脂肪型和瘦肉型猪肌肉生长和脂肪沉积相关基因的差异表达分析和分子网络构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨骼肌细胞和脂肪细胞在生长发育过程中受到的微效多基因间的互作调控机制是决定猪胴体和肉质等相关数量性状的分子基础。本研究利用包含140个与猪肌肉生长和脂肪沉积密切相关基因的Oligo功能分类基因芯片,检测了脂肪型的太湖猪和瘦肉型的长白猪在出生后不同生长发育阶段,背最长肌(初生,1,2,3,4和5月龄)和背部皮下脂肪(1,2,3,4和5月龄)中相关基因表达谱的变化。
     ①方差分析(ANOVA)和基因分组检验(GCT)结果显示:背最长肌表达谱中,长白猪分别有18和22个基因,太湖猪分别有3和7个基因在月龄间的表达差异达极显著(P_(ANOVA)<0.01)和显著水平(P_(ANOVA)<0.05),且长白猪中包含10个基因的“参与脂肪酸生物合成的酶”基因分组具有极显著意义(P_(ErmineJ)<0.01)。皮下脂肪表达谱中,长白猪有25个基因在月龄间的表达差异达显著水平(P_(ANOVA)<0.05),且包含23个基因的“参与脂肪或类固醇代谢的酶和调节蛋白”基因分组在品种间具有极显著意义(P_(ErmineJ)<0.01)。提示两猪种骨骼肌生长速度和脂肪沉积能力表型的巨大差异可能与这些基因的差异表达规律相关。
     ②短时间序列表达聚类(STEM)结果显示:背最长肌表达谱中,先降后升、逐渐上升和逐渐下降、逐渐上升分别是长白猪和太湖猪在初生至5月龄间最具代表性的基因表达模式(P_(STEM)<0.01),其中正调控肌纤维生长和脂肪酸合成的基因主要表现为逐渐上调,而抑制细胞增殖和正调控脂肪酸β氧化的基因则主要表现为逐渐下降。皮下脂肪表达谱中,长白猪和太湖猪各有两个表达模式分别具有极显著(P_(STEM)<0.01)和显著性意义(P_(STEM)<0.05),但太湖猪基因表达谱比较分散,占主导优势的表达模式没有长白猪明显,提示太湖猪脂肪细胞内参与相关代谢活动的基因间的调控关系较长白猪复杂。
     ③主成分分析(PCA)结果显示:长白猪和太湖猪的背最长肌表达谱中分别有7和6个基因,皮下脂肪表达谱中分别有16和13个基因的时序表达模式明显偏离其他基因,提示可能受到了特殊的调控。
     ④ANOVA和二维层级聚类的PCA映射结果显示:长白猪分别有42和27个基因,太湖猪分别有51和20个基因在背最长肌和皮下脂肪间的表达差异达极显著(P_(ANOVA)<0.01)和显著水平(P_(ANOVA)<0.05)。53个与脂肪沉积相关基因在两组织内的时序表达模式大致可分为3类,可按照不同标准筛选存在组织特异性表达模式的基因,为探讨IMF和皮下脂肪沉积的分子机制积累了基础资料。
     ⑤基于动态贝叶斯模型(DBN)构建的基因调控网络(GRNs)从一定程度上揭示了两品种在肌肉生长和脂肪沉积等生理生化代谢活动方面的明显差异。网络中基因的调控地位与已知功能信息大致相符,具有一定的准确性和可信度,可从中挖掘相关性状潜在的关键特征基因。
     ⑥Pathway映射结果显示:两个代表脂肪沉积动态平衡的通路——脂肪酸代谢和脂肪酸生物合成,两个代表脂肪沉积调控的通路——PPAR信号转导和脂肪细胞因子信号转导,所涉及的生物学功能在两猪种间和生长发育过程中可能发生了变化。从一定程度上揭示了不同生产类型的两猪种在脂肪沉积性状上巨大表型差异的分子基础。
     ⑦通过基于表达模式识别(STEM)结果的文献网络子网挖掘,在等级分值较高的子网中寻找到了大量已有相关研究支撑、对宏观表型具有重要影响和研究价值的种子基因,建议可作为影响猪肌肉和脂肪性状的关键特征基因进行深入研究。
     ⑧利用物种人的同源基因预测了本研究背最长肌表达谱中差异表达基因间的转录调控网络(TRNs),发现26个表达差异达显著水平的基因(P_(AVOVA)<0.05和0.01)受到E2F转录因子(E2F1~8)、上游结合蛋白1(LBP-1/UBP1)、激活增强子结合蛋白2γ(AP2-gamma)和PHD锌指转录因子蛋白(BPTF)等27个转录因子(TFs)具有显著性意义的调控(P_(TF)<0.05)。提示这些TFs通过调节靶基因的表达,可能对猪肌肉和脂肪性状的最终表型产生重要影响。
     ⑨对片内和片间重复性的评价结果显示:4个片内重复的平均变异系数(?)和3个重复检测芯片间的平均相关系数(?)在皮下脂肪和背最长肌中分别平均为5.95%±3.15%、5.19%±2.87%和0.894±0.038、0.917±0.041,均高于(?)<15%和r>0.700的成功实验标准。对两组织内各5个差异表达基因的QRT-PCR验证显示:两种实验方法检测结果均为正相关,相关系数(r)在皮下脂肪和背最长肌表达谱中分别平均为0.874±0.071和0.876±0.095。表明本研究结果准确可靠,检测数据能够真实反映基因的表达变化规律。
     本研究筛选出了对于猪胴体和肉质性状可能具有重要影响和较大研究价值的基因,初步揭示了生长发育过程中骨骼肌和脂肪细胞基因表达调控的局部分子互作机制,以及造成猪肌肉和脂肪宏观性状表型差异的分子网络基础。
During the growth and development of skeletal muscle cells and adipose cells,the regulatory mechanism of micro-effect polygenes determines porcine meat quality,carcass characteristics and other relative quantitative traits.Obese and lean type pig breeds show obvious differences in muscle growth and adipose deposition;however,the molecular mechanism underlying this phenotypic variation remains unknown.We used pathway-focused oligo microarray studies to examine the expression changes of 140 genes associated with muscle growth and adipose deposition in longissimus dorsi muscle at six growth stages(birth,1,2,3,4 and 5 months)and in backfat at five growth stages(1,2,3,4 and 5 months)of Landrace(a leaner,Western breed)and Taihu pigs(a fatty,indigenous,Chinese breed).
     (ⅰ)Variance analysis(ANOVA)revealed that differences in the expression of 18 genes in Landrace pigs and 3 genes in Taihu pigs were very significant(P_(ANOVA)<0.01)and differences for 22 genes in Landrace pigs and 7 genes in Taihu pigs were significant(P_(ANOVA)<0.05)in longissimus dorsi muscle among six growth stages.The differences in the expression of 25 genes in Landrace pigs were significant(P_(ANOVA)<0.05)in backfat among five growth stages.Gene class test(GCT)indicated that a gene-group was very significant in longissimus dorsi muscle of Landrace pigs across six growth stages(P_(ErmineJ)<0.01),which consisted of 10 genes for enzymes related to fatty acid biosynthesis.A gene-group was very significant in backfat between two pig breeds across five growth stages(P_(ErmineJ)<0.01),which consisted of 23 genes encoding enzymes and regulatory proteins associated with lipid and steroid metabolism.These findings suggest that the distinct differences in fat-deposition ability,muscle-fiber number and growth rate between Landrace and Taihu pigs may closely correlate with the expression changes of these genes.
     (ⅱ)STEM(Short Time-series Expression Miner)clustering analysis revealed a very high level of significance(P_(STEM)<0.01)for 4 gene expression patterns in longissimus dorsi muscle,in which genes that showed strong up-regulation were mainly associated with the positive regulation of myofiber formation and fatty acid biogenesis and genes that showed strong down-regulation were mainly associated with the inhibition of cell proliferation and positive regulation of fatty acidβ-oxidation.A very high level of significance(P_(STEM)<0.01)for 2 gene expression patterns in Landrace pigs and a high level of significance(P_(STEM)<0.05)for 2 gene expression patterns in Taihu pigs for backfat.Also,expression patterns of genes were more diversified in Taihu pigs than in Landrace pigs,which suggests that the regulatory mechanism of micro-effect polygenes in adipocytes may be more complex in Taihu pigs than in Landrace pigs.
     (ⅲ)Principal component analysis(PCA)revealed that 7 and 16 genes of Landrace,6 and 13 genes of Taihu pigs in longissimus dorsi muscle and backfat displayed distinctive expression pattern from other genes,which suggested that these genes maybe came under special regulation during the growth and development of skeletal muscle cells and adipose cells.
     (ⅳ)ANOVA revealed that differences in the expression of 42 genes in Landrace pigs and 51 genes in Taihu pigs were very significant(P_(ANOVA)<0.01)and differences for 27 genes in Landrace pigs and 20 genes in Taihu pigs were significant(P_(ANOVA)<0.05)between longissimus dorsi muscle and backfat across five growth stages.The resluts of two-way hierarchical clustering could be segmented to three clusters,and mapped to the two- and three- dimensional map of PCA.We can highlight some genes which have tissue specific expression patterns on which to base further study of the differences in molecular mechanism between the depostation of subcutaneous fat and intramuscular fat(IMF).
     (ⅴ)Based on a dynamic Bayesian network(DBN)model,gene regulatory networks(GRNs) were reconstructed from time-series data for each pig breed and tissue.These four GRNs initially revealed the distinct differences in physiological and biochemical aspects of muscle growth and adipose deposition between the two pig breeds;from these results,some potential key genes could been identified.
     (ⅵ)Pathway mapping revealed that the biological functions of four pathways maybe changed during the process of growth and development between two pig breeds,in which the pathway of fat acid metabolism and biosynthesis involved the competitive equilibrium of fat depostation,and the pathway of PPAR(peroxisome proliferator-activated receptor)signaling and adipocytokine signaling involved the rugulation of fat depostation.These results could be explained the phenotypic variation of fat traits between obese and lean type pig breeds to some extent.
