. 丛笑倩,姚錱. ES 细胞分化为血管样结构的机理探讨——TGF-β1 在血管形成中的作用. 实验生物学报,1996,29(3):273~285.
    7. 杜宪兴,施渭康.转染 LIF 基因的胚胎干细胞的生物学特性与分化研究. 实验生物学报,1996,29(4):413~427.
    8. 冯书堂,褚武军,王雅春,等.中国五指山猪.北京:中国农业科技出版社,1999,30~50.
    9. 冯书堂,丛笑倩,刘立新,等.五指山近交猪胚胎生殖细胞(EG)嵌合体在我国移植产仔. 畜牧兽医学报,2005,36(3):311~312.
    10. 冯书堂,董晓,刘立新,等.猪原始生殖细胞(PGCs)建系因素的研究.畜牧兽医学报,2004,35(5):477~480.
    11. 华进联,窦忠英,李松,等. 自原始生殖细胞分离克隆小鼠 ES 细胞研究初报. 西北农林科技大学学报(自然科学版),2001,29(1):22~24.
    12. 李松,窦忠英,华进联,等. 从原始生殖细胞分离克隆牛胚胎干细胞的研究. 农业生物技术学报,2000,8(4):349~352.
    13. 刘兰英,杨琨,朱振宇等. 胚胎干细胞体外分化为心肌细胞诱导因素的探讨. 中国病理生理杂志,2000,16(5):389~392.
    14. 刘星霞,缪兵,李府,等. ES 细胞_D3 诱生的胰岛素分泌细胞及其分泌的胰岛素降糖活性的研究.山东大学学报(医学版),2005,42(8):671~674.
    15. 楼宜嘉,朱丹雁. 药物介导小鼠胚胎干细胞体外定向分化为心肌细胞. 浙江大学学报,2002,31(1):5~9.
    16. 孟国良,汤富酬,滕路等.小鼠胚胎干细胞(ES 细胞)建系和维持过程中的问题及对策.遗传,200l,23(3):292~294.
    17. 孟国良,滕路,邹冀中,等. 大鼠心脏细胞条件培养基对小鼠 ES 细胞特性的维持. 遗传学报,2001,28(10):911~920.
    18. 尚克刚,胡新立,李子玉,等. 饲养层对维持新建 ES 细胞系的影响. 北京大学学报(自然科学版),1994,30(4):500~507.
    19. 沈干,丛笑倩,刘晓音,等. 胚胎干细胞向神经细胞诱导分化的研究. 国外医学生物医学工程分册,2002,25(4):150~156.
    20. 王庆忠,刘以训,韩春生. 胚胎干细胞多潜能性维持的分子机制. 科学通报,2005,50(15): 1556~1566.
    21. 徐洁,丛笑倩,姚錱. 维生素 A 酸和双丁酰基环腺苷单磷酸对小鼠胚胎干细胞的诱导分化. 实验生物学报,1991,24(4):353~367.
    22. 张仁礼,李海标. 胚胎干细胞向表皮样干细胞分化体外条件的研究. 解剖学研究,2001,23(3): 201~203.
    23. 周光纪,屈纪富,徐海伟等.胚胎干细胞向胰岛素分泌细胞分化的体外诱导.第三军医大学学报,2006,28(9):903~906.
    24. 邹枕玮,郑启新. 胚胎干细胞在骨组织工程应用中的研究进展. 国际生物医学工程杂志,2007,30(3):145~146.
    25. Abbondanzo SJ, Cadi I, Stewact CL. Derivation of embryonic stem cell lines. Methods in enzymology, 1993, 225:803~855.
    26. Amit M, Carpenter MK, Inokuma MS, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol, 2000, 227:271~278.
    27. Ancey C, Corbi P, Froger J, et al. secretion of IL-6 IL-11 and LIF by human cardiomyocytes in primary culture.Cytokine, 2002, 18:199~205.
    28. Anderson JS, Bandi S, Kaufman DS, et al. Derivation of normal macrophages from human embryonic stem (hES) cells for applications in HIV gene therapy. Retrovirology, 2006, 3:24.
    29. Arufe MC, Lu M, Kubo A, et al. Directed differentiation of mouse embryonic stem cells into thyroid follicular cells. Endocrinology, 2006, 147(6):3007~3015.
