钙钛矿型锰氧化物的结构、磁和电输运性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从庞磁电阻(CMR)物理现象发现以来,钙钛矿型锰氧化物的研究就成为了当今凝聚态物理学和材料物理学研究的热点之一。这不仅是因为CMR效应在磁传感器、磁记录信号读出磁头和磁存储技术领域具有潜在的应用价值,而且这类氧化物本身也蕴含着丰富的物理现象,如外加磁场引起的绝缘体–金属转变,电子/结构相分离等现象。本论文通过对钙钛矿型锰氧化物的A位和B位掺杂研究,对其结构、磁和电输运性质进行了研究探索,主要工作概括如下:
     采用Pechini方法制备了铁磁绝缘体Nd_(0.85)Na_(0.15)MnO_3多晶样品。磁性研究表明该样品在居里温度附近呈现出短程铁磁有序相与顺磁相共存现象,不同温度下的电子自旋共振(ESR)谱线证实了这一相分离现象随温度变化的动态过程。用小极化子跃迁模型分析了高温区的ESR参数和电阻率,得到了与小极化子产生和跃迁相关的激活能。
     低温下Fe掺杂锰氧化物LaMn_(0.7)Fe_(0.3)O_3多晶样品处于类团簇玻璃态,交流磁化率的测量证实了这一点。当从高温向低温方向趋近于有序温度时,样品中出现了铁磁团簇,这些铁磁团簇是由Mn~(3+)/Mn~(3+)或者Mn~(3+)/Fe~(3+)离子之间的铁磁相互作用构成的;当温度进一步降低时,这些铁磁团簇与Fe~(3+)/Fe~(3+)离子之间的反铁磁相互作用竞争,形成了类团簇玻璃态。另一方面研究了LaMn_(0.7)Fe_(0.3)O_3样品的低温动力学特性,观察到有趣的现象,即加场冷却和零场冷却时的磁记忆效应。在30 K附近,时效在负温度循环和正温度循环中都表现出记忆效应,而在61 K附近,时效只在负温度循环中表现出记忆效应,反映了这个系统存在着两种不同的非平衡态。
     多晶CaMn1-xFexO3 (0≤x≤0.35)系列样品呈现出正交畸变的钙钛矿结构,随着Fe含量的增加,晶胞体积线性增大,反铁磁性逐渐趋于弱化。对于x = 0.08和0.10的样品,在外加1 kOe磁场冷却的磁化强度曲线上观察到磁化强度反转现象,这与反铁磁母体中的自旋倾斜排列密切相关。而对于x≥0.15的样品,负磁化强度现象消失,铁磁组份与反铁磁组份共存,且反铁磁相互作用占主导地位。虽然电输运测量表明所有CaMn1-xFexO3样品都表现出绝缘体行为,但是随着Fe含量的增加样品电阻率的变化呈现出非线性趋势:当2%的Fe掺入CaMnO_3时,电阻率增加了近三个数量级,这是由Fe随机取代Mn带来的无序分布引起的;随着Fe含量的进一步增加,载流子浓度增大,电阻率降低。
The manganite with a perovskite structure has been attracted a lot of attention in condensed matter physics and material physics since the discovery of the colossal magnetoresistance (CMR) phenomenon, not only because of the potential applications of CMR effect in magnetic field sensors, magnetic reading heads and magnetic random access memories, but also because of many intriguing physical properties observed in this type of oxide, such as the insulator-metal transition induced by the applied magnetic field, the electronic/structural phase separation. In this thesis, we have investigated the structural, magnetic and electrical transport properties of manganites through doping on the A- and B-site in the perovskite manganites. The main results are generalized as follows:
     We have prepared the ferromagnetic insulating manganite Nd_(0.85)Na_(0.15)MnO_3 polycrystalline sample by Pechini process. The magnetic researches indicate that the short-range ferromagnetic order and paramagnetic state coexist around the Curie temperature (TC). The electron spin resonance (ESR) lines at various temperatures demonstrate the dynamic process of the phase separation phenomenon with decreasing temperature. In the higher temperature range, the temperature dependence of ESR parameters and electrical resistivity are discussed at the frame of the adiabatic small polaron hopping model, and the activation energies related to the creation of the polarons and activating the hopping of the polarons were obtained.
     Ac susceptibility measurements have demonstrated that polycrystalline Fe-doped manganite LaMn_(0.7)Fe_(0.3)O_3 is a typical cluster-glass-like state in the low temperature range. Combined with all results, we conclude that magnetic clusters, contributed from ferromagnetic interaction between Mn~(3+) and Mn~(3+)/Fe~(3+) ions, develop as temperature approaches the ordering temperature, and compete with antiferromagnetic interaction between Fe~(3+) ions in character of cluster-glass-like state in lower temperature. We have also performed a series of measurements to study the low temperature dynamics of LaMn_(0.7)Fe_(0.3)O_3 sample. The results, obtained in the zero-field-cooled and field-cooled dc magnetization and magnetic relaxation, demonstrate striking memory effects. It was also found that, in the aging experiments, there are symmetrical response on negative and positive temperature change around 30 K, and there are not symmetrical response around 61 K, representing two different non-equilibrium states of this system.
     The polycrystalline CaMn1-xFexO3 (0≤x≤0.35) phases adopt an orthorhom- bically distorted perovskite structure. The lattice expansion and weakening antiferro- magnetism are observed with increasing Fe concentration. Magnetization reversal is observed in the field-cooled magnetization curves under the field of 1 kOe for x = 0.80 and 0.10, which can be attributed to a spin-canting arrangement in the antiferro- magnetic matrix. For x≥0.15, the negative magnetization phenomenon disappears, and ferromagnetic component coexists with antiferromagnetic one, but antiferromagnetic interaction still dominates in these compounds. Electrical transport measurements show the insulating behavior in the studied temperature range for all compositions. Fe doping, even at a level as low as x = 0.02, causes a marked resistivity increase, which can be ascribed to the disordered arrangement of transition metal cations. Further increasing Fe content causes resistivity to gradually decrease due to the increasing carriers.