     (ⅶ)Based on a natural language processing(NLP)approach,literature co-citation networks of genes that belong to predominant temporal expression patterns using a unique STEM algorithm were reconstructed.We can choose seed genes from sub-networks that have higher rank scores as potential key genes for porcine meat quality and carcass traits.
     (ⅷ)Based on human homologous genes,transcriptional regulatory networks(TRNs)of differentially expressed genes(P_(ANOVA)<0.05 and 0.01)in longissimus dorsi muscle were inferred. We found 27 transcription factors(TFs)have significantly overabundant binding sites in the promoters of 26 genes(P_(TF)<0.05).These findings suggest that these TFs maybe indirectly influence muscle and fat traits via directly stimulate target genes.
     (ⅸ)Repeatability analysis indicated that average coefficient of variation((?))within-arrays and average correlation coefficient((?))between-arrays were 5.95%±3.15%and 0.894±0.038 for expression profiling of backfat,and 5.19%±2.87%and 0.917±0.041 for expression profiling of longissimus dorsi muscle.Quantitative,real-time RT-PCR(QRT-PCR)was used to verify the microarray data for five modulated genes within each tissue,and a good correlation between the two measures of expression was observed for both two pig breeds at different growth stages (backfat:r=0.874±0.071 and longissimus dorsi muscle:r=0.876±0.095).These resultes demonstrate that the microarray technique used in this study is accurate and reproducible.
     These results highlight some possible candidate genes for porcine meat quality and carcass traits and provide some data on which to base further study of the molecular mechanism of muscle growth and fat deposition.
引文
1.Lunney JK.Advances in swine biomedical model genomics[J].Int J Biol Sci,2007,3(3):179-184.
    2.Plastow GS,Carrion D,Gil M,et al.Quality pork genes and meat production[J].Meat Sci,2005,70(3):409-421.
    3.朱猛进,刘榜,李奎.猪肉基因(组)研究进展及相关问题探讨[J].遗传,2005,27(1):137-142.
    4.Fujii J,Otsu K,Zorzato F,et al.Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia[J].Science,1991,253(5018):448-451.
    5.Milan D,Woloszyn N,Yerle M,et al.Accurate mapping of the "acid meat" RN gene on genetic and physical maps of pig chromosome 15[J].Mamm Genome,1996,7(1):47-51.
    6.Pao SY,Lin WL,Hwang MJ.In silico identification and comparative analysis of differentially expressed genes in human and mouse tissues[J].BMC Genomics,2006,7:86-96.
    7.Gorodkin J,Cirera S,Hedegaard J,et al.Porcine transcriptome analysis based on 97non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags[J].Genome Biol,2007,8(4):R45.
    8.Shimkets RA.GeneCalling:transcript profiling coupled to a gene database query[J].Methods Mol Biol,2006,317:75-83.
    9.Spinella DG,Bernardino AK,Redding AC,et al.Tandem arrayed ligation of expressed sequence tags(TALEST):a new method for generating global gene expression profiles[J].Nucleic Acids Res,1999,27(18):e22.
    10.Brenner S,Johnson M,Bridgham J,et al.Gene expression analysis by massively parallel signature sequencing(MPSS)on microbead arrays[J].Nat Biotechnol,2000,18(6):630-634.
    11.Velculescu VE,Zhang L,Vogelstein B,et al.Serial analysis of gene expression[J].Science,1995,270(5235):484-487.
    12.Blomberg le A,Garrett WM,Guillomot M,et al.Transcriptome profiling of the tubular porcine conceptus identifies the differential regulation of growth and developmentally associated genes[J].Mol Reprod Dev,2006,73(12):1491-1502.
    13.Tang Z,Li Y,Wan P,et al.LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs[J].Genome Biol,2007,8(6):R115.
    14.Schena M,Shalon D,Davis RW,et al.Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J].Science,1995,270(5235):467-470.
    15.Moody DE,Zou Z,McIntyre L.Cross-species hybridisation of pig RNA to human nylon microarrays[J].BMC Genomics,2002,3(1):27-37.
    16.Tuggle CK,Wang Y,Couture O.Advances in swine transcriptomics[J].Int J Biol Sci,2007,3(3):132-152.
    17.Solomon AM,Bouloux PM.Modifying muscle mass-the endocrine perspective[J].J Endocrinol,2006,191(2):349-360.
    18.Waki H,Tontonoz P.Endocrine functions of adipose tissue[J].Annu Rev Pathol,2007,2: 31-56.
    19.Goossens OH,Jocken JW,Blaak EE,et al.Endocrine role of the renin-angiotensin system in human adipose tissue and muscle:effect of beta-adrenergic stimulation[J].Hypertension,2007,49(3):542-547.
    20.Wood JD,Enser M,Fisher AV,et al.Fat deposition,fatty acid composition and meat quality:A review[J].Meat Sci,2008,78(4):343-358.
    1.Larson G,Dobney K,Albarella U,et al.Worldwide phylogeography of wild boar reveals multiple centers of pig domestication[J].Science,2005,307(5715):1618-1621.
    2.Jiang Z,Rothschild MF.Swine genome science comes of age[J],Int J Biol Sci,2007,3(3):129-131.
    3.Rothschild MF,Plastow GS.Impact of genomics on animal agriculture and opportunities for animal health[J].Trends Biotechnol,2008,26(1):21-25.
    4.Davoli R,Braglia S.Molecular approaches in pig brewing to improve meat quality[J].Brief Funct Genomic Proteomic,2007,6(4):313-321.
    5.Suzuki K,Irie M,Kadowaki H,et al.Genetic parameter estimates of meat quality traits in Duroc pigs selected for average daily gain,longissimus muscle area,backfat thickness,and intramuscular fat content[J].J Anim Sci,2005,83(9):2058-2065.
    6.Wood JD,Enser M,Fisher AV,et al.Fat deposition,fatty acid composition and meat quality:A review[J].Meat Sci,2008,78(4):343-358.
    7.Laible G.Enhancing livestock through genetic engineering - Recent advances and future prospects[J].Comp Immunol Microbiol lnfect Dis,2008,31(4):326-340.
    8.Le Grand F,Rudnicki MA.Skeletal muscle satellite cells and adult myogenesis[J].Curr Opin Cell Biol,2007,19(6):628-633.
    9.Qin RF,Mao TQ,Gu XM,et al.Regulation of skeletal muscle differentiation in fibroblasts by exogenous MyoD gene in vitro and in vivo[J].Mol Cell Biochem,2007,302(1-2):233-239.
    10.Feve B.Adipogenesis:cellular and molecular aspects[J].Best Pract Res Clin Endocrinol Metab,2005,19(4):483-499.
    11.Xi G,Hathaway MR,Dayton WR,et al.Growth factor messenger ribonucleic acid expression during differentiation of porcine embryonic myogenic cells[J].J Anita Sci,2007,85(1):143-150.
    12.McNally EM,MacLeod H.Therapy insight:cardiovascular complications associated with muscular dystrophies[J].Nat Clin Pract Cardiovasc Med,2005,2(6):301-308.
    13.Holt RI.Fetal programming of the growth hormone-insulin-like growth factor axis[J].Trends Endocrinol Metab,2002,13(9):392-397.
    14.Emilsson V,Thorleifsson G,Zhang B,et al.Genetics of gene expression and its effect on disease[J].Nature,2008,452(7186):423-428.
    15.Choi K,Roh SG,Hong YH,et al.The role of ghrelin and growth hormone secretagogues receptor on rat adipogenesis[J].Endocrinology,2003,144(3):754-759.
    16.Zhou X,Li D,Yin J,et al.CLA differently regulates adipogenesis in stromal vascular cells from porcine subcutaneous adipose and skeletal muscle[J].J Lipid Res,2007,48(8):1701-1709.