    30. Ashizawa S, Brunicardi FC, Wang XP. PDX-1 and the pancreas. Pancreas, 2004, 28(2):109~120.
    31. Assady S, Maor G, Amit M, et al. Insulin production by human embryonic stem cells. Diabetes, 2001, 50(8):1691~1697.
    32. Baharvand H, Hashemi SM, Shahsavani M. Differentiation of human embryonic stem cells into functional hepatocyte-like cells in a serum-free adherent culture condition. Differentiation, 2007, Epub ahead of print.
    33. Bai L, Meredith G, Tuch BE. Glucagon-like peptide-1 enhances production of insulin in insulin-producing cells derived from mouse embryonic stem cells. Journal of Endocrinology, 2005, 186:343~352.
    34. Bain G, Kitchens D, Yao M, et al. Embryonic stem cells express neuronal properties in vitro. Dev Biol, 1995, 168(2):342~357.
    35. Bain G, Ray W, Yao M, et al. Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture. Biochem Biophys Res Commun, 1996, 223(3):691~694.
    36. Baker RK, Haendel MA, Swanson BJ, et al. In vitro preselection of gene-trapped embryonic stem cell clones for characterizing norel developmentally regulated genes in the mouse. Dev Biol, 1997, 185(2):201~214.
    37. Balconi G, Spagnuolo R, Dejana E. Development of endothelial cell lines from embryonic stem cells: a tool for studying genetically manipulated endothelial cells in vitro. Arterioscler Thromb Vasc Biol, 2000, 20(6):1443~1451.
    38. Berger CN, Strum KS. Self renewal of embryonic stem cells in the absence of feeder cells and exogenous leukaemia inhibitory factor. Growth Factor, 1997, 14(2-3):145~159.
    39. Blyszczuk P, Czyz J, Kania G, et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Pros Natl Acad Sci U S A, 2003, 100(3):998~1003.
    40. Bonni A, Sun Y, Nadal-Vicens M, et al. Regulation of gliogenesis in the central nevous system by JAK-STAT signaling pathway.Science, 1997, 278(5337):477~483.
    41. Brüstle O, Jones KN, Learish RD, et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science, 1999, 285(5428):754~756.
    42. Brüstle O, Spiro AC, Karram K, et al. In vitro-generated neural precursors participate in mammalian brain development. Proc Natl Acad Sci U S A, 1997, 94(26):14809~14814.
    43. Bulotta A, Hui H, Anastasi E, et al. Cultured pancreatic ductal cells undergo cell cycle re-distribution and beta-cell-like differentiation in response to glucagons-like peptide-1. J Mol Endocrinol, 2002, 29(3):347~360.
    44. Burant CF, Simeone DM. Connecting islet development and developing useful islets. Trends Endocrinol Metab, 2002, 13(2):48~49.
    45. Burdon T, Chambers I, Stracey C, et al. Signaling mechanisms regulating self-renewal and differentiation of pluripotent embryonic stem cells. Cells Tissues Organs, 1999, 165(3-4):131~143.
    46. Burdon T, Stracey C, Chamber I, et al. Suppression of SHP-2 and ERK singalling promotes self-renewal of mouse embryonic stem cells. Dev Biol, 1999, 210(1):30~43.
    47. Buttery LD, Bourne S, Xynos JD, et al. Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng, 2001, 7(1):89~99.
    48. Chen LR, Shiue YL, Bertolini L, et al. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology, 1999, 52(2):195~212.
    49. Chen U, Kosco M, Staerz U. Establishment and characterization of lymphoid and myeloid mixed-cell populations from mouse late embryoid bodies, “embryonic-stem-cell fetuses”. Proc Natl Acad Sci U S A, 1992, 89(7):2541~2545.
    50. Chinzei R, Tanaka Y, Shimizu-Saito K, et al. Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology, 2002, 36(1):22~29.
    51. Cho SK, Zú?iga-Pflücker JC. Development of lymphoid lineages from embryonic stem cells in vitro. Methods Enzymol, 2003, 365:158~169.
