载脂蛋白E及其模拟肽对细菌感染性疾病诊断和治疗作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     1.研究血清及脑脊液(CSF)载脂蛋白E(ApoE)浓度测定对细菌性脓毒血症和细菌性脑膜炎的诊断价值。
     2.通过体外细胞培养和动物实验,研究自主设计的ApoE模拟肽(ApoE23)的抗菌作用及其机制,为其作为新型抗菌药物和免疫调节剂的潜在临床应用提供实验依据。
     研究方法
     1.将临床已明确诊断的细菌性脑膜炎、病毒性脑膜炎、细菌性脓毒症患儿纳入研究,以非感染患儿为对照。除常规实验室检验指标(外周血白细胞计数、CRP、CSF常规及生化。CSF及血液细菌培养鉴定、CSF肺炎链球菌抗原检测和革兰染色、CSF肠道病毒RNA定量PCR检测)外,采用透射免疫比浊法测定研究对象的CSF及血清ApoE浓度,采用ROC曲线分析确定诊断界值(CUT-OFF),评价ApoE浓度测定对儿童侵袭性细菌感染的诊断价值。
     2.自主设计ApoE模拟肽ApoE23序列,采用固相合成法合成,高效液相色谱法(HPLC)纯化,质谱及电喷雾质谱对合成肽纯度、氨基酸残基组成及分子量进行测定,圆二色谱技术结合K3D3软件进行合成肽二级结构分析。通过α螺旋轮法检测其亲水氨基酸残基及疏水氨基酸残基分布特点。
     3. ApoE23抗菌活性采用体外杀菌试验。
     4.采用体外细胞培养技术、酶联免疫吸附法(ELISA)、及定量PCR法检测ApoE23对LPS诱导的THP-1细胞(人单核细胞株)及人外周血单个核细胞(PBMC)的TNF-a、IL-6、IL-10表达的调节作用。
     5.采用B组鼠伤寒沙门菌脓毒血症小鼠模型研究ApoE23静脉注射治疗对脓毒血症小鼠死亡率影响,通过对脓毒血症小鼠脾脏细菌负荷测定、血浆LPS、TNF-a、IL-6测定及对脾脏、肺脏、肝脏及小肠形态或病理切片分析了解ApoE23抗脓毒血症机理。
     研究结果
     1、共有185例患儿入组,其中细菌性脑膜炎患者26例,病毒性脑膜炎患儿32例,细菌性脓毒血症36例,对照组91例,年龄范围为1月~13岁。细菌性脑膜炎患儿脑脊液ApoE浓度与对照组相比明显增高,而病毒性脑膜炎、脓毒血症患儿脑脊液ApoE仅轻微升高。当脑脊液ApoE浓度cut-off值为1.7>mg/L,其诊断细菌性脑膜炎的敏感度、特异度、分别为0.85(95%CI,0.71-1)、1(95%CI,0.89-1),诊断价值高于脑脊液WBC计数、脑脊液总蛋白、葡萄糖及氯化物。当血清ApoE浓度cut-off值为42.0>mg/L,其诊断细菌性脓毒血症的敏感度、特异度分别为0.80(95%CI,0.64-0.89)、0.93(95%CI,0.88-0.97),诊断价值高于外周血CRP及WBC计数。
     2、自主设计的ApoE23二级结构α螺旋比例为21.6%,且为两亲性螺旋,较国外同类肽具有更好的组织细胞穿透性。
     3、ApoE23对革兰阴性杆菌有明显抗菌活性,其MIC50值为1~1.25μmol/L,低于国外同类肽(ApoEdp),对泛耐药鲍曼不动杆菌仍具有明显杀菌活性。ApoE23对革兰阳性葡萄球菌的杀菌活性低于革兰阴性杆菌,对肠球菌及对白色念珠无抗菌活性。
     4. ApoE23具有显著下调LPS诱导的人PBMC及THP-1细胞TNF-a、IL-6mRNA及蛋白表达作用,下调THP-1IL-10mRNA及蛋白表达作用、下调人PBMCIL-10蛋白表达。
     5、106CFU剂量B鼠伤寒沙门菌腹腔注射后24小时内,生理盐水治疗组小鼠死亡率为60%,ApoE23治疗组死亡率为0。ApoE治疗组小鼠体内细菌负荷、血浆TNF-a、1L-6、LPS浓度均低于生理盐水治疗组。ApoE23治疗组小鼠脾脏、肺脏、肝脏及小肠的炎性改变程度明显低于生理盐水治疗组。
     结论
     1、CSF和血清ApoE浓度测定可作为儿童侵袭性细菌感染的快速诊断指标,具有良好的特异性和敏感性。
     2、自主设计的ApoE23抗菌谱窄,可抗胞内寄生菌及泛耐药菌,MIC50低,抗菌活性和组织穿透性优于国外同类肽,具有优质抗菌药物特性。
     3、ApoE23对LPS诱导的体外培养免疫细胞的应答反应具有调节作用。
     4、ApoE23具有的抗菌及免疫调节双重功能,可显著降低脓毒血症小鼠死亡率,是潜在的脓毒血症治疗药物。
Objective
     1. To evaluate the potential diagnostic value of apolipoprotein E (Apo E) measurements in pediatric patients with invasive bacterial infections.