    17.Kiess W,Petzold S,Topfer M,et al.Adipocytes and adipose tissue[J].Best Pract Res Clin Endocrinol Metab,2008,22(1):135-153.
    18.Schwab CR,Baas TJ,Stalder KJ,et al.Deposition rates and accretion patterns of intramuscular fat,loin muscle area,and backfat of Duroc pigs sired by boars from two time periods[J].J Anim Sci,2007,85(6):1540-1546.
    19.Hausman GJ,Kauffman RG.The histology of developing porcine adipose tissue[J].J Anim Sci,1986,63(2):642-658.
    20.Solomon AM,Bouloux PM.Modifying muscle mass - the endocrine perspective[J].J Endocrinol,2006,191(2):349-360.
    21.Waki H,Tontonoz P.Endocrine functions of adipose tissue[J].Annu Rev Pathol,2007,2:31-56.
    22.Fernandez-Real JM,Lopez-Bermejo A,Ricart W.Cross-talk between iron metabolism and diabetes[J].Diabetes,2002,51(8):2348-2354.
    23.Nielsen AR,Pedersen BK.The biological roles of exercise-induced cytokines:1L-6,1L-8,and IL-15[J].Appl Physiol Nutr Metab,2007,32(5):833-839.
    24.Leite-Moreira AF,Rocha-Sousa A,Henriques-Coelho T.Cardiac,skeletal,and smooth muscle regulation by ghrelin[J].Vitam Horm,2008,77:207-238.
    25.Janovska A,Hatzinikolas G,Staikopoulos V,et al.AMPK and ACC phosphorylation:effect of leptin,muscle fibre type and obesity[J].Mol Cell Endocrinol,2008,284(1-2):1-10.
    26.Hardin BJ,Campbell KS,Smith JD,et al.TNF-α Acts via TNFR1 and muscle-derived oxidants to depress myofibrillar force in murine skeletal muscle[J].J Appl Physiol,2008,104(3):694-699.
    27.Ganter MT,Cohen MJ,Brohi K,et al.Angiopoietin-2,marker and mediator of endothelial activation with prognostic significance early after trauma?[J].Ann Surg,2008,247(2):320-326.
    28.Green RD,Qureshi MA,Long JA,et al.Identifying the future needs for long-term USDA efforts in agricultural animal genomics[J],Int J Biol Sci,2007,3(3):185-191.
    29.Chen K,Baxter T,Muir WM,et al.Genetic resources,genome mapping and evolutionary genomics of the pig(Sus scrofa)[J],Int J Biol Sci,2007,3(3):153-165.
    30.Chen CY,Johnson RK,Newman S,et al.A general review of competition genetic effects with an emphasis on swine breeding[J].Genet Mol Res,2007,6(3):594-606.
    31.Rothschild MF,Hu ZL,Jiang Z.Advances in QTL mapping in pigs[J],Int J Biol Sci,2007,3(3):192-197.
    32.Fujii J,Otsu K,Zorzato F,et al.Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia[J].Science,1991,253(5018):448-451.
    33.Milan D,Jeon JT,Looft C,et al.A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle[J].Science,2000,288(5469):1248-1251.
    34.Kim KS,Larsen NJ,Rothschild MF.Rapid communication:linkage and physical mapping of the porcine melanocortin-4 receptor(MC4R).gene[J].JAnim Sci,2000,78(3):791-792.
    35.Knap PW SA,Klont RE,et al.Simultaneous improvement of meat quality and growth and carcass traits in pigs[J].Proceedings of the 7th World Congress of Genetics Applied to Livestock Production Prod:INRA,Castanet-Tolosan,France.2002:339-346.
    36.Van Laere AS,Nguyen M,Braunschweig M,et al.A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig[J].Nature,2003,425(6960):832-836.
    37.Meyers SN,Rodriguez-Zas SL,Beever JE.Fine-mapping of a QTL influencing pork tenderness on porcine chromosome 2[J].BMC Genet,2007,8:69-80.
    38.Koentges G.Evolution of anatomy and gene controI[J].Nature,2008,451(7179):658-663.
    39.Zhao SH,Nettleton D,Liu W,et al.Complementary DNA macroarray analyses of differential gene expression in porcine fetal and posmatal muscle[J].J Anim Sci,2003,81(9):2179-2188.
    40.Bai Q,McGillivray C,da Costa N,et al.Development of a porcine skeletal muscle cDNA microarray:analysis of differential transcript expression in phenotypically distinct muscles[J].BMC Genomics,2003,4(1):8-16.
    41.Da Costa N,McGillivray C,Bai Q,et al.Restriction of dietary energy and protein induces molecular changes in young porcine skeletal muscles[J].J Nutr,2004,134(9):2191-2199.
    42.Ponsuksili S,Murani E,Schellander K,et al.Identification of functional candidate genes for body composition by expression analyses and evidencing impact by association analysis and mapping[J].Biochim Biophys Acta,2005,1730(1):31-40.
    43.Te Pas MF,De Wit AA,Priem J,et al.Transcriptome expression profiles in prenatal pigs in relation to myogenesis[J].J Muscle Res Cell Motil,2005,26(2-3):157-165.
    44.Lin CS,Hsu CW.Differentially transcribed genes in skeletal muscle of Duroc and Taoyuan pigs[J].J Anim Sci,2005,83(9):2075-2086.
    45.Chul WK,Kyu TC,Yeon HH,et al.Screening of Specific Genes Expressed in the Swine Tissues and Development of a Functional cDNA Chip[J].Asian-Aust J Anim Sci,2005,18(7):933-940.
    46.Cagnazzo M,te Pas MF,Priem J,et al.Comparison of prenatal muscle tissue expression profiles of two pig breeds differing in muscle characteristics[J].J Anim Sci,2006,84(1):1-10.
    47.Hausman GJ,Barb CR,Dean RG.Patterns of gene expression in pig adipose tissue:transforming growth factors,interferons,interleukins,and apolipoproteins[J],J Anim Sci,2007,85(10):2445-2456.
    48.Qu A,Rothschild MF,Stahl CH.Effect of dietary phosphorus and its interaction with genetic background on global gene expression in porcine muscle[J].J Anim Breed Genet,2007,124(4):214-224.
    49.Zhang J,He Q,Liu QY,et al.Differential gene expression profile in pig adipose tissue treated with/without clenbuterol[J].BMC Genomics,2007,8:433-445.
    50.Gladney CD,Bertani GR,Johnson RK,et al.Evaluation of gene expression in pigs selected for enhanced reproduction using differential display PCR and human microarrays:I.Ovarian follicles[J].J Anim Sci,2004,82(1):17-31.
    51.Caetano AR,Johnson RK,Ford JJ,et al.Microarray profiling for differential gene expression in ovaries and ovarian follicles of pigs selected for increased ovulation rate[J].Genetics,2004,168(3):1529-1537.
    52.Lee SH,Zhao SH,Recknor JC,et al.Transcriptional profiling using a novel cDNA array identifies differential gene expression-during porcine embryo elongation[J].Mol Reprod Dev,2005,71(2):129-139.
    53.Whitworth KM,Agca C,Kim JG,et al.Transcriptional profiling of pig embryogenesis by using a 15-K member unigene set specific for pig reproductive tissues and embryos[J].Biol Reprod,2005,72(6):1437-1451.
    54.Stewart JD,Lou Y,Squires EJ,et al.Using human microarrays to identify differentially expressed genes associated with increased steroidogenesis in boars[y].Anita Biotechnol,2005,16(2):139-151.
    55.Agca C,Ries JE,Kolath SJ,et al.Luteinization of porcine preovulatory follicles leads to systematic changes in follicular gene expression[J].Reproduction,2006,132(1):133-145.
    56.Green JA,Kim JG,Whitworth KM,et al.The use of microarrays to define functionally-related genes that are differentially expressed in the cycling pig uterus[J].Soc Reprod Fertil Suppl,2006,62:163-176.
    57.Gau BH,Chu IM,Huang MC,et al.Transcripts of enriched germ cells responding to heat shock as potential markers for porcine semen quality[J].Theriogenology,2008,69(6):758-766.