    52. Choi K, Kennedy M, Kazarov A, et al. A common precursor for hematopoietic and endothelial cells[J]. Development, 1998, 125(4):725~732.
    53. Cibelli J B, Stice S L, Golueke P J, et al. Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nature Biotechnology, 1998, 16(7):642~646.
    54. Cross MA, Enver T. The lineage commitment of haemopoietic progenitor cells. Curr Opin Genet Dev, 1997, 7(5):609~613.
    55. Dani C, Smith AG, Dessolin S, et al. Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci, 1997, 110(Pt 11):1279~1285.
    56. Dani C. Embryonic stem cell-derived adipogenesis. Cells Tissues Organs, 1999, 165(3-4):173~180.
    57. Dekel I, Magal Y, Pearson-White S, et al. Conditional conversion of ES cells to skeletal muscle by an exogenous MyoD1 gene. New Biol, 1992, 4(3):217~224.
    58. Delhaise F, Bralion V, Schuurbiers N, et al. Establishment of an embryonic stem cell line from 8-cell stage mouse embryos. Eur J Morphol, 1996, 34(4):237~243.
    59. Dinsmore J, Ratliff J, Jacoby D, et al. Embryonic stem cells as a model for studying regulation of cellular differentiation. Theriogenology, 1998, 49(1):145~151.
    60. Doetschman T, Gossler A, Serfling E, et al. Introduction of genes into mouse embryonic stem cells. Prog Clin Biol Res,1986,217A:47~50.
    61. Doetschman T, Williams P, Maeda N. Establishment of hamster blastocyst-derived embryonic stem(ES)cells. Developmental Biology, 1988, 127(1):224~227.
    62. Doetschman TC, Eistetter H, Katz M, et al. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol, 1985, 87:27~45.
    63. Drucker DJ, Philippe J, Mojsov S, et al. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A, 1987, 84(10):3434~3438.
    64. Durcova-Hills G, Prelle K, Muller S, et al. Primary culture of porcine PGCs requires LIF and porcine membrane-bound stem cell factor. Zygote, 1998, 6(3):271~275.
    65. Eddy EM, Clark JM, Gong D, et al. Origin and migration of primordial germ cells in mammals. Gamete Res, 1981, 4:333~362.
    66. Edlund H. Factors controlling pancreatic cell differentiation and function. Diabetologia, 2001, 44:1071~1079.
    67. Era T, Witte ON. Regulated expression of P210 Bcl - Abl during embeyonic stem cell differentiation stimulates multipotential progenitor expansion and myeloid cell fate. Proc Natl Acad Sci U S A, 2000, 97(4):1737~1742.
    68. Evans MJ, Kaufinan MH. Establishment in culture of pluripotential cells from mouse embroyos. Nature, 1981, 292:154~156.
    69. Faloon P, Arentson E, Choi K, et al. Basic fibroblast growth factor positively regulateshematopoietic development. Development, 2000, 127(9):1933~1941.
    70. Feraud O, Prandini MH, Vittet D. Vasculogenesis and angiogenesis from in vitro differentiation of mouse embryonic stem cells. Methods Enzymol, 2003, 365:214~228.
    71. Fraichard A, Chassande O, Bilbaut G, et al. In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J Cell Sci, 1995, 108(Pt 10):3181~3188.
    72. Fukada TM, Hibi Y, Yamanaka M, et al. Two signals are necessary for cell proliferation induced by a cytokine receptor gp130: Involvement of STAT3 in antiapoptosis. Immunity, 1996, 5:449~460.
    73. Gallwitz B.Therapies for the treatment of type 2 diabetes mellitus base on incretin action. Minerva Endocrinol, 2006, 31(2):133~147.
    74. Gearhart J. New potential for human embryonic stem cells. Science, 1998, 282:1061~1062.
    75. Gerecht-Nir S, Itskovitz-Eldor J. Cell therapy using human embryonic stem cells. Transpl Immunol, 2004, 12(3-4):203~209.
    76. Graves KH, Moreadith RW. Derivation and characterization of putative pluripotential embryonic stem cells from preimplantation rabbit embryos. Molecular reproduction and development, 1993, 36(4):424~433.