     2. In the second part, we analyze the biological actions of antimicrobial and immunomodulatory activity of a new ApoE-dervied pepetide (ApoE23), and evaluated the therapeutic approach of ApoE23against the spesis in mice model.
     Methods
     1. The patients with confirmable infections, including bacterial meningitis, virus meningitis, and sepsis associated with bacterial infection, were enrolled in this study, and the subjects who were without confirmable infections were included as control.The investigative data collected from a series of laboratroy tests included the C-reactive protein levels in the peripheral blood, the peripheralblood white blood cell counts, the CSF routine tests and the CSF biochemical profiles, the microbiological results collected from bacterial cultivation in blood and CSF samples, the Streptococcus pneumonia antigens measurment and Gram strain in the CSF samples, and enterovirus RNA detection in the CSF samples. ApoE levels in serum and in CSF were measured by immunoturbidimetry. The diagnostic values of ApoE and the cut-off value of prediction for bacterial infections were established by the receiver operating curve (ROC) method.
     2. The ApoE mimetic peptide, named ApoE23, was designed by ourself. ApoE23and control peptides (ApoEdp, ApoEll) were synthesized using solid phase synthesis and were purified by high performance liquid chromatography (HPLC).The mass spectrum and electrospray ionization mass spectrum (ESI-MS) were employed to check the produces. The secondary structures of the ApoE23and the control peptides were analyzed by circular dichroism spectra technique aided by K3D3software. The distribution patterns of hydrophobic amino acid residues and hydrophilic amino acid residues of the peptides were analyzed by a-helical wheel picture.
     3. The antimicriobial activity of peptides were detected by bactericidal method in vitro.
     4. Cell culture in vitro, Enzyme-Linked Immunosorbent Assay (ELISA)and quantified PCR were employed to measure the TNF-a, IL-6, and IL-10expressions in THP-1cells and human peripheral blood mononuclear cell (PBMC)induced by lipopolysaccharide (LPS)with or without ApoE23intervention.
     5. The sepsis C57BL mice was established by peritoneal cavity injection of Salmonella typhimurium group B. After tail vein injection of ApoE23, the therapeutic effect were evaluated by calculation the mortality of the septic mice. The bacterial load test in the spleen tissue samples and the LPS, TNF-a, IL-6levels measurement in the plasma samples were carried out to investigate the anti-sepsis mechanisms of ApoE23.
     Results
     1. A total number of185pediatric patients aged from1month to13years old were enrolled. Among them,26patients with bacterial meningitis,32patients with virus meningitit,36patients with bacterial sepsis, and91patients without infections were enrolled in the control group. ApoE levels in CSF significantly increased in patients with bacterial meningitis, and serum ApoE markedly elevated in patients with sepsis or with bacterial meningitis compared with patients with other infections and uninfected children (control group). The optimal ApoE cutoff value for CSF was>1.7mg/L with85%(95%confidence interval,0.71-1) sensitivity and100%specificity (95%CI,0.89-1) and was>42mg/L in serum with80%(95%CI,0.64-0.89) sensitivity and93%(95%CI,0.88-0.97) specificity. The CSF ApoE level measurements by immunoturbidimetry showed higher diagnostic values than the CSF WBC count, CSF proteintest, and CSF glucose test. The diagnostic value of the serum ApoE measurement as an indicator of sepsis was higher than that of the CRP test and WBC count of whole blood.
     2. The a-helical proportion in the secondary constrcture of ApoE23were21.6%,which appeared amphipathic properties and better penetrability than the other ApoE mimetic peptides designed by foreign.
     3. ApoE23has higher bactericid activity against gram negtive bacterial than that against the gram positive germs. The same bactericid activities of ApoE23against resistant bacterial such as Acinetobacter baumannii were detected. The minimal inhibitory concentrations of inhibition by50%(MIC50) of ApoE23was in the range of1-1.25μmol/L, which is lower than the MIC50of the ApoEdp reported by now. However, no antimicrobial activities against enterococcus and Candida albicans were detected.
     4. ApoE23down-regulated the mRNA and protein expression levels of TNF-a and IL-6induced by LPS in THP-1cells and human PBMC. ApoE23also down regulated the expression of IL-10in mRNA and protein levels in THP-1cells. But, in the human PBMC only IL-10protein was reduced.
     5. Twenty-four hours after the live Salmonella typhimurium groups B (106CFU/mouse)were inculated by peritoneal cavity injection in the C57BL mice, the mortality of mice accepted physiological saline therapy was60%. No mouse died in the group with ApoE23treatment. Moreover, our results showed that the load of bacteria in the spleen tissue and the concentrations of plasma LPS, TNF-a, IL-6in the mice with ApoE23therapy were lower than that in the mice with physiological saline treatment. The morphological and pathological changes in the spleen, lung, liver and small intestine were slighter in the mice with ApoE23treatment than that in mice with physiological saline treatment.
     Conclutions
     1. CSF and serum ApoE detection provided with a good specificity and sensibility marker for prediction the invasive bacterial infections in pediatric patients.