引文
[1] S. Jin, T.H. Tiefel, M. McCormack, et al., Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films, Science, 1994, 264: 413–415; J. Appl. Phys. 1994, 76: 6929–6933
    [2] M.B. Salamon and M. Jaime, The physics of manganites: structure and transport, Rev. Mod. Phys., 2001, 73: 583–628
    [3] E. Dagotto, T. Hotta, and A. Moreo, Colossal magnetoresistant materials: the key role of phase separation, Physics Reports, 2001, 344: 1–153
    [4] Y. Tokura and Y. Tomioka, Colossal magnetoresistive manganites, J. Magn. Magn. Mater., 1999, 200: 1–23
    [5] J.M.D. Coey, M. Viret, and S. von Molnar, Mixed-valence manganites, Adv. Phys., 1999, 48: 167–293
    [6] C.N.R. Rao, A. Arulraj, A.K. Cheetham, and B. Raveau, Charge ordering in the rare earth manganates: the experimental situation, J. Phys.: Condens. Matter, 2000, 12: R83–R106
    [7] C.N.R. Rao, Cheetham A K, and Mahesh R, Giant magnetoresistance and related properties of rare-earth manganates and other oxide systems, Chem. Mater., 1996, 8: 2421–2432
    [8] 刘俊明,王克锋, 稀土掺杂锰氧化物庞磁电阻效应,物理学进展,2005,25: 82–130; 2003,23: 192–211
    [9] 戴道生, 熊光成, 吴思诚, RE1-xTxMnO_3 氧化物的结构, 电磁特性和巨磁电阻,物理学进展, 1997, 17: 201–222
    [10] A.K. Kundu, P. Nordblad, and C.N.R. Rao, Glassy behaviour of the ferromagnetic and the non-magnetic insulating states of the rare earth manganates Ln0.7Ba0.3MnO_3 (Ln = Nd or Gd), J. Phys.: Condens. Matter, 2006, 18: 4809–4818
    [11] K.F. Wang, Y. Wang, L.F. Wang, et al., Ferromagnetic metal to cluster-glass insulator transition induced by A-site disorder in manganites, Appl. Phys. Lett., 2006, 88: 152505~1–3
    [12] N. Veglio, F.J. Bermejo, J. Gutierrez, et al., Experimental evidence of a cluster-glass transition on the colossal magnetoresistance manganite La0.7Pb0.3(Mn0.9 Fe0.1)O3, Phys. Rev. B, 2005, 71: 212402~1–4
    [13] F. Rivadulla, M.A. López-Quintela, and J. Rivas, Origin of the glassy magnetic behavior of the phase segregated state of the perovskites, Phys. Rev. Lett., 2004, 93: 167206~1–4
    [14] T. Qian, G. Li, T. Zhang, et al., Exchange bias tuned by cooling field in phase separated Y0.2Ca0.8MnO_3, Appl. Phys. Lett., 2007, 90: 012503~1–3
    [15] D. Niebieskikwiai and M.B. Salamon, Intrinsic interface exchange coupling of ferromagnetic nanodomains in a charge ordered manganite, Phys. Rev. B, 2005, 72: 174422~1–6
    [16] O. Pe?a, A.B. Antunes, G. Martinez et al., Inter-network magnetic interactions in GdMexMn1-xO3 perovskites (Me = transition metal), J. Magn. Magn. Mater., 2007, 310: 159–168
    [17] V. Markovich, I. Fita, R. Puzniak, et al., Metastable diamagnetism in the manganite Sm_(0.1)Ca_(0.84)Sr_(0.06)MnO_3, Phys. Rev. B, 2006, 74: 174408~1–6
    [18] Y.W. Ma, M. Guillous-Viry, P. Barahona, et al., Observation of magnetization reversal in epitaxial Gd0.67Ca0.33MnO_3 thin films, Appl. Phys. Lett., 2005, 86: 062506~1–3
    [19] H. Song, M. Tokunaga, S. Imamori, et al., Nonvolatile multivalued memory effects in electronic phase-change manganites controlled by Joule heating, Phys. Rev. B, 2006, 74: 052404~1–4
    [20] Y.B. Nian, J. Strozier, N.J. Wu, et al., Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides, Phys. Rev. Lett., 2007, 98: 146403~1–4
    [21] M. Quintero, P. Levy, A.G. Leyva, and M.J. Rozenberg, Mechanism of electric-pulse-induced resistance switching in manganites, Phys. Rev. Lett., 2007, 98: 116601~1–4
    [22] S.T. Hsu, T.K. Li, and N. Awaya, Resistance random access memory switching mechanism, J. Appl. Phys., 2007, 101: 024517~1–8
    [23] E.O. Wollan and W.C. Koehler, Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x)La, xCa]MnO_3, Phys.Rev., 1955, 100: 545–563
    [24] A.J. Millis, B.I. Shraiman, and R. Mueller, Dynamic Jahn-Teller effect and colossal magnetoresistance in La1-xSrxMnO_3, Phys. Rev. Lett., 1996, 77: 175–178
    [25] H. Kawano, R. Kajimoto, H. Yoshizawa et al., Magnetic ordering and relation to the metal-insulator transition in Pr1-xSrxMnO_3 and Nd1-xSrxMnO_3 with x~1/2,Phys. Rev. Lett., 1997, 78: 4253–4256
    [26] S. Mori, C.H. Chen, and S.W. Cheong, Pairing of charge-ordered stripes in (La,Ca)MnO_3, Nature, 1998, 392: 473–476
    [27] H. Kuwahara, Y. Tomioka, A. Asamitsu, et al., A first-order phase transition induced by a magnetic field, Science, 1995, 270: 961–963
    [28] P. Mandal and S. Das, Transport properties of Ce-doped RMnO_3 (R = La, Pr, and Nd) manganites, Phys. Rev. B, 1997, 56: 15073–15080
    [29] J. Philip and T.R.N. Kutty, Effect of valance fluctuations in A sites on the transport properties of La1-xRxMnO_3 (R = Ce, Pr), J. Phys: Condens. Matter, 1999, 11: 8537–8575
    [30] C. Mitra, P. Raychaudhuri, J. John, et al., Growth of epitaxial and polycrystalline thin films of the electron doped system La1-xCexMnO_3 through pulsed laser deposition, J. Appl. Phys., 2001, 89: 524–530
    [31] S. Roy and N. Ali, Charge transport and colossal magnetoresistance phenomenon La1-xZrxMnO_3, J. Appl. Phys., 2001, 89: 7425–7427
    [32] G.T. Tan, S.Y. Dai, P. Duan, et al., Structural, electric and magnetic properties of the electron-doped manganese oxide: La1-xTexMnO_3 (x = 0.1, 0.15), J. Appl. Phys., 2003, 93: 5480–5483