    58.Hammamieh R,Bi S,Das R,et al.Modeling of SEB-induced host gene expression to correlate in vitro to in vivo responses[y].Biosens Bioelectron,2004,20(4):719-727.
    59.Moser RJ,Reverter A,Kerr CA,et al.A mixed-model approach for the analysis of cDNA microarray gene expression data from extreme-performing pigs after infection with Actinobacillus pleuropneumoniae[J].J Anim Sci,2004,82(5):1261-1271.
    60.Afonso CL,Piccone ME,Zaffuto KM,et al.African swine fever virus multigene family 360and 530 genes affect host interferon response[J].J Virol,2004,78(4):1858-1864.
    61.Ledger TN,Pinton P,Bourges D,et al.Development of a macroarray to specifically analyze immunological gene expression in swine[J].Clin Diagn Lab Immunol,2004,11(4):691-698.
    62.Dvorak CM,Hyland KA,Machado JG,et al.Gene discovery and expression profiling in porcine Peyer's patch[J].Vet Immunol Immunopathol,2005,105(3-4):301-315.
    63.Machado JG,Hyland KA,Dvorak CM,et al.Gene expression profiling of jejunal Peyer's patches in juvenile and adult pigs[Y].Mamm Genome,2005,16(8):599-612.
    64.Niewold TA,Kerstens HH,van der Meulen J,et al.Development of a porcine small intestinal cDNA micro-array:characterization and functional analysis of the response to enterotoxigenic E.coli[J].Vet Immunol Immunopathol.2005,105(3-4):317-329.
    65.Zhao SH,Kuhar D,Lunney JK,et al.Gene expression profiling in Salmonella Choleraesuis-infected porcine lung using a long oligonucleotide microarray[J].Mamm Genome,2006,17(7):777-789.
    66.Okomo-Adhiambo M,Beattie C,Rink A.cDNA microarray analysis of host-pathogen interactions in a porcine in vitro model for Toxoplasma gondii infection[J],Infect Immun,2006,74(7):4254-4265.
    67.Niewold TA,Veldhuizen EJ,van der Meulen J,et al.The early transcriptional response of pig small intestinal mucosa to invasion by Salmonella enterica serovar typhimurium DT104[J].Mol Immunol,2007,44(6):1316-1322.
    68.Moser RJ,Reverter A,Lehnert SA.Gene expression profiling of porcine peripheral blood leukocytes after infection with Actinobacillus pleuropneumoniae[J].Vet Immunol Immunopathol,2008,121(3-4):260-274.
    69.Moody DE,Zou Z,McIntyre L.Cross-species hybridisation of pig RNA to human nylon microarrays[J].BMC Genomics,2002,3(1):27-37.
    70.Nobis W,Ren X,Suchyta SP,et al.Development of a porcine brain cDNA library,EST database,and microarray resource[J].Physiol Genomics,2003,16(1):153-159.
    71.Shah G,Azizian M,Bruch D,et al.Cross-species comparison of gene expression between human and porcine tissue,using single microarray platform--preliminary results[J].Clin Transplant,2004,18(Suppl 12):76-80.
    72.Passerini AG,Polacek DC,Shi C,et al.Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta[J].Proc Natl Acad Sci USA,2004,101(8):2482-2487.
    73.Lahmers S,Wu Y,Call DR,et al.Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium[J].Circ Res,2004,94(4):505-513.
    74.Lai LP,Lin JL,Lin CS,et al.Functional genomic study on atrial fibrillation using cDNA microarray and two-dimensional protein electrophoresis techniques and identification of the myosin regulatory light chain isoform reprogramming in atrial fibrillation[J].J Cardiovasc Electrophysiol,2004,15(2):214-223.
    75.Schwartz PH,Nethercott H,Kirov,et al.Expression of neurodevelopmental markers by cultured porcine neural precursor cells[J].Stem Cells,2005,23(9):1286-1294.
    76.Cheon Y,Nara TY,Band MR,et al.Induction of overlapping genes by fasting and a peroxisome proliferatur in pigs:evidence of functional PPARalpha in nonproliferating species[J].Am J Physiol Regul Integr Comp Physiol,2005,288(6):R1525-1535.
    77.Zhao SH,Recknor J,Lunney JK,et al.Validation of a first-generation long-oligonucleotide microarray for transcriptional profiling in the pig[J].Genomics,2005,86(5):618-625.
    78.Esfandiari F,Villanueva JA,Wong DH,et al.Chronic ethanol feeding and folate deficiency activate hepatic endoplasmic reticulum stress pathway in micropigs[J].Am J Physiol Gastrointest Liver Physiol,2005,289(1):G54-63.
    79.Vittal V,Rose A,Gregory KE,et al.Changes in gene expression by trabecular meshwork cells in response to mechanical stretching[J].Invest Ophthalmol Vis Sci,2005,46(8):2857-2868.
    80.Poletto R,Siegford JM,Steibel JP,et al.Investigation of changes in global gene expression in the frontal cortex of early-weaned and socially isolated piglets using microarray and quantitative real-time RT-PCR[J].Brain Res,2006,1068(1):7-15.
    81.Butcher JT,Tressel S,Johnson T,et al.Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences:influence of shear stress[J].Arterioscler Thromb Vasc Biol,2006,26(1):69-77.
    82.Hausman GJ,Poulos SP,Richardson RL,et al.Secreted proteins and genes in fetal and neonatal pig adipose tissue and stromal-vascular cells[J].J Anim Sci,2006,84(7):1666-1681.
    83.Tsai S,Mir B,Martin AC,et al.Detection of transcriptional difference of porcine imprinted genes using different microarray platforms[J].BMC Genomics,2006,7:328-340.
    84.Homshoj H,Conley LN,Hedegaard J,et al.Microarray expression profiles of 20,000 genes across 23 healthy porcine tissues[J].PLoS ONE,2007,2(11):e1203.
    85.Chowdhury SR,King DE,Willing BP,et al.Transcriptome profiling of the small intestinal epithelium in germfree versus conventional piglets[J].BMC Genomics,2007,8:215-219.
    86.Kurashige Y,Saitoh M,Nishimura M,et al.Profiling of differentially expressed genes in porcine epithelial cells derived from periodontal ligament and gingiva by DNA microarray[J].Arch Oral Biol,2008,53(5):437-442.
    87.Bonnet A,Iannuccelli E,Hugot K,et at A pig multi-tissue normalised cDNA library:large-scale sequencing,cluster analysis and 9K micro-away resource generation[J].BMC Genomics,2008,9(1):17-23.
    88.Doms A,Schroeder M.GoPubMed:exploring PubMed with the Gene Ontology[J].Nucleic Acids Res,2005,33(Web Server issue):W753-786.
    89.Khatri P,Voichita C,Kattan K,et at Onto-Tools:new additions and improvements in 2006[J].Nucleic Acids Res,2007,35(Web Server issue):W206-211.
    90.Branca M.Genetics and medicine --Putting gene arrays to the test[J].Science,2003,300(5617):238-243.
    91.Te Pas MF,Hulsegge I,Coster A,et al.Biochemical pathways analysis of microarray results:regulation of myogenesis in pigs[J].BMC Dev Biol,2007,7:66-78.
    1.Kolstad K.Fat deposition and distribution measured by computer tomography in three genetic groups of pigs[J].Livest Prod Sci,2001,67(3):281-292.
    2.Spurlock ME,Gabler NK.The development of porcine models of obesity and the metabolic syndrome[J],J Nutr,2008,138(2):397-402.
    1.Quackenbush J.Microarray data normalization and transformation[J].Nat Genet,2002,32(Suppl):496-501.
    2.Khatri P,Voichita C,Kattan K,et al.Onto-Tools:new additions and improvements in 2006[J].Nucleic Acids Res,2007,35(Web Server issue):W206-211.
    3.Doms A,Schroeder M.GoPubMed:exploring PubMed with the Gene Ontology[J].Nucleic Acids Res,2005,33(Web Server issue):W783-786.