     2. ApoE23has good antibacterial characteristics including narrow antibacterial spectrum, low MIC50, showing antibacterial activity against intracellular growth of bacteria and the resistant bacteria.
     3. ApoE23can regulate the response reaction induced by LPS in the immune cells cultured in vitro.
     4. ApoE23has both of antibacterial effect and immunomodulatory effect, which can significantly reduce the mortality of the sepsis mice. ApoE23is a potential anti-sepsis drug.
引文
[1]R.E. Black, S. Cousens, H.L. Johnson, J.E. Lawn, I. Rudan, D.G. Bassani, P. Jha, H. Campbell, C.F. Walker, R. Cibulskis, T. Eisele, L. Liu and C. Mathers, Global, regional, and national causes of child mortality in 2008:a systematic analysis, Lancet,375 (2010),1969-1987.
    [2]王莉,朱丽辉,祝益民and孙波,2010儿科危重症国际论坛会议纪要,临床儿科杂志(2011).
    [3]T.B. Knudsen, K. Larsen, T.B. Kristiansen, H.J. Moller, M. Tvede, J. Eugen-Olsen and G. Kronborg, Diagnostic value of soluble CD 163 serum levels in patients suspected of meningitis: comparison with CRP and procalcitonin, Scand J Infect Dis,39 (2007),542-553.
    [4]L. Li, P.A. Thompson and R.L. Kitchens, Infection induces a positive acute phase apolipoprotein E response from a negative acute phase gene:role of hepatic LDL receptors, J Lipid Res,49 (2008), 1782-1793.
    [5]T.T. Qu, Q. Yang, P. Shen, Z.Q. Wei and Y.S. Yu, Novel Vancomycin-Resistance Transposon, Plasmid Replicon Types, and Virulence Factors of Vancomycin-Resistant Enterococci in Zhejiang, China, Microb Drug Resist (2012).
    [6]C. Yang, Y.F. Yan, G.Q. Wang and Y.F. Tan, [Multi-locus sequence typing of multidrug-resistant of Acinetobacter baumanni from China and characterization of population structure of Acinetobacter baumanni], Zhonghua Yu Fang Yi Xue Za Zhi,45 (2011),727-731.
    [7]R. Zhang, L. Mingcheng, X. Dong and F. Li, Nosocomial outbreak of carbapenem-resistant Pseudomonas aeruginosa carrying blaVIM-2 in burn wards, China, Braz J Infect Dis,15 (2011), 505-506.
    [8]D.W. Shi, J. Zhang, H.N. Jiang, C.Y. Tong, G.R. Gu, Y. Ji, H. Summah and J.M. Qu, LPS pretreatment ameliorates multiple organ injuries and improves survival in a murine model of polymicrobial sepsis, Inflamm Res,60 (2011),841-849.
    [9]F. Di Sole and A.C. Girardi, Uncovering the pathway of sepsis-induced renal tubular dysfunction. Focus on "Basolateral LPS inhibits NHE3 and HCOFormula absorption through TLR4/MyD88-dependent ERK activation in medullary thick ascending limb", Am J Physiol Cell Physiol,301 (2011), C1290-C1292.
    [10]J.H. Levels, P.R. Abraham, A. van den Ende and S.J. van Deventer, Distribution and kinetics of lipoprotein-bound endotoxin, Infect Immun,69 (2001),2821-2828.
    [11]R.L. Kitchens, P.A. Thompson, R.S. Munford and G.E. O'Keefe, Acute inflammation and infection maintain circulating phospholipid levels and enhance lipopolysaccharide binding to plasma lipoproteins, J Lipid Res,44 (2003),2339-2348.
    [12]P.C. Rensen, M. Oosten, E. Bilt, M. Eck, J. Kuiper and T.J. Berkel, Human recombinant apolipoprotein E redirects lipopolysaccharide from Kupffer cells to liver parenchymal cells in rats In vivo, J Clin Invest,99 (1997),2438-2445.
    [13]N. de Bont, M.G. Netea, P.N. Demacker,1. Verschueren, B.J. Kullberg, K.W. van Dijk, J.W. van der Meer and A.F, Stalenhoef, Apolipoprotein E knock-out mice are highly susceptible to endotoxemia and Klebsiella pneumoniae infection, J Lipid Res,40 (1999),680-685.
    [14]O.M. Kattan, F.B. Kasravi, E.L. Elford, M.T. Schell and H.W. Harris, Apolipoprotein E-mediated immune regulation in sepsis, J Immunol,181 (2008),1399-1408.
    [15]H. Wang, D.J. Christensen, M.P. Vitek, P.M. Sullivan and D.T. Laskowitz, APOE genotype affects outcome in a murine model of sepsis:implications for a new treatment strategy, Anaesth Intensive Care,37 (2009),38-45.
    [16]J.R, Lynch, W. Tang, H. Wang, M.P. Vitek, E.R. Bennett, P.M. Sullivan, D.S. Warner and D.T. Laskowitz, APOE genotype and an ApoE-mimetic peptide modify the systemic and central nervous system inflammatory response, J Biol Chem,278 (2003),48529-48533.
    [17]C.B. Dobson, S.D. Sales, P. Hoggard, M.A. Wozniak and K.A. Crutcher, The receptor-binding region of human apolipoprotein E has direct anti-infective activity, J Infect Dis,193 (2006),442-450.