    [33] C. Mitra, P. Raychaudhuri, K. D?rr, et al., Observation of minority spin character of the new electron doped manganite La0.7Ce0.3MnO_3 from tunneling magnetoresistance, Phys. Rev. Lett., 2003, 90: 017202~1–4
    [34] J.R. Sun, C.M. Xiong, T.Y. Zhao, et al., Effects of magnetic field on the manganite-based bilayer junction, Phys. Rev. Lett., 2004, 84: 1528–1530
    [35] J.A.M. van Roosmalen, E.H.P. Cordfunke, R.B. Helmholdt and H.W. Zandbergen, The defect chemistry of LaMnO_3±δ: 2. Structural aspects of LaMnO~(3+)δ, J. Solid State Chem., 1994, 110: 100–105
    [36] J. T?pfer and J.B. Goodenough, LaMnO~(3+)δ revisited, J. Solid State Chem., 1997, 130: 117–128; Chem. Mater., 1997, 9: 1467–1474
    [37] F. Prado, R.D. Sanchez, A. Caneiro, et al., Discontinuous evolution of the highly distorted orthorhombic structure and the magnetic order in LaMnO_3±δ perovskite, Solid State Chem., 1999, 146: 418–427
    [38] M. Muroi and R. Street, Evolution of ferromagnetism in LaMnO~(3+)δ, Aust. J. Phys., 1999, 52: 205–225
    [39] N.N. Loshkareva, Yu.P. Sukhorukov, E.A. Neifei’d, et al., Centers of chargenonuniformity in absorption spectra of lanthanum manganites, JETP, 90 (2000) 389–396
    [40] S. de Brion, F. Ciorcas, G. Chouteau, et al., Magnetic and electric properties of La 1-δ MnO_3, Phys. Rev. B, 1999, 59: 1304–1310
    [41] P.A. Joy, C. Raj Sankar, and S.K. Date, The limiting value of x in the ferromagnetic compositions La1?xMnO_3, J. Phys.: Condens. Matter, 2002, 14: L663–L669; 2002, 14: 4985–4993
    [42] A. Gupta, C.R. Sankar, and S.K. Date, Growth and giant magnetoresistance properties of La-deficient LaxMnO_3–δ (0.67≤x≤1) films Appl. Phys. Lett., 1995, 67: 3494–3496
    [43] V. Markovich, E. Rozenberg, G. Gorodetsky, et al., Effect of pressure and magnetic field on the resistance of the self-doped manganese perovskite La_(0.91)Mn_(0.95)O_3, Phys. Rev. B, 2000, 62: 14186–14190
    [44] V. Markovich, E. Rozenberg, G. Gorodetsky, et al., Suppression of the ferromagnetic-insulating phase in self-doped La Mn O crystals under pressure0.94 0.98 3, Phys. Rev. B, 2001, 63: 054423~1–4
    [45] L. Pinsard-Gaudart, J. Rodriguez-Carvajal, A. Daoud-Aladine, et al., Stability of the Jahn-Teller effect and magnetic study of LaMnO_3 under pressure, Phys. Rev. B 2001, 64: 064426~1–7
    [46] I. Loa, P. Adler, A. Grzechnik, et al., Pressure-induced quenching of the Jahn-Teller distortion and insulator-to-metal transition in LaMnO_3, Phys. Rev. Lett., 2001, 87: 125501~1–4
    [47] J.S Zhou and J.B Goodenough, Pressure-induced transition from localized electron toward band antiferromagnetism in LaMnO_3, Phys. Rev. Lett., 2002, 89: 087201~1–4
    [48] V. Markovich, I. Fita, A.I. Shames, et al., Magnetic, electric and electron magnetic resonance properties of orthorhombic self-doped La1?xMnO_3 single crystals, J. Phys.: Condens. Matter, 2003, 15: 3985–4000
    [49] Yuzhelevski Y, Markovich V, Dikovsky V, et al., Current-induced metastable resistive states with memory in low-doped manganites, 2001 Phys. Rev. B 64 224428~1–10
    [50] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A, 1976, 32: 751–767
    [51] I.O. Troyanchuk, M.V. Bushinsky, H. Szymczak, et al., Magnetic interaction inMg, Ti, Nb doped manganites, Eur. Phys. J. B, 2002, 28: 75–80
    [52] J.B. Goodenough, R.I. Dass, and J. Zhou, Spin-glass to ferromagnet transition in LaMn1?xScxO3, Solid State Sci., 2002, 4: 297–304
    [53] J.B. Goodenough, A. Wold, R.J. Arnott, and N. Menyuk, Relationship between crystal symmetry and magnetic properties of ionic compounds containing Mn~(3+), Phys. Rev., 1961, 124: 373–384
    [54] J.S. Zhou, H.Q. Yin, and J.B. Goodenough, Vibronic superexchange in single-crystal LaMn1 -xG a xO 3, Phys. Rev. B, 2001, 63: 184423~1–5
    [55] T. Mizokawa, D.I. Khomskii, and G.A. Sawatzky, Orbital polarons and ferromagnetic insulators in manganites, Phys. Rev. B, 2000, 63: 024403~1–5
    [56] L.B. Hu, W. Tong, H. Zhu and Y.H. Zhang, The effects of Jahn-Teller distortion changes on transport properties in LaMn1-xZnxO3, J. Phys.: Condens. Matter, 2003, 15: 2033–2043
    [57] N. Noginova, R. Bah, D. Bitok, et al., Effect of diamagnetic dilution and non-stoichiometry on ESR spectra in manganites, J. Phys.: Condens. Matter, 2005, 17: 1259–1269
    [58] N. Noginova, E. Arthur, T. Weaver, et al., NMR and spin relaxation in LaGa1-xMnxO3: Evidence for thermally activated internal dynamics, Phys. Rev. B, 2004, 69: 024406~1–10
    [59] M. C. Sánchez, J. García, G. Subías, and J. Blasco, Lack of Jahn-Teller distortion in highly diluted LaMn1–xGaxO3 (x>0.6), Phys. Rev. B, 2006, 73: 094416~1–5; 2004, 69: 184415~1–9
    [60] J. Farrell and G.A. Gehring, Interplay between magnetism and lattice distortions in LaMn1?xGaxO3, New J. Phys., 2004, 6: 168~1–12
    [61] T.R.N. Kutty and John Philip, Electrical transport properties and magnetoresistance of LaMn1-xMxO~(3+)δ substituted with diamagnetic ions (M = Li, Mg, Ti), J. Phys.: Condens. Matter, 2000, 12: 7747–7758
    [62] S. Hébert, C. Martin, A. Maignan, et al., Induced ferromagnetism in LaMnO_3 by Mn-site substitution: the major role of Mn mixed valency, Phys. Rev. B, 2002, 65: 104420~1–5