    4.Yang YH,Dudoit S,Luu P,et al.Normalization for cDNA microarray data:a robust composite method addressing single and multiple slide systematic variation[J].Nucleic Acids Res,2002,30(4):e15.
    5.Smyth GK,Speed T.Normalization of cDNA microarray data[J].Methods,2003,31(4):265-273.
    6.Smyth GK,Michaud J,Scott HS.Use of within-array replicate spots for assessing differential expression in microarray experiments[J].Bioinformatics,2005,21(9):2067-2075.
    7.Xia X,McClelland M,Wang Y.WebArray:an online platform for microarray data analysis[J].BMC Bioinformatics,2005,6:306-314.
    8.Troyanskaya O,Cantor M,Sherlock G,et al.Missing value estimation methods for DNA microarrays[J].Bioinformatics,2001,17(6):520-525.
    9.Romualdi C,Vitulo N,Del Favero M,et al.MIDAW:a web tool for statistical analysis of microarray data[J].Nucleic Acids Res,2005,33(Web Server issue):W644-649.
    10.Barrett T,Troup DB,Wilhite SE,et al.NCBI GEO:mining tens of millions of expression profiles--database and tools update[J].Nucleic Acids Res,2007,35(Database issue):D760-765.
    11.Brazma A,Hingamp P,Quackenbush J,et al.Minimum information about a microarray experiment(MIAME)-toward standards for microarray data[J].Nat Genet,2001,29(4):365-371.
    12.Edgar R,Barrett T.NCBI GEO standards and services for microarray data[J].Nat Biotechnol,2006,24(12):1471-1472.
    13.Yang YH,Speed T.Design issues for cDNA microarray experiments[J].Nat Rev Genet,2002,3(8):579-588.
    14.Churchill GA.Fundamentals of experimental design for cDNA microarrays[J].Nat Genet,2002,32(Suppl):490-495.
    15.Yang H,Churchill G.Estimating P-values in small microarray experiments[J].Bioinformatics,2007,23(1):38-43.
    16.Fardin P,Moretti S,Biasotti B,et al.Normalization of low-density microarray using external spike-in controls:analysis of macrophage cell lines expression profile[J].BMC Genomics,2007,8:17-26.
    17.Conlon EM,Song JJ,Liu JS.Bayesian models for pooling microarray studies with multiple sources of replications[J].BMC Bioinformatics,2006,7:247-256.
    18.Oba S,Sato MA,Takemasa I,et al.A Bayesian missing value estimation method for gene expression profile data[J].Bioinformatics,2003,19(16):2088-2096.
    19.Kim H,Golub GH,Park H.Missing value estimation for DNA microarray gene expression data:local least squares imputation[J].Bioinformatics,2005,21(2):187-198.
    20.Yoon D,Lee EK,Park T.Robust imputation method for missing values in microarray data[J].BMC Bioinformatics,2007,8(Suppl 2):S6.
    1.Klebanov L,Qiu X,Welle S,et al.Statistical methods and microarray data[J].Nat Biotechnol,2007,25(1):25-26;author reply 26-27.
    2.Cordero F,Botta M,Calogero RA.Microarray data analysis and mining approaches[J].Brief Funct Genomic Proteomic,2007,6(4):265-281.
    3.Ness SA.Microarray analysis:basic strategies for successful experiments[J].Mol Biotechnol,2007,36(3):205-219.
    4.Wolfinger RD,Gibson G,Wolfinger ED,et al.Assessing gene significance from cDNA microarray expression data via mixed models[J].J Comput Biol,2001,8(6):625-637.
    5.Cui X,Hwang JT,Qiu J,et al.Improved statistical tests for differential gene expression by shrinking variance components estimates[J].Biostatistics,2005,6(1):59-75.
    6.Lee HK,Braynen W,Keshav K,et al.ErmineJ:tool for functional analysis of gene expression data sets[J].BMC Bioinformatics,2005,6:269-278.
    7.Ernst J,Nau GJ,Bar-Joseph Z.Clustering short time series gene expression data[J].Bioinformatics,2005,21(Suppl 1):i159-168.
    8.Ernst J,Bar-Joseph Z.STEM:a tool for the analysis of short time series gene expression data[J].BMC Bioinformatics,2006,7:191-198.
    9.Sturn A,Quackenbush J,Trajanoski Z.Genesis:cluster analysis of microarray data[J].Bioinformatics,2002,18(1):207-208.
    10.Datta S.Empirical Bayes screening of many P-values with applications to microarray studies[J].Bioinformatics,2005,21(9):1987-1994.
    11.Benjamini Y,Hochberg Y.Controlling the False Discovery Rate:a practical and powerful approach to multiple testing[J].J Roy Stat Soc B,1995,57(1):289-300.
    12.Allison DB,Cui X,Page GP,et al.Microarray data analysis:from disarray to consolidation and consensus[J].Nat Rev Genet,2006,7(1):55-65.
    13.Yang H,Churchill G.Estimating P-values in small microarray experiments[J].Bioinformatics,2007,23(1):38-43.
    14.Ramoni MF,Sebastiani P,Kohane IS.Cluster analysis of gene expression dynamics[J].Proc Natl Acad Sci USA,2002,99(14):9121-9126.
    15.Costa IG,Schonhuth A,Schliep A.The Graphical Query Language:a tool for analysis of gene expression time-courses[J].Bioinformatics,2005,21(10):2544-2545.
    16.Weeraratna AT,Taub DD.Microarray data analysis:an overview of design,methodology,and analysis[J].Methods Mol Biol,2007,377:1-16.
    17.Hancock CR,Brault JJ,Terjung RL.Protecting the cellular energy state during contractions:role of AMP deaminase[J].J Physiol Pharmacol,2006,57(Suppl 10):17-29.
    18.Tikk M,Tikk K,Torngren MA,et al.Development of inosine monophosphate and its degradation products during aging of pork of different qualities in relation to basic taste and retronasal flavor perception of the meat[J].J Agric Food Chem,2006,54(20):7769-7777.
    19.Stratil A,Knoll A,Moser G,et aL The porcine adenosine monophosphate deaminase 1(AMPD1)gene maps to chromosome 4[J].Anim Genet,2000,31(2):147-148.
    20.刘慧,许尧,赵黎黎,等.猪AMPD1基因的克隆与变异位点分析[J].遗传,2008,30(2):175-178.
    21.Rozovsky S,McDermott AE.Substrate product equilibrium on a reversible enzyme,triosephosphate isomerase[J].Proc Natl Acad Sci USA,2007,104(7):2080-2085.
    22.Laville E,Sayd T,Terlouw C,et al.Comparison of sarcoplasmic proteomes between two groups of pig muscles selected for shear force of cooked meat[J],J Agric Food Chem,2007,55(14):5834-5841.
    23.Weiskirchen R,Gunther K.The CRP/MLP/TLP family of LIM domain proteins:acting by connecting[J].Bioessays,2003,25(2):152-162.
    24.Kadrmas JL,Beckerle MC.The LIM domain:from the cytoskeleton to the nucleus[J].Nat Rev Mol Cell Biol,2004,5(11):920-931.
    25.Chang BH,Chan L.Regulation of triglyeeride metabolism.Ⅲ.Emerging role of lipid droplet protein ADFP in health and disease[J].Am J Physiol Gastrointest Liver Physiol,2007,292(6):G1465-1468.
    26.Kim TH,Choi BH,Chang GW,et al.Molecular characterization and chromosomal mapping of porcine adipose differentiation-related protein(ADRP)[J].J Anita Breed Genet,2005,122(4):240-246.
    27.Nie T,Zhao XL,Qiu H,et al.Sequence analysis and map assignment of pig SREBF2 and ADFP[J].Anita Genet,2005,36(5):455-457.
    28.Zimowska M.Signaling pathways of transforming growth factor beta family members[J].Postepy Biochem,2006,52(4):360-366.
    29.Chmurzynska A.The multigene family of fatty acid-binding proteins(FABPs):function,structure and polymorphism[J],J Appl Genet,2006,47(1):39-48.
    30.Mead JR,Irvine SA,Ramji DP.Lipoprotein lipase:structure,function,regulation,and role in disease[J],J Mol Med,2002,80(12):753-769.