    [18]F.Q. Li, G.D. Sempowski, S.E. McKenna, D.T. Laskowitz, C.A. Colton and M.P. Vitek, Apolipoprotein E-derived peptides ameliorate clinical disability and inflammatory infiltrates into the spinal cord in a murine model of multiple sclerosis, J Pharmacol Exp Ther,318 (2006),956-965.
    [19]T.A. Stephens, E. Nikoopour, B.J. Rider, M. Leon-Ponte, T.A. Chau, S. Mikolajczak, P. Chaturvedi, E. Lee-Chan, R.A. Flavell, S.M. Haeryfar, J. Madrenas and B. Singh, Dendritic cell differentiation induced by a self-peptide derived from apolipoprotein E, J Immunol,181 (2008), 6859-6871.
    [20]H. Wang, D.J. Christensen, M.P. Vitek, P.M. Sullivan and D.T. Laskowitz, APOE genotype affects outcome in a murine model of sepsis:implications for a new treatment strategy, Anaesth Intensive Care,37 (2009),38-45.
    [21]M. Azuma, T. Kojimab, I. Yokoyama, H. Tajiri, K. Yoshikawa, S. Saga and C.C. Del, A synthetic peptide of human apoprotein E with antibacterial activity, Peptides,21 (2000),327-330.
    [22]D. De Brasi, F. Pannuti, F. Antonelli, F. de Seta, P. Siani and L. de Seta, Therapeutic approach to bronchiolitis:why pediatricians continue to overprescribe drugs? Ital J Pediatr,36 (2010),67.
    [23]R. Fekety, H.L. DuPont, M. Cooperstock, M.L. Corrado and D.M. Murray, Evaluation of new anti-infective drugs for the treatment of antibiotic-associated colitis. Infectious Diseases Society of America and the Food and Drug Administration, Clin Infect Dis,15 Suppl 1 (1992), S263-S267.
    [24]R.P. Giorgi, J. Mantovani, E. Ferroni, A. Forcina, E. Stanghellini, F. Curtale and P. Borgia, Incidence of bacterial meningitis (2001-2005) in Lazio, Italy:the results of a integrated surveillance system, Bmc Infect Dis,9 (2009),13.
    [25]R.M. Glickman and P.H. Green, The intestine as a source of apolipoprotein AI, Proc Natl Acad Sci USA,74 (1977),2569-2573.
    [26]A.L. Wu and H.G. Windmueller, Identification of circulating apolipoproteins synthesized by rat small intestine in vivo, J Biol Chem,253 (1978),2525-2528.
    [27]A.L. Wu and H.G. Windmueller, Relative contributions by liver and intestine to individual plasma apolipoproteins in the rat, J Biol Chem,254 (1979),7316-7322.
    [28]D.M. Driscoll and G.S. Getz, Extrahepatic synthesis of apolipoprotein E, J Lipid Res,25 (1984), 1368-1379.
    [29]N.A. Elshourbagy, W.S. Liao, R.W. Mahley and J.M. Taylor, Apolipoprotein E mRNA is abundant in the brain and adrenals, as well as in the liver, and is present in other peripheral tissues of rats and marmosets, Proc Natl Acad Sci U S A,82 (1985),203-207.
    [30]Q. Xu, A. Bernardo, D. Walker, T. Kanegawa, R.W. Mahley and Y. Huang, Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus, J Neurosci,26 (2006),4985-4994.
    [31]A.D. Kay, A. Petzold, M. Kerr, G. Keir, E.J. Thompson and J.A. Nicoll, Cerebrospinal fluid apolipoprotein E concentration decreases after traumatic brain injury, J Neurotrauma,20 (2003), 243-250.
    [32]A.D. Kay, A. Petzold, M. Kerr, G. Keir, E.J. Thompson and J.A. Nicoll, Cerebrospinal fluid apolipoprotein E concentration decreases after traumatic brain injury, J Neurotrauma,20 (2003), 243-250.
    [33]J.T. Kanegaye, L.E. Nigrovic, R. Malley, C.R. Cannavino, S.H. Schwab, J.E. Bennett, M.M. Mohseni, V.J. Wang, Y.L. Katsogridakis, M.I. Herman and N. Kuppermann, Diagnostic value of immature neutrophils (bands) in the cerebrospinal fluid of children with cerebrospinal fluid pleocytosis, Pediatrics,123 (2009), e967-e971.
    [34]T.C. Horan, M. Andrus and M.A. Dudeck, CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting, Am J Infect Control,36 (2008),309-332.
    [35]K. Yamauchi, M. Tozuka, T. Nakabayashi, M. Sugano, H. Hidaka, Y. Kondo and T. Katsuyama, Apolipoprotein E in cerebrospinal fluid:relation to phenotype and plasma apolipoprotein E concentrations, Clin Chem,45 (1999),497-504.
    [36]C. Hesse, H. Larsson, P. Fredman, L. Minthon, N. Andreasen, P. Davidsson and K. Blennow, Measurement of apolipoprotein E (apoE) in cerebrospinal fluid, Neurochem Res,25 (2000),511-517.