    [63] K. Asai, K. Fujiyoshi, N. Nishimori, and Y. Satoh, Magnetic properties of REMe0.5Mn0.5O3 (RE = Rare Earth Element, Me = Ni, Co), J. Phys. Soc. Jpn., 1998, 67: 4218–4228
    [64] J.H. Park, S.W. Cheong, and C.T. Chen, Double-exchange ferromagnetism inLa(Mn1-xCox) O3. Phys. Rev. B, 1997, 55: 11072–11075
    [65] P. A. Joy, Y. B. Khollam, and S. K. Date, Spin states of Mn and Co in LaMn0 .5C o 0.5 O3, Phys. Rev. B, 2000, 62: 8608–8610
    [66] I. O. Troyanchuk, N. V. Samsonenko, A. Nabialek, and H. Szymczak, Magnetic interactions and phase transitions in the Co- and Ni-doped manganites, J. Magn. Magn. Mater., 1997, 168: 309–315
    [67] I. O. Troyanchuk, N. V. Samsonenko, N. V. Kasper, et al., Magnetic ordering in perovskites containing manganese and cobalt, J. Phys.: Condens. Matter, 1997, 9: 8287–8295
    [68] Z.Q. Yang, L. Ye, and X.D. Xie, Electronic and magnetic properties of the perovskite oxides: LaMn1-xCoxO3, Phys. Rev. B, 1999, 59: 7051–7057
    [69] I.O. Troyanchuk, L.S. Lobanovsky, D.D. Khalyavin, et al., Magnetic and magnetotransport properties of Co-doped manganites with perovskite structure, J. Magn. Magn. Mater., 2000, 210: 63–72
    [70] Y. Sun, W. Tong, X.J. Xu, and Y.H. Zhang, Possible double-exchange interaction between manganese and chromium in LaMn1-xCrxO3, Phys. Rev. B, 2001, 63: 174438~1–5
    [71] R. Gundakaram, A. Arulraj, P.V. Vanitha, et al., Effect of substitution of Cr~(3+) in place of Mn~(3+) in rare-earth manganates on the magnetism and magnetoresistance: role of superexchange interaction and lattice distortion in LnMn1-xCrxO3, J. Solid State Chem., 1996, 127: 354–358
    [72] J. Deisenhofer, M. Paraskevopoulos, H.A.K. von Nidda, and A. Loidl, Interplay of superexchange and orbital degeneracy in Cr-doped LaMnO_3, Phys. Rev. B, 2002, 66: 054414~1–7
    [73] W. Tong, B. Zhang, S. Tan, and Y.H. Zhang, Probability of double exchange between Mn and Fe in LaMn1?xFexO3, Phys. Rev. B 70 (2004) 014422~1–7
    [74] J.W. Cai, C. Wang, B.G. Shen, et al., Colossal magnetoresistance of spin-glass perovskite La0.67Ca0.33Mn0.9Fe0.1O3, Appl. Phys. Lett., 1997, 71: 1727–1729
    [75] S.C. Bhargava, S. Singh, D.C. Kundaliya, and S.K. Malik, Phase separation in La0.67Ca0.33Mn0.9Fe0.1O3: a M?ssbauer study, J. Phys.: Condens. Matter, 2004, 16: 1665–1678
    [76] K.H. Ahn, X.W. Wu, K. Liu, and C.L. Chien, Magnetic properties and colossal magnetoresistance of La(Ca)MnO_3 materials doped with Fe, Phys. Rev. B, 1996, 54: 15299–15302
    [77] J.R. Sun, G.H. Rao, B.G. Shen, and H.K. Wong, Doping effects arising from Fe and Ge for Mn in La0.7Ca0.3MnO_3, Appl. Phys. Lett., 1998, 73: 2998–3000
    [78] T.S. Orlova, J.Y. Laval, P. Monod, et al., Effect of Fe doping on structure, charge ordering, magnetic and transport properties of La_(0.33)Ca_(0.67)Mn_(1-y_FeyO_3 (0 ≤ y ≤ 0.06), J. Phys.: Condens. Matter, 2006, 18: 6729–6748
    [79] N. Veglio, F.J. Bermejo, J. Gutierrez, et al., Experimental evidence of a cluster-glass transition on the colossal magnetoresistance manganite La0.7Pb0.3(Mn0.9Fe0.1)O3, Phys. Rev. B, 2005, 71: 212402~1–4
    [80] J. Gutiérrez, J.M. Barandiarán, F.J. Bermejo, et al., Spin-glass like behavior in Fe-containing manganites, J. Magn. Magn. Mater., 2004, 272: e983–e985
    [81] J. Gutiérrez, A. Pe?a, J.M. Barandiarán, et al., Structural, magnetic and magnetotransport properties of La0.7Pb0.3Mn0.9TM0.1O3 (TM = Fe, Co, Ni) CMR perovskites, J. Phys.: Condens. Matter, 2000, 12: 10523–10534
    [82] J. Gutiérrez, A. Pe?a, J.M. Barandiarán, et al., Structural and magnetic properties of La0.7Pb0.3(Mn1-xFex)O3 (0 ≤ x ≤ 0.3) giant magnetoresistance perovskites, Phys. Rev. B, 2000, 61: 9028–9035
    [83] P.V. Vanitha, R.S. Singh, S. Natarajan, and C.N.R. Rao, Effect of substitution of Mn~(3+) by Ni~(3+) and Co~(3+) on the charge-ordered states of the rare earth manganates, Ln0.5A0.5MnO_3, Solid State Commun., 1999, 109: 135–140
    [84] T. Kimura, Y. Tomioka, R. Kumai, et al., Diffuse phase transition and phase separation in Cr-doped Nd1/2Ca1/2MnO_3: A relaxor ferromagnet, Phys. Rev. Lett., 1999, 83: 3940–3943
    [85] R. Shoji, S. Mori, N. Yamamoto, et al., Phase separation and destabilization of the charge-ordered state in Cr-doped manganites, J. Phys. Soc. Jpn., 2001, 70: 267–271
    [86] A. Machida, Y. Moritomo, K. Ohoyama, et al., Phase separation and ferromagnetic transition in B-site substituted Nd1/2Ca1/2MnO_3, Phys. Rev. B, 2002, 65: 064435~1–6
    [87] B. Raveau, A. Maignan, and C. Martin, Insulator-metal transition induced by Cr and Co doping in Pr0.5Ca0.5MnO_3, J. Solid State Chem., 1997, 130: 162–166
    [88] R.Y. Gu and C.S. Ting, Role of cooperative lattice distortion in the charge, orbital, and spin ordering in doped manganites, Phys. Rev. B, 2002, 65: 214426~1–5
    [89] P. V. Vanitha, A. Arulraj, A. R. Raju, and C. N. R. Rao, Effect of substituting Ru4+ and other tetravalent ions in the B-site of rare earth manganates on themagnetotransport properties and charge-ordering, C. R. Acad. Sci. Paris, 1999, t. 2, serie II c: 595–601
    [90] G.H. Jonker, J.H. van Santen, Ferromagnetic compounds of manganese with perovskite structure, Physica (Utrecht), 1950, 16: 337–349