    31.Chmurzynska A,Szydlowski M,Stachowiak M,et al.Association of a new SNP in promoter region of the porcine FABP3 gene with fatness traits in a polish synthetic line[J].Anim Biotechnol,2007,15(1):37-44.
    32.Li B,Zerby FIN,Lee K.Heart fatty acid binding protein is upregulated during porcine adipocyte development[J],.J of Animl Sci,2007,85(7):1651.
    33.Spurlock ME,Ji SQ,Godat RL,et al.Changes in the expression of uncoupling proteins and lipases in porcine adipose tissue and skeletal muscle during feed deprivation[J],J Nutr Biochem,2001,12(2):81-87.
    34.Li C.Genetics and regulation of angiopoietin-like proteins 3 and 4[J].Curr Opin Lipidol,2006,17(2):152-156.
    35.Sukonina V,Lookene A,Olivecrona T,et al.Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue[J].Proc Natl Acad Sci USA,2006,103(46):17450-17455.
    36.Feng SQ,Chen XD,Xia T,et al.Cloning,chromosome mapping and expression characteristics of porcine ANGPTL3 and -4[J].Cytogenet Genome Res,2006,114(1):44-49.
    37.Merritt JL,Matern D,Vockley J,et al.In vitro characterization and in vivo expression of human very-long chain acyl-CoA dehydrogenase[J].Mol Genet Metab,2006,88(4):351-358.
    38.Gillingham MB,Purnell JQ,Jordan J,et al.Effects of higher dietary protein intake on energy balance and metabolic control in children with long-chain 3-hydroxy acyl-CoA dehydrogenase(LCHAD)or trifunctional protein(TFP)deficiency[J].Mol Genet Metab,2007,90(1):64-69.
    39.Tang H,Kung A,Goldberg E.Regulation of murine lactate dehydrogenase C(LDHC)gene expression[J].Biol Reprod,2008,78(3):455-461.
    40.Sampath H,Miyazaki M,Dobrzyn A,et al.Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat[J].J Biol Chem,2007,282(4):2483-2493.
    41.Ren J,Knorr C,Huang L,et al.Isolation and molecular characterization of the porcine stearoyl-CoA desaturase gene[J].Gene,2004,340(1):19-30.
    42.Doran O,Moule SK,Teye GA,et al.A reduced protein diet induces stearoyl-CoA desaturase protein expression in pig muscle but not in subcutaneous adipose tissue:relationship with intramuscular lipid formation[J].Br J Nutr,2006,95(3):609-617.
    43.Brand MD,Esteves TC.Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3[J].Cell Metab,2005,2(2):85-93.
    44.Ramsay TG,Rosebrough RW.Regulation of uncoupling proteins 2 and 3 in porcine adipose tissue[J].Domest Anim Endocrinol,2005,28(4):351-366.
    45.Li Y,Li H,Zhao X,et al.UCP2 and 3 deletion screening and distribution in 15 pig breeds[J].Biochem Genet,2007,45(1-2):103-111.
    46.Carninci P,Kasukawa T,Katayama S,et al.The transcriptional landscape of the mammalian genome[J].Science,2005,309(5740):1559-1563.
    47.Suzuki K,Irie M,Kadowaki H,et al.Genetic parameter estimates of meat quality traits in Duroc pigs selected for average daily gain,longissimus muscle area,backfat thickness,and intramuscular fat content[J].J Anim Sci,2005,83(9):2058-2065.
    48.Hernandez S,Lloreta J.Manual versus laser micro-dissection in molecular biology[J].Ultrastruct Pathol,2006,30(3):221-228.
    49.Hsu WC,Hung HC,Tong L,et al.Dual functional roles of ATP in the human mitochondrial malic enzyme[J].Biochemistry,2004,43(23):7382-7390.
    50.Mourot J,Kouba M.Development of intra- and intermuscular adipose tissue in growing large white and Meishan pigs[J].Reprod Nutr Dev,1999,39(1):125-132.
    51.高勤学,李俊,刘红林,等.二花脸猪与大约克猪生长期肌内脂肪合成与水解基因表达特征的比较研究[J].遗传学报,2004,31(11):1218-1225.
    52.Vidal O,Varona L,Oliver MA,et al.Malic enzyme 1 genotype is associated with backfat thickness and meat quality traits in pigs[J].Anita Genet,2006,37(1):28-32.
    53.Thompson MP,Kim D.Links between fatty acids and expression of UCP2 and UCP3mRNAs[J].FEBS Lett,2004,568(1-3):4-9.
    54.Pedersen SB,Nyholm B,Kristensen K,et al.Increased adiposity and reduced adipose tissue mRNA expression of uncoupling protein-2 in first-degree relatives of type 2 diabetic patients:evidence for insulin stimulation of UCP-2 and UCP-3 gene expression in adipose tissue[J].Diabetes Obes Metab,2005,7(1):98-105.
    55.Guillerm-Regost C,Louveau I,Sebert SP,et al.Cellular and biochemical features of skeletal muscle in obese Yucatan minipigs[J].Obesity(Silver Spring),2006,14(10):1700-1707.
    56.Ramsay TG,Riehards MP.Beta-adrenergic regulation of uncoupling protein expression in swine[J].Comp Biochem Physiol A Mol Integr Physiol,2007,147(2):395-403.
    57.Ramsay TG,Mitchell AD.Impact of dietary protein content on uncoupling protein mRNA abundance in swine[J].Comp Biochem Physiol B Biochem Mol Biol,2008,149(4):562-571.
    1.Megason SG,Fraser SE.Imaging in systems biology[J].Cell,2007,130(5):784-795.
    2.Sako Y.Imaging single molecules in living cells for systems biology[J].Mol Syst Biol,2006,2:56.
    3.Dunn RK,Kingston RE.Gene regulation in the postgenomic era:technology takes the wheel[J].Mol Cell,2007,28(5):708-714.
    4.Jansen R,Yu H,Greenbaum D,et al.A Bayesian networks approach for predicting protein-protein interactions from genomic data[J].Science,2003,302(5644):449-453.
    5.Li P,Zhang C,Perkins EJ,et al.Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks[J].BMC Bioinformatics,2007,8(Suppl 7):S13.
    6.Yue L,Reisdorf WC.Pathway and ontology analysis:emerging approaches connecting transcriptome data and clinical endpoints[J].Curr Mol Med,2005,5(1):11-21.
    7.Ekins S,Nikolsky Y,Bugrim A,et al.Pathway mapping tools for analysis of high content data[J].Methods Mol Biol,2007,356:319-350.
    8.Suderman M,Haller M.Tools for visually exploring biological networks[J].Bioinformatics,2007,23(20):2651-2659.
    9.Cohen KB,Hunter L.Getting started in text mining[J].PLoS Comput Biol,2008,4(1):e20.
    10.Rubin DL,Shah NH,Noy NF.Biomedical ontologies:a functional perspective[J].Brief Bioinform,2008,9(1):75-90.
    11.Schlitt T,Brazma A.Modelling in molecular biology:describing transcription regulatory networks at different scales[J].Philos Trans R Soc Lond B Biol Sci,2006,361(1467):483-494.
    12.Wang Z,Wei GH,Liu DP,et al.Unravelling the world of cis-regulatory elements[J].Med Biol Eng Comput,2007,45(8):709-718.
    13.Margolin AA,Wang K,Lim WK,et al.Reverse engineering cellular networks[J].Nat Protoc,2006,1(2):662-671.
    14.Khammash M.Reverse engineering:the architecture of biological networks[J].Biotechniques,2008,44(3):323-329.
    15.Wu CC,Huang HC,Juan HF,et al.GeneNetwork:an interactive tool for reconstruction of genetic networks using microarray data[J].Bioinformatics,2004,20(18):3691-3693.
    16.Dennis G,Jr.,Sherman BT,Hosack DA,et al.DAVID:Database for Annotation,Visualization,and Integrated Discovery[J].Genome Biol,2003,4(5):P3.
    17.Aoki-Kinoshita KF,Kanehisa M.Gene annotation and pathway mapping in KEGG[J].Methods Mol Biol,2007,396:71-91.
    18.Salomonis N,Hanspers K,Zambon AC,et al.GenMAPP 2:new features and resources for pathway analysis[J].BMC Bioinformatics,2007,8:217-221.
    19.Junker BH,Klukas C,Schreiber F.VANTED:a system for advanced data analysis and visualization in the context of biological networks[J]. BMC Bioinformatics, 2006, 7: 109-116.
    