    [37]A. Kay, A. Petzold, M. Kerr, G. Keir, E. Thompson and J. Nicoll, Decreased cerebrospinal fluid apolipoprotein E after subarachnoid hemorrhage:correlation with injury severity and clinical outcome, Stroke,34 (2003),637-642.
    [38]L. Wang, Y. Han, D. Chen, Z. Xiao, Z. Xi, F. Xiao and X. Wang, Cerebrospinal fluid apolipoprotein E concentration decreases after seizure, Seizure,19 (2010),79-83.
    [39]G.J. Snipes, C.B. McGuire, J.J. Norden and J.A. Freeman, Nerve injury stimulates the secretion of apolipoprotein E by nonneuronal cells, Proc Natl Acad Sci US A,83 (1986),1130-1134.
    [40]M.J. Ignatius, P.J. Gebicke-Harter, J.H. Skene, J.W. Schilling, K.H. Weisgraber, R.W. Mahley and E.M. Shooter, Expression of apolipoprotein E during nerve degeneration and regeneration, Proc Natl Acad Sci U S A,83 (1986),1125-1129.
    [41]X. Han, H. Cheng, J.D. Fryer, A.M. Fagan and D.M. Holtzman, Novel role for apolipoprotein E in the central nervous system. Modulation of sulfatide content, JBiol Chem,278 (2003),8043-8051.
    [42]A.M. Fagan, B.A. Murphy, S.N. Patel, J.F. Kilbridge, W.C. Mobley, G. Bu and D.M. Holtzman, Evidence for normal aging of the septo-hippocampal cholinergic system in apoE (-/-) mice but impaired clearance of axonal degeneration products following injury, Exp Neurol,151 (1998), 314-325.
    [43]K. Saito, M. Seishima, M.P. Heyes, H. Song, S. Fujigaki, S. Maeda, J.H. Vickers and A. Noma, Marked increases in concentrations of apolipoprotein in the cerebrospinal fluid of poliovirus-infected macaques:relations between apolipoprotein concentrations and severity of brain injury, Biochem J,321 (Pt 1)(1997),145-149.
    [44]K. Chuang, E.L. Elford, J. Tseng, B. Leung and H.W. Harris, An expanding role for apolipoprotein E in sepsis and inflammation, Am J Surg,200 (2010),391-397.
    [45]R.W. Mahley and T.L. Innerarity, Lipoprotein receptors and cholesterol homeostasis, Biochim Biophys Acta,737 (1983),197-222.
    [46]R.W. Mahley, Apolipoprotein E:cholesterol transport protein with expanding role in cell biology, Science,240 (1988),622-630.
    [47]K.H. Weisgraber, Apolipoprotein E:structure-function relationships, Adv Protein Chem,45 (1994),249-302.
    [48]J.A. Morrow, K.S. Arnold, J. Dong, M.E. Balestra, T.L. Innerarity and K.H. Weisgraber, Effect of arginine 172 on the binding of apolipoprotein E to the low density Iipoprotein receptor, J Biol Chem, 275 (2000),2576-2580.
    [49]J.A. Morrow, M.L. Segall, S. Lund-Katz, M.C. Phillips, M. Knapp, B. Rupp and K.H. Weisgraber, Differences in stability among the human apolipoprotein E isoforms determined by the amino-terminal domain, Biochemistry-Us,39 (2000),11657-11666.
    [50]C. Wilson, M.R. Wardell, K.H. Weisgraber, R.W. Mahley and D.A. Agard, Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E, Science,252 (1991), 1817-1822.
    [51]R.W. Mahley and S.J. Rall, Apolipoprotein E:far more than a lipid transport protein, Annu Rev Genomics Hum Genet,1 (2000),507-537.
    [52]R.W. Mahley, K.H. Weisgraber and Y. Huang, Apolipoprotein E:structure determines function, from atherosclerosis to Alzheimer's disease to AIDS, J Lipid Res,50 Suppl (2009), S183-S188.
    [53]M.A. Marques, M. Tolar, J.A. Harmony and K.A. Crutcher, A thrombin cleavage fragment of apolipoprotein E exhibits isoform-specific neurotoxicity, Neuroreport,7 (1996),2529-2532.
    [54]M. Tolar, M.A. Marques, J.A. Harmony and K.A. Crutcher, Neurotoxicity of the 22 kDa thrombin-cleavage fragment of apolipoprotein E and related synthetic peptides is receptor-mediated, J Neurosci,17 (1997),5678-5686.
    [55]K.L. Moulder, M. Narita, L.K. Chang, G. Bu and E.J. Johnson, Analysis of a novel mechanism of neuronal toxicity produced by an apolipoprotein E-derived peptide, J Neurochem,72 (1999), 1069-1080.
    [56]J.E. Croy, T. Brandon and E.A. Komives, Two apolipoprotein E mimetic peptides, ApoE(130-149) and ApoE(141-155)2, bind to LRP1, Biochemistry-Us,43 (2004),7328-7335.
    [57]J.R. Lynch, J.A. Pineda, D. Morgan, L. Zhang, D.S. Warner, H. Benveniste and D.T. Laskowitz, Apolipoprotein E affects the central nervous system response to injury and the development of cerebral edema, Ann Neurol,51 (2002),113-117.