    [91] C. Zener, Interaction between the d-shells in the transition metals II. Ferromagnetic compounds of manganese with perovskite structure, Phys. Rev., 1951, 82: 403–405
    [92] J.B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO_3, Phys. Rev., 1955, 100: 564–573
    [93] R.M. Kusters, J. Singgleton, D.A. Keen, et al., Magnetoresistance measurements on the magnetic semiconductor Nd0.5Pb0.5MnO_3, Physica B, 1989, 155: 362–365
    [94] R. von Helmolt, J. Wecker, B. Holzaphel, et al., Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films, Phys. Rev. Lett., 1993, 71: 2331–2333
    [95] G.C. Xiong, Q. Li, H.L. Ju, et al., Giant magnetoresistance in epitaxial Nd0.7Sr0.3 MnO_3 thin films, Appl. Phys. Lett., 1995, 66: 1427–1429
    [96] J.S. Helman and B. Abeles, Tunneling of spin-polarized electrons and magneto- resistance in granular Ni films, Phys. Rev. Lett., 1976, 37: 1429–1432
    [97] A. Fert and I.A. Campbell, Electrical resistivity of ferromagnetic nickel and iron based alloys, J. Phys. F: Metal Phys., 1976, 6: 849–871
    [98] W.E. Lawrence and J.W. Wilkins, Phys. Rev. B, 1973, Electron-Electron Scattering in the Transport Coefficients of Simple Metals, 7: 2317–2332
    [99] A.H. Thompson, Phys. Rev. Lett., Electron-Electron Scattering in TiS2, 1975, 35:1786–1789
    [100] X.J. Chen, H.U. Habermeier, C.L. Zhang, et al., Spin-wave scattering at low temperatures in manganite films, Phys. Rev. B, 2003, 67: 134405~1–4
    [101] K. Kubo and N. Ohata, A quantum theory of double exchange, J. Phys. Soc. Jap., 1972, 33: 21–32
    [102] M.F. Hundley, M. Hawley, R.H. Heffner, et al., Transport-magnetism correlations in the ferromagnetic oxide La0.7Ca0.3MnO_3, Appl. Phys. Lett., 1995, 67: 860–862
    [103] J. O'Donnell, M. Onellion, M.S. Rzchowski, et al., Magnetoresistance scaling in MBE-grown La 0.7 Ca 0.3M nO3 thin films, Phys. Rev. B, 1996, 54: 6841–6844
    [104] B.X. Chen, A.G. Rojo, C. Uher, et al., Magnetothermal conductivity ofLa_(0.8) Ca_(0.2)M nO_3, Phys. Rev. B, 1997, 55: 15471–15474
    [105] J. Vitins and P. Wachter, Doped EuTe: A mixed magnetic system, Phys. Rev. B, 1975, 12: 3829–3839
    [106] J.M. de Teresa, M.R. Ibarra, P.A. Algarabel, et al., Evidence for magnetic polarons in the magnetoresistive perovskites, Nature, 1997, 386, 256–259
    [107] J.B. Goodenough and J.S. Zhou, New forms of phase segregation, Nature, 1997, 386: 229–230
    [108] M. Mayr, A. Moreo, J.A. Vergés, et al., Resistivity of mixed-phase manganites, Phys. Rev. Lett., 2001, 86:135–138
    [109] M. Uehara, S. Mori, C.H. Chen, and S.W. Choeng, Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites, Nature, 1999, 399: 560–563
    [110] 曹烈兆,阎守胜,陈兆甲,低温物理学,合肥:中国科学技术大学出版社,1999,417–490
    [111] K. Binder and A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions, Rev. Mod. Phys., 1986, 58: 801–976
    [112] A. Maignan, C. Martin, F. Damay, et al., Transition from a paramagnetic metallic to a cluster glass metallic state in electron-doped perovskite manganites, Phys. Rev. B, 1998, 58: 2758–2763
    [113] R.S. Freitas, L. Ghivelder, F. Damay, et al., Magnetic relaxation phenomena and cluster glass properties of La 0.7-x Yx Ca 0.3 MnO_3 manganites, Phys. Rev. B, 2001, 64: 144404~1–6
    [114] J.M. de Teresa, M.R. Ibarra, J. Garcia, et al., Spin-glass insulator state in (Tb-La)2/3Ca1/3MnO_3 perovskite, Phys. Rev. Lett., 1996, 76: 3392–3395
    [115] P. Levy, F. Parisi, L. Granja, et al., Novel dynamical effects and persistent memory in phase separated manganites, Phys. Rev. Lett., 2002, 89, 137001~1–4
    [116] C.R. Sankar and P.A. Joy, Superspin glass behavior of a nonstoichiometric lanthanum manganite LaMnO_3.13, Phys. Rev. B, 2005, 72, 132407~1–4
    [117] 姜寿亭,李卫,凝聚态磁性物理,北京:科学出版社,2003,100–110
    [118] L. Néel, Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism, Ann. Phys., 1948, 3: 137
    [119] C.A. Nordman, V.S. Achutharaman, V.A. Vasko, et al., Magnetic and electrical properties of the ferrimagnet Dy0.67Ca0.30MnO_3±δ, Phys. Rev. B, 1996, 54: 9023–9026
    [120] G.J. Snyder, C.H. Booth, F. Bridges, et al., Local structure, transport, and rare-earth magnetism in the ferromagnetic perovskite Gd0.67Ca0.33MnO_3, Phys. Rev. B, 1997, 55: 6453–6459
    [121] O. Pe?a, M. Bahout, K. Ghanimi, et al., Spin reversal and ferrimagnetism in (Gd, Ca)MnO_3, J. Mater. Chem., 2002, 12: 2480–2485
    [122] M. Bahout, O. Pe?a, D. Gutierrez, et al., Peculiar magnetic properties of (Dy, Ca)MnO_3, Solid State Commun., 2002, 122: 561–564
    [123] O. Pe?a, M. Bahout, D. Gutierrez, et al., Interacting networks and spin polarization in (Dy,Ca)MnO_3, Solid State Sci., 2003, 5: 1217–1227
    [124] J. Hemberger, S. lobina, H.A. Krug von Nidda, et al., Complex interplay of 3d and 4f magnetism in La1-xGdxMnO_3, Phys. Rev. B, 2004,70: 024414~1–8
    [125] Y.W. Ma, M. Guilloux-Viry, P. Barahona, et al., Observation of magnetization reversal in epitaxial Gd0.67Ca0.33MnO_3 thin films, Appl. Phys. Lett., 2005, 86: 062506~1–3
    [126] I.O. Troyanchuk, V.A. Khomchenko, G.M. Chobot, et al., Spin-reorientational transitions in low-doped Nd1-xCaxMnO_3 manganites: the evidence of an inhomogeneous magnetic state, J. Phys.: Condens. Matter, 2003, 15: 8865–8880