    77. Gregory T, Yu C, Ma A, et al .GATA-1 and erythropoietin cooperate to promote erythriod cell survival by regulating bcl-xl expression. Blood, 1999, 94(1):87~96.
    78. Gualandris A, Annes J P, Arese M, et al. The latent transforming growth factor beta binding protein-1promotes in vitro differentiation of embryonic stem cells into endothelium. Mol Biol Cell, 2000, 11(12):4295~4308.
    79. Hamazaki T, Iiboshi Y, Oka M, et al. Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett, 2001, 497(1):15~19.
    80. Heng BC, Cao T, Lee EH. Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells, 2004, 22(7): 1152~1167.
    81. Hirashima M, Kataoka H, Nishikawa S, et al . Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis. Blood, 1999, 93(4):1253~1263.
    82. Hong Y, Schartl M. Isolation and differentiation of medaka embryonic stem cells. Methods in molecular biology, 2006, 329:3~16.
    83. Hori Y, Rulifson IC, Tsai BC, et al. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci U S A, 2002, 99(25):16105~16110.
    84. Horii T, Nagao Y, Tokunaga T, et al. Serum-free culture of murine primordial germ cells and embryonic germ cells. Theriogenology, 2003, 59(5-6):1257~1264.
    85. Hu AB, Cai JY, Zheng QC, et al. hepatic differentiation from embryonic stem cells in vitro. Chin Med J ( Engl) , 2003, 116: 1893~1897.
    86. Huber I, Itzhaki I, Caspi O, et al. Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J, 2007, 21(10):2551~2563.
    87. Hui H, Nourparvar A, Zhao X, et al. Glucagon-like peptide-1 inhibits apoptosis ofinsulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A-and a phosphastidylinositol 3-kinase-dependent pathway. Endocrinology, 2003, 144(4):1444~1455.
    88. Hui H, Wright C, Perfetti R. Glucagon-like peptide 1 induces differentiation of islet duodenal homeobox-1-positive pancreatic ductal cells into insulin-secreting cells. Diabetes, 2001, 50(4): 785~796.
    89. Igelmund P, Fleischmann BK, Fischer IR, et al. Action potential propagation failures in long-term recordings from embryonic stem cell-derived cardiomyocytes in tissue culture. Pflugers Arch, 1999, 437(5):669~679.
    90. Irwin N, McClean PL, Harriott P, et al. Beneficial effects of sub-chronic activation of glucagon-like peptide-1(GLP-1)receptors on deterioration of glucose homeostasis and insulin secretion in aging mice. Exp Gerontol, 2007, 42(4):296~300.
    91. Ishiwata I, Tokieda Y, Ishiwata C, et al. Effects of feeder cells (human cancer cell lines) on the devlopment of mouse embryos by co-culture. Hum Cell, 1997, 10(4):237~246.
    92. Ishizaka S, Shiroi A, Kanda S, et al. Development of hepatocytes from ES cells after transfection with the HNF-3 beta gene. FASEB J, 2002, 16(11): 1444~1446.
    93. Jiang FX, Georges-Labouesse E, Harrison LC. Regulation of laminin 1-induced pancreatic beta-cell differentiation by alpha 6 integrin and alpha-dystroglycan. Mol Med, 2001, 7:107~112.
    94. Kanda S, Shiroi A, Ouji Y, et al. In vitro differentiation of hepatocyte-like cells from embryonic stem cells promoted by gene transfer of hepatocyte nuclear factor 3 beta. Hepatol Res, 2003, 26(3):225~231.
    95. Kaufman DS, Hanson ET, Lewis RL, et al. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A, 2001, 98(19):10716~10721.
    96. Kavase E, Suemori H, Takahashi N, et al. Strain difference in establishment of mouse embryonic stem (ES) cell lines. Int J Dev Bio, 1994, 38(2):385~390.
    97. Kawaguchi J, Mee PJ, Smith AG. Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone, 2005, 36(5):758~769.
    98. Kawasaki H, Mizuseki K, Nishikawa S, et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron, 2000, 28(1):31~40.
    99. Kawasaki H, Suemori H, Mizuseki K, et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci U S A, 2002, 99(3):1580~1585.
    100. Kehat I, Amit M, Gepstein A, et al. Development of cardiomyocytes from human ES cells. Methods Enzymol, 2003, 365:461~473.