    [58]B.J. Rider, E. Fraga, Q. Yu and B. Singh, Immune responses to self peptides naturally presented by murine class Ⅱ major histocompatibility complex molecules, Mol Immunol,33 (1996),625-633.
    [59]C. Louis-Jeune, M.A. Andrade-Navarro and C. Perez-Iratxeta, Prediction of protein secondary structure from circular dichroism using theoretically derived spectra, Proteins (2011).
    [60]J.P. Segrest, M.K. Jones, H. De Loof, C.G. Brouillette, Y.V. Venkatachalapathi and G.M. Anantharamaiah, The amphipathic helix in the exchangeable apolipoproteins:a review of secondary structure and function, J Lipid Res,33 (1992),141-166.
    [61]M. Schiffer and A.B. Edmundson, Use of helical wheels to represent the structures of proteins and to identify segments with helical potential, Biophys J,7 (1967),121-135.
    [62]R.W. Williams, A. Chang, D. Juretic and S. Loughran, Secondary structure predictions and medium range interactions, Biochim Biophys Acta,916 (1987),200-204.
    [63]朱德妹,汪复,胡付品,蒋晓飞,倪语星,孙景勇,徐英春,张小江,胡云健,艾效曼,俞云松,杨青,孙自铺,陈中举,贾蓓,黄文祥,卓申超,苏丹虹,魏莲花,吴玲,张朝霞,季萍,王传清,王爱敏,张泓,孔菁,徐元宏,沈继录,单斌and杜艳,2010年中国CHINET细菌耐药性监测,中国感染与化疗杂志,11(2011),321-329.
    [64]张晓巩,方超,白卉,周颖and侯征,抗菌肽作用机制的研究进展,胜利科学进展,42(2011),11-15.
    [65]王辉,杨桂文,吴敬涛and安利国,抗菌肽作用机制的研究进展,济南大学学报(自然科学版),21(2007),48-52.
    [66]Y. Herasimenka, M. Benincasa, M. Mattiuzzo, P. Cescutti, R. Gennaro and R. Rizzo, Interaction of antimicrobial peptides with bacterial polysaccharides from lung pathogens, Peptides,26 (2005), 1127-1132.
    [67]M. Benincasa, M. Mattiuzzo, Y. Herasimenka, P. Cescutti, R. Rizzo and R. Gennaro, Activity of antimicrobial peptides in the presence of polysaccharides produced by pulmonary pathogens, J Pept Sci, 15 (2009),595-600.
    [68]Y. Shai, Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides, Biochim Biophys Acta,1462 (1999),55-70.
    [69]岳昌武,莫宁萍,刘坤祥,凌锌and曾霓,抗菌肽的结构特点·作用机理及其应用前景,安微农业科学,36(2008),1736-1739.
    [70]M. Yin, L. Zhang, X.M. Sun, L.F. Mao and J. Pan, Lack of apoE causes alteration of cytokines expression in young mice liver, Mol Biol Rep,31 (2010),2049-2054.
    [71]Y. Zhu, A. Kodvawala and D.Y. Hui, Apolipoprotein E inhibits toll-like receptor (TLR)-3-and TLR-4-mediated macrophage activation through distinct mechanisms, Biochem J,428 (2010),47-54.
    [72]M. Van Oosten, P.C. Rensen, E.S. Van Amersfoort, M. Van Eck, A.M. Van Dam, J.J. Breve, T. Vogel, A. Panet, T.J. Van Berkel and J. Kuiper, Apolipoprotein E protects against bacterial lipopolysaccharide-induced lethality. A new therapeutic approach to treat gram-negative sepsis, J Biol Chem,276 (2001),8820-8824.
    [73]S. Tsuchiya, M. Yamabe, Y. Yamaguchi, Y. Kobayashi, T. Konno and K. Tada, Establishment and characterization of a human acute monocytic leukemia cell line (THP-1), Int J Cancer,26 (1980), 171-176.
    [74]I. Chatzidakis and C. Mamalaki, T cells as sources and targets of TNF:implications for immunity and autoimmunity, Curr Dir Autoimmun,11 (2010),105-118.
    [75]T. Hirano, Interleukin 6 and its receptor:ten years later, Int Rev Immunol,16 (1998),249-284.
    [76]A. Muraguchi, T. Hirano, B. Tang, T. Matsuda, Y. Horii, K. Nakajima and T. Kishimoto, The essential role of B cell stimulatory factor 2 (BSF-2/IL-6) for the terminal differentiation of B cells, J Exp Med,167 (1988),332-344.
    [77]M. Lotz, F. Jirik, P. Kabouridis, C. Tsoukas, T. Hirano, T. Kishimoto and D.A. Carson, B cell stimulating factor 2/interleukin 6 is a costimulant for human thymocytes and T lymphocytes, J Exp Med,167(1988),1253-1258.
    [78]L. Sachs, J. Lotem and Y. Shabo, The molecular regulators of macrophage and granulocyte development. Role of MGI-2/IL-6, Ann N YAcad Sci,557 (1989),417-435,435-437.