    20. Jenssen TK, Laegreid A, Komorowski J, et al. A literature network of human genes for high-throughput analysis of gene expression[J]. Nat Genet, 2001,28(1): 21-28.
    
    21. Pearson H. Biology's name game[J]. Nature, 2001,411(6838): 631-632.
    
    22. Adamic LA, Wilkinson D, Huberman BA, et al. A literature based method for identifying gene-disease connections[J]. Proc IEEE Comput Soc Bioinform Corf, 2002,1: 109-117.
    
    23. Haverty PM, Frith MC, Weng Z. CARRIE web service: automated transcriptional regulatory network inference and interactive analysis[J]. Nucleic Acids Res, 2004, 32(Web Server issue): W213-216.
    
    24. Green RD, Qureshi MA, Long JA, et al. Identifying the future needs for long-term USDA efforts in agricultural animal genomics[J]. Int JBiolSci, 2007, 3(3): 185-191.
    
    25. Meyers SN, Rogatcheva MB, Larkin DM, et al. Piggy-BACing the human genome II. A high-resolution, physically anchored, comparative map of the porcine autosomes[J]. Genomics, 2005, 86(6): 739-752.
    
    26. Rogatcheva MB, Chen K, Larkin DM, et al. Piggy-BACing the human genome I: constructing a porcine BAC physical map through comparative genomics[J]. Anim Biotechnol, 2008, 19(1): 28-42.
    
    27. Vavouri T, Walter K, Gilks WR, et al. Parallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans [J]. Genome Biol, 2007, 8(2): R15.
    
    28. Prakash A, Tompa M. Discovery of regulatory elements in vertebrates through comparative genomics[J]. Nat Biotechnol, 2005,23(10): 1249-1256.
    
    29. Matys V, Kel-Margoulis OV, Fricke E, et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes[J]. Nucleic Acids Res, 2006, 34(Database issue): D108-110.
    
    30. Haverty PM, Hansen U, Weng Z. Computational inference of transcriptional regulatory networks from expression profiling and transcription factor binding site identification[J]. Nucleic Acids Res, 2004, 32(1): 179-188.
    
    31. Dojer N, Gambin A, Mizera A, et al. Applying dynamic Bayesian networks to perturbed gene expression data[J]. BMC Bioinformatics, 2006, 7: 249-258.
    
    32. Geier F, Timmer J, Fleck C. Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge[J]. BMC Syst Biol, 2007, 1: 11-19.
    
    33. Barb CR, Hausman GJ, Czaja K. Leptin: a metabolic signal affecting central regulation of reproduction in the pig[J]. Domest Anim Endocrinol, 2005, 29(1): 186-192.
    
    34. O'Rourke L, Yeaman SJ, Shepherd PR. Insulin and leptin acutely regulate cholesterol ester metabolism in macrophages by novel signaling pathways[J]. Diabetes, 2001, 50(5): 955-961.
    
    35. Rance KA, Johnstone AM, Murison S, et al. Plasma leptin levels are related to body composition, sex, insulin levels and the A55V polymorphism of the UCP2 gene[J]. Int J Obes (Lond), 2007,31(8): 1311-1318.
    