    101. Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest, 2001, 108(3):407~414.
    102. Keller G, Kennedy M, Papayannopoulou T, et al. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Bio, 1993, 13(1):472~486.
    103. Kennedy M, Firpo M, Choi K, et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature, 1997, 386(6624):488~493.
    104. Kim D, Gu Y, Ishii M, et al. In vivo functioning and transplantable mature pancreatic islet-like cell clusters differentiated from embryonic stem cell. Pancreas, 2003, 27: E34~E41.
    105. Kim HS, Son HY, Kim S, et al. Isolation and initial culture of porcine inner cell masses derived from in vitro-produced blastocysts. Zygote. 2007, 15(1):55~63.
    106. Kimura T, Tomooka M, Yamano N, et al. AKT signaling promotes derivation of embryonic germ cells from primordial germ cells. Development, 2008, 135(5):869~879.
    107. Klug MG, Soonpaa MH, Koh GY, et al. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest, 1996, 98(1):261~224.
    108. Koichi S, Saori E K. Genetically modified rice seeds accumulating GLP-1 analogue stimulate insulin secretion from a mouse pancreatic beta-cell line. FEBS Letters. 2005, 579:1085~1088.
    109. Kramer J, Hegert C, Guan K, et al. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev, 2000, 92(2):193~205.
    110. Kyba M, Perlingeiro RC, Hoover RR, et al. Enhanced hematopoietic differentiation of embryonic stem cells conditionally expressing Stat5. Proc Natl Acad Sci USA, 2003, 100(suppl 1):11904~11910.
    111. Labosky PA, Barlow DP, Hogan BL. Mouse embryonic germ (EG) cells lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES)cell lines. Dev, 1994, 120(11): 3197~3204.
    112. Ledermann B, Burki K. Establishment of a Germ- line Competent C57/6 Embryonic Stem Cell Line. Exp. Cell Res, 1991, 197:254~258.
    113. Ledernann B, Bürki K. Establishment of a germ-line competent C57BL/6 embryonic stem cell line. Exp Cell Res, 1991, 197(2):254~258.
    114. Lee CK, Piedrahita JA. Effects of growth factors and feeder cells on porcine primordial germ cells in vitro. Cloning, 2000, 2(4):197~205.
    115. Leon-Quinto T, Jones J, Skoudy A, et al. In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia, 2004, 47(8):1442~1451.
    116. Lev S, Kehat I, Gepstein L. Differentiation pathways in human embryonic stem cell-derived cardiomyocytes. Ann N Y Acad Sci, 2005, 1047:50~65.
    117. Li L, El-Kholy W, Rhodes CJ, et al. Glucagon-like peptide-1protects beta cells from cytokine-induced apoptosis and necrosis: role of protein kinase B. Diabetologia, 2005, 48(7):1339~1349.
    118. Li M, Pevny L, Lovell-Badge R, et al. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol, 1998, 8(17):971~974.
    119. Li Y, Hansotia T, Yusta B, et al. Glucagon-like-peptide-1 receptor signaling modulates β cell apoptosis. J Biol Chem, 2003, 278:471~478.
    120. Lin RY, Kubo A, Keller GM, et al. Committing embryonic stem cells to differentiate into thyrocyte-like cells in vitro. Endocrinology, 2003, 144(6):2644~2649.
    121. Lumelsky N, Blondel O, Laeng P, et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science, 2001, 292(5520):1389~1394.
    122. Maguire T, Novik E, Schloss R, et al. Alginate-PLL microencapsulation: effect on the differentiation of embryonic stem cells into hepatocytes. Biotechnol Bioeng, 2006, 93(3):581~591.
    123. Martin G.R. Isolation of pluripotential cell line from embryo culture in medium conditioned by terato carcinoma stem cell. Proc. Natl. Acad. Sci. U S A, 1981, 78:7634~7638.
    124. Matsui Y, Toksoz D, Nishikawa S, et al. Effect of Steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture. Nature, 1991, 353(6346):750~752.
    125. Matsui Y, Zsebo K, Hogan BM. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell, 1992, 70(5):841~847.
    126. Meier JJ, Nauck MA. Glucagon-like peptide 1 (GLP-1) in biology and pathology. Diabetes Metab Res Rev, 2005, 21(2):91~117.