    [79]P.C. Heinrich, J.V. Castell and T. Andus, Interleukin-6 and the acute phase response, Biochem J, 265(1990),621-636.
    [80]K.W. Moore, M.R. de Waal, R.L. Coffman and A. O'Garra, Interleukin-10 and the interleukin-10 receptor, Annu Rev Immunol,19 (2001),683-765.
    [81]S. Pestka, C.D. Krause, D. Sarkar, M.R. Walter, Y. Shi and P.B. Fisher, Interleukin-10 and related cytokines and receptors, Annu Rev Immunol,22 (2004),929-979.
    [82]R.J. Carmody and Y.H. Chen, Nuclear factor-kappaB:activation and regulation during toll-like receptor signaling, Cell Mol Immunol,4 (2007),31-41.
    [83]Y. Zhu, A, Kodvawala and D.Y. Hui, Apolipoprotein E inhibits toll-like receptor (TLR)-3-and TLR-4-mediated macrophage activation through distinct mechanisms, Biochem J,428 (2010),47-54.
    [84]W.A. Boisvert, J. Spangenberg and L.K. Curtiss, Role of leukocyte-specific LDL receptors on plasma lipoprotein cholesterol and atherosclerosis in mice, Arterioscler Thromb Vasc Biol,17 (1997), 340-347.
    [85]D.M. Holtzman, J. Herz and G. Bu, Apolipoprotein e and apolipoprotein e receptors:normal biology and roles in Alzheimer disease, Cold Spring Harb Perspect Med,2 (2012), a6312.
    [86]H. Zhang, L.M. Wu and J. Wu, Cross-talk between apolipoprotein E and cytokines, Mediators Inflamm,2011 (2011),949072.
    [87]J.L. Vincent, Clinical sepsis and septic shock-definition, diagnosis and management principles, Langenbecks Arch Surg,393 (2008),817-824.
    [88]M. Bhatia, M. He, H. Zhang and S. Moochhala, Sepsis as a model of SIRS, Front Biosci,14 (2009),4703-4711.
    [89]N. Bergeron, J. Corriveau, A. Letellier, F. Daigle, L. Lessard and S. Quessy, Interaction between host cells and septicemic Salmonella enterica serovar typhimurium isolates from pigs, J Clin Microbiol, 47(2009),3413-3419.
    [90]M.J. Wick, Innate immune control of Salmonella enterica serovar Typhimurium:mechanisms contributing to combating systemic Salmonella infection, J Innate Immun,3 (2011),543-549.
    [91]M.G. Netea, L.A. Joosten, M. Keuter, F. Wagener, A.F. Stalenhoef, J.W. van der Meer and B.J, Kullberg, Circulating lipoproteins are a crucial component of host defense against invasive Salmonella typhimurium infection, PLoS One,4 (2009), e4237.
    [92]P.H. Groeneveld, K.M. Kwappenberg, J.A. Langermans, P.H. Nibbering and L. Curtis, Relation between pro-and anti-inflammatory cytokines and the production of nitric oxide (NO) in severe sepsis, Cytokine,9(1997),138-142.
    [93]M.R. Pinsky, J.L. Vincent, J. Deviere, M. Alegre, R.J. Kahn and E. Dupont, Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality, Chest,103 (1993),565-575.
    [94]C. Libert, A. Vink, P. Coulie, P. Brouckaert, B. Everaerdt, J. Van Snick and W. Fiers, Limited involvement of interleukin-6 in the pathogenesis of lethal septic shock as revealed by the effect of monoclonal antibodies against interleukin-6 or its receptor in various murine models, Eur J Immunol, 22 (1992),2625-2630.
    [95]T. van der Poll, M. Levi, C.E. Hack, C.H. Ten, S.J. van Deventer, A.J. Eerenberg, E.R. de Groot, J. Jansen, H. Gallati, H.R. Buller and A. Et, Elimination of interleukin 6 attenuates coagulation activation in experimental endotoxemia in chimpanzees, J Exp Med,179 (1994),1253-1259.
    [96]D.G. Remick, Cytokine therapeutics for the treatment of sepsis:why has nothing worked? Curr Pharm Des,9 (2003),75-82.
    [97]H. Qin, C.A. Wilson, S.J. Lee, X. Zhao and E.N. Benveniste, LPS induces CD40 gene expression through the activation of NF-kappaB and STAT-1 alpha in macrophages and microglia, Blood,106 (2005),3114-3122.
    1. Glickman R. M, Green P. H. R. Tne intestine as a source of apolipoprotein A-I. Proc, Natl.Acad. Sci USA.1977,74:2569-2573
    2. Wu, A. L, Windmueller H. G. Indentification of circulation apolipoproteins synthesized by rat small intestine in vivo. J. Biol. Chem. 1978,253:2525-2528
    3.Wu,A. L, Windmueller H. G. Relative contribution by liver and intestine to individual plasma apolipoproteins in the rat. J. Biol. Chem. 1979,254:7316-7322.