    [127] V.A. Khomchenko, I.O. Troyanchuk, A.I. Kurbakov, et al., Magnetic phase transitions in the lightly doped Nd1-xCaxMnO_3-δ manganites, J. Magn. Magn. Mater., 2005, 288: 224–235
    [128] S.X. Zhang, L. Luan, S. Tan, and Y.H. Zhang, Transition of magnetic state from A-type antiferromagnetic to ferromagnetic in electron-doped Nd1–xCexMnO_3, Appl. Phys. Lett., 2004, 84: 3100–3102
    [129] S.X. Zhang, S. Tan, W. Tong, and Y.H. Zhang, Magnetic properties in the electron-doped bulk manganites Nd1?xCexMnO_3, Phys. Rev. B, 2005, 72: 014453~1–6
    [130] R. Ang, Y.P. Sun, Y.Q. Ma, et al., Diamagnetism and relative Young’s modulus in the perovskite manganites CaMn1-xVxO3 (0 ≤ x ≤ 0.08), Solid State Commun., 2006, 140: 416–421; J. Appl. Phys., 2006, 100: 063902~1–11
    [131] A.V. Mahajan, D.C. Johnston, D.R. Torgeson, and F. Borsa, Magnetic properties of LaVO3, Phys. Rev. B, 1992, 46: 10966–10972
    [132] Y. Ren, T.T.M. Palstra, D.I. Khomskii, et al., Temperature-induced magnetization reversal in a YVO3 single crystal, Nature, 1998, 396: 441–444; Phys. Rev. B, 2000, 62: 6577–6586
    [133] K. Yoshii and A. Nakamura, Reversal of magnetization in La0.5Pr0.5CrO3, J. Solid State Chem., 2000, 155: 447–450
    [134] A. Bhattacharya, M. Eblen-Zayas, N.E. Staley, et al., Low-temperature glassy response of ultrathin La0.8Ca0.2MnO_3 films to electric and magnetic fields, Phys. Rev. B, 2005, 72: 132406~1–4
    [135] N. Takubo, Y. Ogimoto, M. Nakamura, et al., Persistent and reversible all-optical phase control in a manganite thin film, Phys. Rev. Lett., 2005, 95: 017404~1–4
    [136] M. Tokunaga, Y. Tokunaga, and T. Tamegai, Imaging of percolative conduction paths and their breakdown in phase-separated (La1–yPry)0.7Ca0.3MnO_3 with y = 0.7, Phys. Rev. Lett., 2004, 93, 037203~1–4
    [137] M. Tokunaga, H. Song, Y. Tokunaga, and T. Tamegai, Current oscillation and low-field colossal magnetoresistance effect in phase-separated manganites, Phys. Rev. Lett., 2005, 94: 157203~1–4
    [138] S.Q. Liu, N.J. Wu, and A. Ignatiev, Electric-pulse-induced reversible resistance change effect in magnetoresistive films, Appl. Phys. Lett., 2000, 76: 2749–2751
    [139] Z.Q. Li, E.Y. Jiang, D.X. Zhang, et al., Effect of annealing on polycrystalline La1-xNaxMnOz ceramics, Phys. Lett. A, 2000, 277: 56–60
    [140] G.H. Rao, J.R. Sun, K. B?rner, and N. Hamad, Crystal structure and magneto- resistance of Na-doped LaMnO_3, J. Phys.: Condens. Matter, 1999, 11: 1523–1528
    [141] C. Boudaya, L. Laroussi, E. Dhahri, et al., Magnetic and magnetoresistance properties in rhombohedral La1-xK+xMnO_3 perovskite-type compounds, J. Phys.: Condens. Matter, 1998, 10: 7485–7492
    [142] Z. Jirák, J. Hejtmánek, K. Kní?ek, and R. Sonntag, Structure and properties of the Pr1-xKxMnO_3 perovskites (x = 0-0.15), J. Solid State Chem., 1997, 132: 98–106;Structure and magnetism in the Pr1-xNaxMnO_3 perovslites (0 ≤ x ≤ 0.20), J. Magn. Magn. Mater., 2002, 250: 275–287
    [143] J. Hejtmánek, Z. Jirák, J. ?ebek, et al., Magnetic phase diagram of the charge ordered manganite Pr0.8Na0.2MnO_3, J. Appl. Phys., 2001, 89: 7413–7415
    [144] X.J. Liu, E.Y. Jiang, Z.Q. Li, et al., Magnetic, electrical transport and electron spin resonance studies of charge-ordered Nd0.75Na0.25MnO_3, Physica B, 2004, 348: 146–150
    [145] Z.Q. Li, H. Liu, X.J. Liu, et al., Magnetic and electronic properties of chargeordered Nd0.8Na0.2MnO_3, J. Magn. Magn. Mater., 2004, 284: 133–139
    [146] M.C. Sánchez, J. García, J. Blasco, et al., Local electronic and geometrical structure of LaNi Mn O perovskites determined by x-ray-absorption spectroscopy1-x x ~(3+)δ, Phys. Rev. B, 2002, 65: 144409~1–9
    [147] K. De, R. Ray, R.N. Panda, et al., The effect of Fe substitution on magnetic and transport properties of LaMnO_3, J. Magn. Magn. Mater., 2005, 288: 339–346
    [148] J. Kanamori, Superexchange interaction and symmetry properties of electron orbitals, J. Phys. Chem. Solids, 1959, 10: 87–98
    [149] C.R. Wiebe, J.E. Greedan, J.S. Gardner, et al., Charge and magnetic ordering in the electron-doped magnetoresistive materials CaMnO_3-δ (δ = 0.06, 0.11), Phys. Rev. B, 2001, 64: 064421~1–7
    [150] J.B. MacChesney, H.J. Williams, J.F. Potter, and R.C. Sherwood, Magnetic study of the manganate phases: CaMnO_3 , Ca 4 Mn 3O 1 0 , Ca 3 Mn2 O7 , Ca 2 MnO4, Phys. Rev., 1967, 164: 779–785
    [151] Z. Zeng, M. Greenblatt, and M. Croft, Large magnetoresistance in antiferro- magnetic CaMnO_3-δ, Phys. Rev. B, 1999, 59: 8784–8788
    [152] J. Briático, B. Alascio, R. Allub, et al., Double-exchange interaction in electron-doped CaMnO_3 -δ perovskites, Phys. Rev. B, 1996, 53: 14020–14023
    [153] C. Chiorescu, J.J. Neumeier, and J.L. Cohn, Magnetic inhomogeneity and magnetotransport in electron-doped Ca1–xLaxMnO_3 (0 ≤ x ≤ 0.10), Phys. Rev. B, 2006, 73: 014406~1–6
    [154] M. Respaud, J.M. Broto, H. Rakoto, et al., H-T magnetic phase diagrams of electron-doped Sm Ca MnO : Evidence for phase separation and metamagnetic transitions, 1-x x 3Phys. Rev. B, 2001, 63: 144426~1–6