    127. Miura Y, Matsui H. Triphenyltin impairs a protein kinase A (PKA)-dependent increase of cytosolic Na+ and Ca2+ and PKA-independent increase of cytosolic Ca2+ associated with insulin secretion in hamster pancreatic beta-cells. Toxicol Appl Pharmacol, 2006, 216(3): 363~372.
    128. Mueller S, Prelle K, Rieger N, et al. Chimeric pigs following blastocyst injection of transgenic porcine primordial germ cells. Mol Reprod Dev, 1999, 54(3):244~254.
    129. Mummery C, Ward-van Oostwaard D, Doevendans P, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation, 2003, 107(21):2733~2740.
    130. Nagafuchi S, Katsuta H, Kogawa K, et al. Establishment of an embryonic stem (ES) cell line derived from a non-obese diabetic (NOD)mouse: in vivo differentiation into lymphocytes and potential for germ line transmission. FEBS Lett, 1999, 455(1-2):101~104.
    131. Nakano T. In vitro development of hematopoietic system from mouse embryonic stem cells: a new approach for embryonic hematopoiesis. Int J Hematol, 1996, 65(1):1~8.
    132. Narita N, Bielinska M, Wilson DB. Cardiomyocyte differentiation by GATA-4-deficient embryonic stem cells [J]. Development, 1997, 124(19):3755~3764.
    133. Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct-4. Cell, 1998, 95(3):379~391.
    134. Notarianni E, Galli C, Laurie S, et al. Derivation of pluripotent, embryonic cell lines from the pig and sheep. Journal of Reproduction and Fertility, 1991, 43(suppl):255~260.
    135. Notarianni E, Laurie S, Moor RM, et al. Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. J Reprod Fertil Suppl, 1990, 41:51~56.
    136. Okabe S, Forsberq-Nilsson K, Spiro AC, et al. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev, 1996, 59(1):89~102.
    137. Palacios R, Golunski E, Samaridis J. In vitro generation of hematopoietic stem cells form anembryonic stem cell line. Proc Natl Acad Sci U S A, 1995, 92(16):7530~7534.
    138. Park TS, Han JY. Derivation and characterization of pluripotent embryonic germ cells in chicken. Molecular reproduction and development, 2000, 56(4):475~482.
    139. Pease S, Bragheta P, Gearing D, et al. Isolation of embryonic stem cells in medium supplemented with recombinant leukemia inhibitory factor(LIF). Dev Biol., 1990, 141: 344~352.
    140. Pei Y, Ji W. In vitro induced differentiation of rhesus embryo stem cell. Dev Reprod Biol, 2001, 10(Suppl):112.
    141. Pevny LH, Sockanathan S, Placzek M, et al. A role for SOX1 in neural determination. Development, 1998, 125(10):1967~1978.
    142. Pfaff SL, Mendelsohn M, Stewart CL, et al. Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell, 1996, 84:309~320.
    143. Piedrahita JA, Anderson GB, Bondurant RH. Influence of feeder layer type on the efficiency of isolation of porcine embryo-derived cell lines. Theriogenology. 1990a, 34(5):865~877.
    144. Piedrahita JA, Anderson GB, BonDurant RH. On the isolation of embryonic stem cells: comparative behavior of murine, porcine and ovine embryos. Theriogenology, 1990b, 34(5): 879~901.
    145. Piedrahita JA, Moore K, Oetama B, et al. Generation of transgenic porcine chimerias using primordial germ cell-derived colonies. Biol Reprod, 1998, 58(5):1321~1329.
    146. Potocnik AJ, Nielsen PJ, Eichmann K. In vitro generation of lymphoid precursors from embryonic stem cells. EMBO J, 1994, 13(22):5274~5283.
    147. Rambhatla L, Chiu CP, Kundu P, et al. Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant, 2003, 12(1):1~11.
    148. Resnick JL, Bixler LS, Cheng L, et al. Long-stem proliferation of mouse primordial germ cells in culture. Nature, 1992, 359:550~553.