    4. Driscoll D. M, Getz G. S. Extrahepatic synthesis of apolipoprotein E. J. Lip. Res.1984,25:1368-1379.
    5. Good P. F, WWerner P. HA, Olanow C. W. Perl D. P. Am. J. Path.1996, 149:21-28
    6.Dong L. M, Weisgraber K. H. Human apolipoprotein E4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins. J. Biol. Chem.,1996,271:19053-19057
    7. Mahley R. W, Ji Z. S. Remnant lipoprotein metabolism:Key pathways involving cell-surface heparin sulfate proteoglycans and apolipoprotein E.1999,40:1-16
    8. Oosten M. V, Rensen P. C.N, Amersfoort E. S.V, et al. Apolipoprotein E protects against bacterial lipopolysaccharide-induced lethality. J. Bio. Chem.2001,276:8820-8824
    9. Rosselaar S, E, Daugherty A. Apolipoprotein E-deficient mice have impaired innate immune responses to Listeria monocytogenes in vivo. J. Lip, Res.1998,39:1740-1743
    10. Bont N. D, Netea M. G, Demacker P. N. M, Verschueren I, et al. Apolipoprotein E knock-out mice are highly susceptible to endotoxemia and Klebsilla pneumoniae infection. J. Lip. Res.1999,40:680-685
    11.AliK. Middleton M, Pure E, Rader P. D. Apolipoprotein E suppresses the type I. inflammation response in Vivo. Circulation Res.2005,97:922-927
    12. Glauser M.P., Zanetti G, Baumgartner J. D et al. Lancet. 1999,388:732-736
    13. Parillo E. P. N. Engl. J. Med.1993,328:1471-1477
    14.Singh K, Chaturvedi R, Asim M. et al., The Apolipoprotein E-mimetic peptide COG112 inhibits the inflammatory response to Citrobacter rodentium in colonic epithelial cells by preventing NF-kappaB. J. Biol. Chem.2008,283:16752-16761
    15. Stephens T. A, Nikoopour E., Rider B. J., et al. Dendritic cell differentiation induced by a self-peptide derived from apolipoprotein E. J. Immunology.2008,6861-6871.
    16. Brigl M., Brenner B., CD1:antigen presentation and T cell function. Annu. Rev. Immunol.2004,22:817-890
    17. Elzen P. V. D, Garg S., Leon L., et al. Apoplipoprotein-mediaated pathways of lipid antigen presentation. Nature,2005,437:906-910
    18. Soldato D. E. W., Swan R. Z., Chuang C. S., et al The apoptotic pathway as a therapeutic target in sepsis. Curr Drug Target.2007,8:493-500
    19. Roth E, Hanspeter P. IFN-γ promotes Fas ligand-and perforin-mediated liver cell destruction by cytotoxic CD8 T cells. J Immunol 2004;172:1588-1594.
    20. Hayashi H., Campenot R. B., Vance D. E., et al., ApoplipoproteinE-containing lipoprotein protect neurons from apoptosis via a sigaling pathway involving low-density lipoprotein receptor-related protein-1. J. Neuroscience.2007,27:1933-1941
    21. Elliott DA, Kim WS, Jans DA, et al. macrophage Apoplipoprotein-Eknockdown modulates caspase-3 activation without altering sensitiving to apoptosis. Biochim. Biophys. Acta.2007, 1780:145-153
    22. kichens RL., Thompson PA, Munford RS., et al. Actue inflammation and infection maintain circulating phospholipids level and enhance lipopolysaccharide binding to plasma lipoproteins. J. Lip. Res. 2003,44:2339-2348
    23. Levels JH, Abraham PR, Van DEA, et al., Distribution and kinetics of lipoprotein-bound endotoxin. Infect Immun.2001,69:2821-2828
    24. Rensen P. C. N., Oosten M. V., Bilt E. V. D. et al., Human recombinant Apoplipoprotein-E redirects lipopolysaccharide from Kupffer cells to liver parenchymal cell in Rats in Vivo. J. Cloin. Invest. 1997,99:2438-2445
    25. Li L, Thompson PA, Kitchen RL. Infection induces a positive acute phase Apoplipoprotein-E response from a negative acute phase ngene:role of hepatic LDL receptors. J. Lip. Res.2008,49:1782-1793
    26.Croy J. E., Brandon T., Komives E. A. Two Apoplipoprotein-E mimetic peptides, ApoE(130-149)and ApoE(141-155)2 Bind to LRP. Biochemistry, 2004,43:7328-7335
    27. Lynch J. R., Tang W., Wang H., et al., APOE genotype and an ApoE-mimetic peptide modify the systemic and central nervous system inflammatory response. J. Biolo. Chem.2003,278:48529-48533
    28. Li F. Q. Sepowski G. D. Mckenna S.S., et al. ApoplipoproteinE-derived peptides ameliorate clinical disability and inflammatory infiltrates into the spinal cord in a murine model of mulitiple sclerosis. J. Pharm. Exper. Thera.2006,318:956-965
    29. Dobson C.B., Sales S.D., Hoggard P. et al., The receptor-bingding region of human apoplipoprotein E has direct anti-infective activity. J. infect. Dis.2006,193:442-450
    30. Kelly B. A., NeilS.J., Mcknight A. M., et al. Apoplipoprotein E-derived antimicrobial peptide analogues with altered membrance affinity and increased potency and breadth of activity. J. FEBS,2006,274:4511-4525

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700