    [155] A. I. Shames, E. Rozenberg, C. Martin, et al., Crystallographic structure and magnetic ordering in CaMn1–xRuxO3 (x ≤ 0.40) manganites: Neutron diffraction, ac susceptibility, and electron magnetic resonance studies, Phys. Rev. B, 2004, 70: 134433~1–10
    [156] A. Maignan, C. Martin, M. Hervieu, and B. Raveau, Ferromagnetism and metallicity in the CaMn1-xRuxO3 perovskites: a highly inhomogeneous system, Solid State Commun., 2001, 117: 377–382
    [157] B. Raveau, Y.M. Zhao, C. Martin, et al., Mn-site doped CaMnO_3: Creation of the CMR effect, J. Solid State Chem., 2000, 149: 203–207
    [158] B. Raveau, A. Maignan, C. Martin, and M. Hervieu, Re and Ru induced CMReffect in CaMnO_3: the prime role of valency, Mater. Res. Bull., 2000, 35: 1579–1585
    [159] Y.Q. Guo, W. Li, S. Roy, and N. Ali, Magnetic and electronic transport properties of CaMn1-xNbxO3, Chem. Mater., 2005, 17: 2735–2739
    [160] V. Poltavets, K. Vidyasagar, and M. Jansen, Crystal structures and magnetic properties of CaSbxMn1-xO3 perovskites, J. Solid State Chem., 2004, 177: 1285–1291
    [161] L. Pi, S.X. Zhang, W. Tong, et al., Magnetic properties of “two electron” doped manganites: CaMn1-xWxO3 (0.05 ≤ x ≤ 0.20), Solid State Commun., 2006, 139: 460–464
    [162] A. Maignan, C. Martin, C. Autret, et al., Structural-magnetic phase diagram of Mo-substituted CaMnO_3: consequences for thermoelectric power properties, J. Mater. Chem., 2002, 12: 1806–1811
    [163] L. Pi, S. Hebert, C. Martin, et al., Comparison of CaMn1-xRuxO3 and CaMn1-yMoyO3 perovskites, Phys. Rev. B, 2003, 67: 024430~1–7
    [164] V. Markovich, M. Auslender, I. Fita, et al., Interplay between itinerant and localized states in CaMn1–xRuxO3 (x ≤ 0.5) manganites, Phys. Rev. B 73, 014416~1–10
    [165] T. Takeda, R. Kanno, Y. Kawamoto, et al., Metal–semiconductor transition, charge disproportionation, and low-temperature structure of Ca1–xSrxFeO3 synthesized under high-oxygen pressure, Solid State Science 2 (2000) 673–687
    [166] P.M. Woodward, D.E. Cox, E. Moshopoulou, et al., Structural studies of charge disproportionation and magnetic order in CaFeO3, Phys. Rev. B, 2000, 62: 844–855
    [177] 洪广言,无机固体化学,北京:科学出版社,2002
    [178] 杨宏秀,无机固体化学,天津:天津教育出版社,1995
    [179] K.S. Shankar, S. Kar, G.N. Subbanna, and A.K. Raychaudhuri, Enhanced ferromagnetic transition temperature in nanocrystalline lanthanum calcium manganese oxide (La0.67Ca0.33MnO_3), 2004, Solid State Commun., 129: 479–483
    [180] P. Dey and T.K. Nath, Effect of grain size modulation on the magneto- and electronic- transport properties of La0.7Ca0.3MnO_3 nanoparticles: The role of spin-polarized tunneling at the enhanced grain surface, Phys. Rev. B, 2006, 73: 214425~1–14
    [181] C. Krishnamoorthy, K. Sethupathi, V. Sankaranarayanan, et al., Magnetic and magnetoresistivity properties of nanocrystalline Nd0.7Sr0.3MnO_3, J. Magn. Magn. Mater., 2007, 308: 28–34
    [182] W. Liu, G.C. Farrington, F. Chaput, and B. Dunn, Synthesis and electrochemical studies of spinel phase limn2o4 cathode materials prepared by the pechini process, J. Electrochem. Soc., 1996, 143: 879–884
    [183] 马礼敦,近代X射线多晶体衍射,北京:化学工业出版社,2004
    [184] R.A. Young, A. Sakthivel, T.S. Moss, and C.O. Paiva-Santos, DBWS-9411-an upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers, J. Appl. Cryst., 1995, 28: 366–367
    [185] 辛仁轩,等离子体发射光谱分析,北京:化学工业出版社,2005
    [186] 王华馥,吴自勤,固体物理实验方法,北京:高等教育出版社,1990
    [187] 王世宏,X射线光电子能谱分析,北京:科学出版社,1988
    [188] XPS Database Main Search Menu, http://srdata.nist.gov/xps/main_search_ menu.htm
    [189] 张宝峰,穆斯堡尔谱学,天津;天津大学出版社,1991
    [190] http://www.eastchanging.net/cx/vsm.htm
    [191] 胡立发,周廉,王金星等,传输电流法测量B223/Ag多芯高温超导带材的交流损耗,稀有金属材料与工程,2001,30:169–172
    [192] 陈贤熔,电子自旋共振实验技术,北京;科学出版社,1986
    [193] K. Liu, X.W. Wu, K.H. Ahn, et al., Charge ordering and magnetoresistance in Nd 1-xC a xM nO3 due to reduced double exchange, Phys. Rev. B, 1996, 54: 3007–3010
    [194] R. Kajimoto, H. Yoshizawa, H. Kawano, et al., Hole-concentration-induced transformation of the magnetic and orbital structures in Nd1 -xS r xM nO3, Phys. Rev. B, 60, 1999, 9506–9517
    [195] M.T. Causa, M. Tovar, A. Caneiro, et al., High-temperature spin dynamics in CMR manganites: ESR and magnetization, Phys. Rev. B, 1998, 58: 3233–3239
    [196] F. Rivadulla, M. Freita-Alvite, M.A. López-Quintela, et al., Coexistence of paramagnetic-charge-ordered and ferromagnetic-metallic phases in La0.5Ca0.5 MnO_3 evidenced by electron spin resonance, J. Appl. Phys., 2002, 91: 785–788
    [197] S.B. Oseroff, M. Torikachvili, J. Singley, et al., Evidence for collective spin dynamics above the ordering temperature in La1-xCaxMnO~(3+)δ, Phys. Rev. B, 1996, 53: 6521–6525
    [198] C. Rettori, D. Rao, J. Singley, et al., Temperature dependence of the ESR linewidth in the paramagnetic phase (T > TC) of R1-xBBxMnO~(3+)δ (R = La, Pr; B = Ca, Sr), Phys. Rev. B, 1997, 55: 3083–3086
    [199] A. Shengelaya, G.M. Zhao, H. Keller, et al., EPR in La1-xCaxMnO_3: Relaxation and bottleneck, Phys. Rev. B, 2000, 61: 5888–5890
    [200] M.S. Seehra, M.M. Ibrahim, V.S. Babu, and G. Srinivasan, The linear temperature dependence of the paramagnetic resonance linewidth in the manganate perovskites La0.67Sr0.33MnO_3 and La0.62Bi0.05Ca0.33MnO_3, J. Phys.: Condens. Matter, 1996, 8: 11283–11289