    149. Reubinoff BE, Pera MF, Fong CY, et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol, 2000, 18 (4):399~404.
    150. Rippon HJ, Polak JM, Qin M, et al. Derivation of distal lung epithelial progenitors from murine embryonic stem cells using a novel three-step differentiation protocol. Stem Cells, 2006, 24(5): 1389~1398.
    151. Rui R, Qiu Y, Hu Y,et al. Establishment of porcine transgenic embryonic germ cell lines expressing enhanced green fluorescent protein. Theriogenology, 2006, 65(4):713~720.
    152. Schuldiner M, Yanuka O, Itskovitz-Eldor J, et al. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A, 2000, 97 (21):11307~11312.
    153. Schwitzgebel VM, Scheel DW, Conners JR. Expression of neurogenin-3 reveals an is let cell precursor population in the pancreas. Development 2000; 127(16):3533~3542
    154. Shamblott MJ, Axelman J, Wang SP, et al. Derivation of pluripotent stem cells from culturedhuman primordial germ cells. Proc. Narl. Acad. Sci. U S A, 1998, 95(23):13726~13731.
    155. Shea CM, Edgar CM, Einhorn TA, et al. BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis. J Cell Biochem, 2003, 90(6):1112~1127.
    156. Shi Y, Hou L, Tang F, et al. Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-transretinoic acid. Stem Cells, 2005, 23(5):656~662.
    157. Shim H, Gutiérrez-Adán A, Chen LR, et al. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol Reprod, 1997, 57(5):1089~1095.
    158. Shirahashi H, Wu J, Yamamoto N, et al. Differentiation of human and mouse embryonic stem cells along a hepatocyte lineage. Cell Transplant, 2004, 13(3):197~211.
    159. Shiroi A, Ueda S, Ouji Y, et al. Differentiation of embryonic stem cells into insulin-producing cells promoted by Nkx2.2 gene transfer. World J Gastroenterol, 2005, 11(27):4161~4166.
    160. Smith AG, Hooper ML. Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev Biol, 1987, 121(1):1~9.
    161. Soria B , Skoudy A , Martin F. From stem cells to beta cells: new strategies in cell therapy of diabetes mellitus. Diabetologia, 2001, 44(4):407~415.
    162. Soria B, Roche E, Berná G, et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes, 2000, 49(2):157~162.
    163. Stewart CL, Gadi I, Bhatt H. Stem cells from primordial germ cell scan reenter the germ line. Dev. Biol., 1994, 161(2):626~628.
    164. Stoffers DA, Kieffer TJ, Hussain MA, et al. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes, 2000, 49(5):741~748.
    165. Strelchenko N, Saito S, Niemann H. Towards the establishment of bovine embryonic stem cells. Theriogenlogy, 1991, 35:274.
    166. Strojek RM, Reed MA, Hoover JL, et al. A method for culturing morphologically undifferentiated embryonic stem cells from porcine blastocysts. Theriogenology, 1990, 33(4): 901~913.
    167. Str?m S, Inzunza J, Grinnemo KH, et al. Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Human Reproduction, 2007, 22(12):3051~3058.
    168. Sukoyan MA, Vatolin SY, Golubitsa AN, et al. Embryonic stem cells derived from morulae, inner cell mass and blastocysts of mink: comparisons of their pluripotencies. Molecular reproduction and development, 1993, 36(2):148~158.
    169. Teratani T, Yamamoto H, Aoyagi K, et al. Direct hepatic fate specification from mouse embryonic stem cells. Hepatology, 2005, 41(4):836~846.
    170. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391):1145~1147.
    171. Thomson JA, Kalishman J, Golos TG, et al. Isolation of a primate embryonic stem cell line. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(17): 7844~7848.
    172. Thorsteinsdóttir S, Roelen BA, Goumans MJ, et al. Expression of the alpha 6A integrin splice variant in developing mouse embryonic stem cell aggregates and correlation with cardiac muscle differentiation. Differentiation, 1999, 64(3):173~184.
    173. Tian HB, Wang H, Sha HY,et al. Factors derived from mouse embryonic stem cells promote self-renewal of goat embryonic stem-like cells. Cell Biol Int. 2006, 30(5):452~458.