    36. Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1[J].Nature,2001,413(6852):131-138.
    37.Oberkofler H,Esterbauer H,Linnemayr V,et al.Peroxisome proliferator-activated receptor (PPAR)gamma coactivator-1 recruitment regulates PPAR subtype specificity[J].J Biol Chem,2002,277(19):16750-16757.
    38.Michael LF,Wu Z,Cheatham RB,et al.Restoration of insulin-sensitive glucose transporter (GLUT4)gene expression in muscle cells by the transcriptional coactivator PGC-1[J].Proc Natl Acad Sci USA,2001,98(7):3820-3825.
    39.Lin J,Wu H,Tarr PT,et al.Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres[J].Nature,2002,418(6899):797-801.
    40.Jacobs K,Rohrer G,Van Poucke M,et al.Porcine PPARGClA(peroxisome proliferative activated receptor gamma coactivator 1A):coding sequence,genomic organization,polymorphisms and mapping[J].Cytogenet Genome Res,2006,112(1-2):106-113.
    41.Erkens T,Van Poucke M,Vandesompele J,et al.Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle,and evaluation with PPARGClA[J].BMC Biotechnol,2006,6:41-53.
    42.Bezaire V,Seifert EL,Harper ME.Uncoupling protein-3:clues in an ongoing mitochondrial mystery[J].FASEB J,2007,21(2):312-324.
    43.Looft C,Paul S,Thomsen PD,et al.Isolation and assignment of the UDP-glucose pyrophosphorylase gene(UGP2)to porcine chromosome 3q21-->q22 by FISH and by analysis of somatic cell and radiation hybrid panels[J].Cytogenet Cell Genet,2000,89(3-4):154-155.
    44.Sukonina V,Lookene A,Olivecrona T,et al.Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue[J].Proc Natl Acad Sci USA,2006,103(46):17450-17455.
    45.Curtis RK,Oresic M,Vidal-Puig A.Pathways to the analysis of microarray data[J].Trends Biotechnol,2005,23(8):429-435.
    46.Partanen ST,Novikov DK,Popov AN,et al.The 1.3A crystal structure of human mitochondrial Delta3-Delta2-enoyl-CoA isomerase shows a novel mode of binding for the fatty acyl group[J].J Mol Biol,2004,342(4):1197-1208.
    47.Takahashi M,Watari E,Shinya E,et al.Suppression of virus replication via down-modulation of mitochondrial short chain enoyl-CoA hydratase in human glioblastoma cells[J].Antiviral Res,2007,75(2):152-158.
    48.Choi JH,Yoon HR,Kim GH,et al.Identification of novel mutations of the HADHA and HADHB genes in patients with mitochondrial trifunctional protein deficiency[J].Int J Mol Med,2007,19(1):81-87.
    49.Spiekerkoetter U,Khuchua Z,Yue Z,et al.General mitochondrial trifunctional protein(TFP)deficiency as a result of either alpha- or beta-subunit mutations exhibits similar phenotypes because mutations in either subunit alter TFP complex expression and subunit turnover[J].Pediatr Res,2004,55(2):190-196.
    50.Grimaldi PA.Peroxisome proliferator-activated receptors as sensors of fatty acids and derivatives[J].Cell Mol Life Sci,2007,64(19-20):2459-2464.
    51.Chmurzynska A,Szydlowski M,Stachowiak M,et al.Association of a new SNP in promoter region of the porcine FABP3 gene with fatness traits in a polish synthetic line[J].Anira Biotechnol,2007,18(1):37-44.
    52.Li B,Zerby HN,Lee K.Heart fatty acid binding protein is upregulated during porcine adipocyte development[J].J Anim Sci,2007,85(7):1651-1659.
    53.Waki H,Tontonoz P.Endocrine functions of adipose tissue[J].Annu Rev Pathol,2007,2:31-56.
    54.Carling D.The AMP-activated protein kinase cascade--a unifying system for energy control[J].Trends Biochem Sci,2004,29(1):18-24.
    55.Yamauchi T,Kamon J,Ito Y,et al.Cloning of adiponectin receptors that mediate antidiabetic metabolic effects[J].Nature,2003,423(6941):762-769.
    56.Crimmins NA,Martin LJ.Polymorphisms in adiponectin receptor genes ADIPOR1 and ADIPOR2 and insulin resistance[J].Obes Rev,2007,8(5):419-423.
    57.Civitarese AE,Jenkinson CP,Richardson D,et al.Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of type 2 diabetes[J].Diabetologia,2004,47(5):816-820.
    58.Fasshauer M,Klein J,Kralisch S,et al.Growth hormone is a positive regulator of adiponectin receptor 2 in 3T3-L1 adipocytes[J].FEBS Lett,2004,558(1-3):27-32.
    59.Ding ST,Liu BH,Ko YH.Cloning and expression of porcine adiponectin and adiponectin receptor 1 and 2 genes in pigs[J].J Anim Sci,2004,82(11):3162-3174.
    60.Lord E,Ledoux S,Murphy BD,et al.Expression of adiponectin and its receptors in swine[J].J Anim Sci,2005,83(3):565-578.
    61.Dai MH,Xia T,Zhang GD,et al.Cloning,expression and chromosome localization of porcine adiponectin and adiponectin receptors genes[J].Domest Anita Endocrinol,2006,30(2):117-125.
    62.Draghici S,Khatri P,Tarca AL,et al.A systems biology approach for pathway level analysis[J].Genome Res,2007,17(10):1537-1545.
    63.殷蜀梅.基于Medline的医学数据挖掘系统研究[J].现代图书情报技术,2007,(4):12-16.
    64.张敏,朱晶,郭政,等.利用亚细胞位置特异的基因功能模块与表达调控网络识别疾病特征基因[J].科学通报,2006,51(13):1545-1551.
    65.Regnstrom K,Ragnarsson E,Artursson P.Gene expression after vaccination of mice with formulations of diphtheria toxoid or tetanus toxoid and different adjuvants:identification of shared and vaccine-specific genes in spleen lymphocytes[J].Vaccine,2003,21(19-20):2307-2317.
    66.Hsu WC,Hung HC,Tong L,et al.Dual functional roles of ATP in the human mitochondrial malic enzyme[J].Biochemistry,2004,43(23):7382-7390.
    67.Rippa M,Giovannini PP,Barrett MP,et al.6-Phosphogluconate dehydrogenase:the mechanism of action investigated by a comparison of the enzyme from different species[J].Biochim Biophys Acta,1998,1429(1):83-92.
    68.Vidal O,Varona L,Oliver MA,et al.Malic enzyme 1 genotype is associated with backfat thickness and meat quality traits in pigs[J].Anita Genet,2006,37(1):28-32.
    69.Spurlock ME,Ji SQ,Godat RL,et al.Changes in the expression of uncoupling proteins and lipases in porcine adipose tissue and skeletal muscle during feed deprivation[J].J Nutr Biochem,2001,12(2):81-87.
    70.Sonstegard TS,Capuco AV,White J,et al.Analysis of bovine mammary gland EST and functional annotation of the Bos taurus gene index[J].Mamm Genome,2002,13(7):373-379.
    71.Mercade A,Sanchez A,Folch JM.Exclusion of the acyl CoA:diacylglycerol acyltransferase 1gene(DGAT1)as a candidate for a fatty acid composition QTL on porcine chromosome 4[J].J Anim Breed Genet,2005,122(3):161-164.
    72.Szczerbal I,Lin L,Stachowiak M,et al.Cytogenetic mapping of DGAT1,PPARA,ADIPORl and CREB genes in the pig[J].J Appl Genet,2007,48(1):73-76.
    73.Das MK,Dai klK.A survey of DNA motif finding algorithms[J].BMC Bioinformatics,2007,8(Suppl 7):S21.
    74.Woolfe A,Goodson M,Goode DK,et al.Highly conserved non-coding sequences are associated with vertebrate development[J].PLoS Biol,2005,3(1):e7.
    75.Satija R,Pachter L,Hein J.Combining statistical alignment and phylogenetic footprinting to detect regulatory elements[J].Bioinformatics,2008,4:361-372
    76.Donaldson IJ,Gottgens B.Evolution of candidate transcriptional regulatory motifs since the human-chimpanzee divergence[J].Genome Biol,2006,7(6):R32.
    77.Xie X,Lu J,Kulbokas EJ,et al.Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals[J].Nature,2005,434(7031):338-345.
    78.Shin JT,Priest JR,Ovcharenko I,et al.Human-zebrafish non-coding conserved elements act in vivo to regulate transcription[J].Nucleic Acids Res,2005,33(17):5437-5445.
    79.Richardson MP,Tay BH,Goh BY,et al.Molecular cloning and genomic structure of a gene encoding interferon regulatory factor in the pufferfish(Fugu rubripes)[J].Mar Biotechnol (NY),2001,3(2):145-151.
    80.Gottgens B,Barton LM,Chapman MA,et al.Transcriptional regulation of the stem cell leukemia gene(SCL)-- comparative analysis of five vertebrate SCL loci[J].Genome Res,2002,12(5):749-759.
    81.Fisher S,Grice EA,Vinton RM,et al.Conservation of RET regulatory function from human to zebrafish without sequence similarity[J].Science,2006,312(5771):276-279.
    82.Logan N,Graham A,Zhao X,et al.E2F-8:an E2F family member with a similar organization of DNA-binding domains to E2F-7[J].Oncogene,2005,24(31):5000-5004.
    83.Ogawa H,Ishiguro K,Ganbatz S,et al.A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in GO cells[J].Science,2002,296(5570):1132-1136.
    84.Huang N,Miller WL.LBP proteins modulate SF1-independent expression of P450scc in human placental JEG-3 cells[J].Mol Endocrinol,2005,19(2):409-420.
    85.Li M,Wang Y,Yu Y,et al.The human transcription factor activation protein-2 gamma (AP-2gamma):gene structure,promoter,and expression in mammary carcinoma cell lines[J].Gene,2002,301(1-2):43-51.
    86.Wysocka J,Swigut T,Xiao H,et al.A PHD finger of NURF couples histone H3 lysine 4trimethylation with chromatin remodelling[J].Nature,2006,442(7098):86-90.
    87.Chen Y,Zhu J,Lum PY,et al.Variations in DNA elucidate molecular networks that cause disease[J].Nature,2008,452(7186):429-435.
    1. Chuaqui RF, Bonner RF, Best CJ, et al. Post-analysis follow-up and validation of microarray experiments[J]. Nat Genet, 2002,32(Suppl): 509-514.
    2. Erkens T, Van Poucke M, Vandesompele J, et al. Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A[J]. BMC Biotechnol, 2006, 6:41-52.
    3. Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biol, 2002,3(7): 34-42.
    4. Kawasaki ES. The end of the microarray tower of Babel: will universal standards lead the way?[J]. J Biomol Tech, 2006, 17(3): 200-206.
    5.李瑶.基因芯片数据分析与处理[M].北京:化学工业出版社.2006:133—142.
    6. Rockett JC, Hellmann GM. Confirming microarray data------is it really necessary?[J].Genomics, 2004,83(4): 541-549.
    7. Qin LX, Beyer RP, Hudson FN, et al. Evaluation of methods for oligonucleotide array data via quantitative real-time PCR[J]. BMC Bioinformatics, 2006,7:23-31.
    8. Etienne W, Meyer MH, Peppers J, et al. Comparison of mRNA gene expression by RT-PCR and DNA microarray[J]. Biotechniques, 2004,36(4): 618-620,622,624-616.
    9. Dallas PB, Gottardo NG, Firth MJ, et al. Gene expression levels assessed by oligonucleotidemicroarray analysis and quantitative real-time RT-PCR------how well do they correlate?[J].BMC Genomics, 2005,6(1): 59-68.
    10. De Reynies A, Geromin D, Cayuela JM, et al. Comparison of the latest commercial short and long oligonucleotide microarray technologies[J]. BMC Genomics, 2006,7: 51 -58.
    1.Cohen BA,Mitra RD,Hughes JD,et al.A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression[J].Nat Genet,2000,26(2):183-186.
    2.Bussemaker HJ,Li H,Siggia ED.Regulatory element detection using correlation with expression[J].Nat Genet,2001,27(2):167-171.
    3.Cahan P,Roveguo F,Mooney D,et al.Meta-analysis of microarray results:challenges,opportunities,and recommendations for standardization[J].Gene,2007,401(1-2):12-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700