    [201] A.I. Shames, E. Rozenberg, W.H. McCarroll, et al., Observation of magnetic inhomogeneities in crystalline-doped manganites by electron magnetic resonance, Phys. Rev. B 64 (2001) 172401~1–4
    [202] V. Markovich, E. Rozenberg, A.I. Shames, et al., Magnetic, transport, and electron magnetic resonance properties of La0.82Ca0.18MnO_3 single crystals, Phys. Rev. B 65 (2002) 144402~1–8
    [203] D.L. Huber, G. Alejandro, A. Caneiro, et al., EPR linewidths in La1-xCaxMnO_3: 0 ≤ x ≤ 1, Phys. Rev. B 60 (1999) 12155–12161
    [204] A.N. Ulyanov, S.C. Yu, S.G. Min, and G.G. Levchenko, Electron paramagnetic resonance study of La0.7Ca0.3–xBaxMnO_3 lanthanum manganites, J. Appl. Phys., 2002, 91: 7926–7928
    [205] M.T. Causa and M.C.G. Passeggi, Temperature dependence of the EPR spectra of KNiF3, Phys. Lett. A., 1983, 98: 291–294
    [206] P.A. Algarabel, J.M. De Teresa, J. Blasco, et al., Peculiar ferromagnetic insulator state in the low-hole-doped manganites, Phys. Rev. B, 2003, 67: 134402~1–6
    [207] A.N. Ulyanov, G.G. Levchenko, and Seong-Cho Yu, EPR line intensity in La0.7Ca0.3?xBaxMnO_3 manganites, Solid State Commun., 2002, 123: 383–386
    [208] A.N. Ulyanov, T.N. Huynh, P.H. Quang, et al., Effect of structure on the properties of La-deficient La0 .54 Ca 0.32M nO3 ?δ manganite, Physica B, 2005, 355: 377–381
    [209] G.L. Liu, J.S. Zhou, and J.B. Goodenough, Competing magnetic phases in mixed-valent manganese oxide perovskites, Phys. Rev. B, 2004, 70: 224421~1–7
    [210] M. F. Hundley and J.J. Neumeier, Thermoelectric power of La1 -xC a xM nO ~(3+)δ:Inadequacy of the nominal Mn3 +/4+ valence approach, Phys. Rev. B, 1997, 55: 11511–11515
    [211] V. Markovich, I. Fita, A.I. Shames, et al., Magnetic, transport, and electron magnetic resonance properties of Pr0 .8 Ca 0.2M nO 3 single crystals, Phys. Rev. B, 2003, 68: 094428~1–8
    [212] T.L. Phan, N.V. Khiem, N.X. Phuc, and S.C. Yu, Electrical and magnetic behaviors in Nd0.7Sr0.3MnO_3 with different annealing periods, J. Magn. Magn. Mater., 304 (2006) e334–e336
    [213] M.A. Gilleo, Crystallographic studies of perovskite-like compounds, III. La(Mx, Mn1-x)O3 with M = Co, Fe and Cr, Acta Crystallogr., 1957, 10: 161–166
    [214] S.D. Bhame, V.L. Joseph Joly, and P.A. Joy, Effect of disorder on the magnetic properties of LaMn0.5Fe0.5O3, Phys. Rev. B, 2005, 72: 054426~1–7
    [215] K. Ueda, Y. Muraoka, H. Tabata, and T. Kawai, Atomic ordering in the LaFe0.5 Mn0.5O3 solid solution film, Appl. Phys. Lett., 2001,78: 512–514
    [216] R.S. Freitas, L. Ghivelder, F. Damay, et al., Magnetic relaxation phenomena and cluster glass properties of La 0.7-x Yx Ca 0.3 MnO_3 manganites, Phys. Rev. B, 2001, 64: 144404~1–6
    [217] D.N.H. Nam, K. Jonason, P. Nordblad, et al., Coexistence of ferromagnetic and glassy behavior in the La0 .5S r 0.5 CoO 3 perovskite compound, Phys. Rev. B, 1999, 59: 4189–4194
    [218] X.D. Zhou, L.R. Pederson, Q. Cai, et al., Structural and magnetic properties of LaMn1–xFexO3 (0 < x < 1.0), J. Appl. Phys., 2006, 99: 08M918~1–3
    [219] V.A. Ivanshin, J. Deisenhofer, H. A. Krug von Nidda, et al., ESR study in lightly doped La 1-xS r xM nO3, Phys. Rev. B, 2000, 61: 6213–6219
    [220] K. De, M. Thakur, A. Manna and S. Giri, Unusual glassy states in LaMn0.5Fe0.5O3: Evidence of two distinct dynamical freezing processes, J. Appl. Phys., 2006, 99: 013908~1–4
    [221] Y. Sun, M.B. Salamon, K. Garnier, and R.S. Averback, Memory effects in an interacting magnetic nanoparticle system, Phys. Rev. Lett., 2003, 91: 167206~1–4
    [222] M. Sasaki, P.E. J?nsson, H. Takayama, and H. Mamiya, Aging and memory effects in superparamagnets and superspin glasses, Phys. Rev. B, 2005, 71 104405~1–9
    [223] M. Hennion, F. Moussa, G. Biotteau, et al., Liquidlike spatial distribution ofmagnetic droplets revealed by neutron scattering in La1 -xC a xM nO3, Phys. Rev. Lett., 1998, 81: 1957–1960
    [224] I.D. Fawcett, G.M. Veith, M. Greenblatt, et al., Properties of the perovskites, SrMn1?xFexO3?δ (x=1/3, 1/2, 2/3), Solid State Sci., 2000, 2: 821–831
    [225] S. Kolesnik, B. Dabrowski, J. Mais, et al., Magnetic phase diagram of cubic perovskites SrMn1 -xF e xO 3, Phys. Rev. B, 2003, 67: 144402~1–7
    [226] I.G. de Muro, M. Insausti, L. Lezama, and T. Rojo, Morphological and magnetic study of CaMnO_3-x oxides obtained from different routes, J. Solid State Chem., 2005, 178: 928–936
    [227] A.E. Bocquet, A. Fujimori, T. Mizokawa, et al., Electronic structure of SrFe4+O3 and related Fe perovskite oxides, Phys. Rev. B, 1992, 45: 1561–1570
    [228] G.J. Xu, R. Funahashi, Q. Pu, et al., High-temperature transport properties of Nb and Ta substituted CaMnO_3 system, Solid State Ionics 171 (2004) 147–151
    [229] N. Menyuk, K. Dwight, and D.G. Wickham, Magnetization reversal and asymmetry in cobalt vanadate (IV), Phys. Rev. Lett., 1960, 4: 119–120
    [230] P.G. de Gennes, Effects of double exchange in magnetic crystals, Phys. Rev., 1960, 118: 141–154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700