    174. Tsukada H, Takada T, Shiomi H, et al. Acidic fibroblsat growth factor promotes hepatic differentiation of monkey embryonic stem cells. In Vitro Cell Dev Biol Anim.2006, 42(3-4): 83~88.
    175. Tsung HC, Du ZW, Rui R, et al. The culture and establishment of embryonic germ (EG) cell lines from Chinese mini swine. Cell Res, 2003, 13(3):195~202.
    176. Tsutsui M, Ogawa S, Inada Y, et al. Characterization of cytochrome P450 expression in murine embryonic stem cell-derived hepatic tissue system. Drug Metab Dispos, 2006, 34(4):696~701.
    177. Van Vranken BE, Romanska HM, Polak JM, et al. Coculture of embryonic stem cells with pulmonary mesenchyme: A microenvironment that promotes differentiation of pulmonary epithelium. Tissue Eng, 2005, 11(7-8):1177~1187.
    178. Vittet D, Prandini MH, Berthier R, et al. Embryonic stem cells differentiate in vitro to endothelia cells through seccessive maturation steps. Blood, 1996, 88(9):3424~3431.
    179. Vogel G. Developmental biology. The hottest stem cells are also the toughest. Science, 2001, 292(5516):429.
    180. Wang Q, Brubaker PL. Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week old db/db mice. Diabetologia, 2002, 45(9):1263~1273.
    181. Wang X, Cahill CM, Pineyro MA, et al. Glucagon-like peptide-1 regulates the beta cell transcription factor, PDX-1, in insulinoma cells. Endocrinology, 1999, 140:4904~4907.
    182. Wang X, Zhou J, Doyle ME, et al. Glucagon-like peptide-1 causes pancreatic duodenal homeobox-1 protein translocation from the cytoplasm to the nucleus of pancreatic beta-cells by a cyclic adenosine monophosphate/protein kinase A-dependent mechanism. Endocrinology, 2001, 142(5):1820~1827.
    183. Westfall MV, Pasyk KA, Yule DI, et al. Ultrastructure and cell-cell coupling of cardiac myocytes differentiating in embryonic stem cell cultures. Cell Motil Cytoskeleton, 1997, 36(1):43~54.
    184. Wheeler MB. Development and validation of swine embryonic stem cells: a review. Reprod Fertil Dev, 1994, 6(5):563~568.
    185. Wideman RD, Yu IL, Webber TD, et al. Improving function and survival of pancreatic islets by endogenous production of glucagons-like peptide 1(GLP-1). Proc Natl Acad Sci U S A, 2006, 103(36):13468~13473.
    186. Wiles MV, Keller G. Multiple hematopoietic lineages develop from embryonic stem (ES) cells inculture. Development, 1991, 111(2):259~267.
    187. Xu C, Liguori G, Adamson ED, et al. Specific arrest of cardiogenesis in cultured embryonic stem cells lacking Cripto-1. Dev Biol, 1998, 196(2):237~247.
    188. Yamane T, Hayashi S, Mizoguchi M, et al. Derivation of melanocytes from embryonic stem cells in culture. Dev Dyn, 1999, 216(4-5):450~458.
    189. Yamashita A, Takada T, Narita J, et al. Osteoblastic differentiation of monkey embryonic stem cells in vitro. Cloning Stem Cells, 2005, 7(4):232~237.
    190. Yamashita A, Takada T, Omatsu-Kanbe M, et al. Monkey embryonic stem cells differentiate into adipocytes in vitro. Cloning Stem Cells, 2006, 8(1):3~9.
    191. Yang Z, Petitte JN. Use of avian cytokines in mammalian embryonic stem cell culture. Poult. Sci., 1994, 3:965~974.
    192. Yue F, Cui L, Johkura K, et al. Glucagon-like peptide-1 differentiation of primate embryonic stem cells into insulin-producing. Cells Tissue Engineering, 2006, 12(8):2105~2116.
    193. Zhang XJ, Tsung HC, Caen JP, et al. Vasculogenesis from embryonic bodies of murine embryonic stem cells transfected by Tgf-beta1 gene. Endothelium, 1998, 6(2):95~106.
    194. zur Nieden NI, Kempka G, Rancourt DE, et al. Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol, 2005, 5:1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700