互联网拥塞控制算法若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从互联网(Internet)诞生以来,网络资源和网络流量分布的不均衡使得拥塞问题一直困扰着其发展。伴随着网络规模的日益扩大和应用类型的丰富,网络拥塞也变得越来越严重。虽然实践证明基于源端的TCP拥塞控制机制能够有效防止拥塞崩溃地发生,但是TCP拥塞控制机制仍然面临着许多新的危机。因此,互联网的发展要求网络本身也必须参与到拥塞控制中去。目前,基于源端的TCP拥塞控制机制和基于网络端的拥塞避免机制两者相结合已经成为解决拥塞控制问题的一个主要途径之一,形成了计算机网络、通信与自动控制等几个交叉学科一个新的研究热点。
     Internet拥塞控制可以看作是一个具有通信时延的非线性动态反馈系统。本文着重讨论基于网络端的拥塞避免机制中的主动队列管理算法设计和网络拥塞控制系统的稳定性分析,主要的研究成果如下:
     (1)提出了一种鲁棒非线性主动队列管理算法,解决了中小规模网络中存在的传输时延和网络参数时变对系统性能的影响问题。首先,由流体流模型推导出网络模型为参数区间不确定一阶时滞线性系统。其次,在确定使闭环系统稳定的非线性主动队列管理算法控制参数集基础上,利用遗传算法获得了基于改进误差绝对值时间积分指标最优的控制参数,解决了主动队列管理算法参数设置难题。基于扩展到时滞系统的棱边定理,设计了鲁棒非线性主动队列管理算法。仿真结果表明该算法具有良好的控制性能,对参数区间不确定系统有较好鲁棒性。
     (2)提出了一种简单易用的预测PI拥塞控制算法,解决了大规模网络中存在的大时滞问题。首先,利用Smith预估器补偿时延滞后,按Dahlin算法设计控制器,将控制器参数和预估对象模型参数相结合,设计了预测PI拥塞控制算法。其次,分析了系统鲁棒稳定性和存在链路容量干扰时瓶颈队列的暂态、稳态特性。通过仿真验证了预测PI算法控制性能优于RED、PI算法,能够适用于存在较大时延的网络。
     (3)提出了一种预测PI拥塞控制算法的参数自适应机制来处理网络参数的较大变化问题。首先,利用预测PI算法控制参数与网络参数的确定关系,通过对网络参数的在线估计来实时调节控制参数,使得控制器能够适应网络参数的变化。其次,结合自适应机制分析了整个系统的稳定性和给出了自适应参数的设定原则。仿真结果显示自适应预测PI算法具有较强的鲁棒性,能够适应网络参数的较大变化。
     (4)提出了一种基于速率的增强自适应虚拟队列管理算法(EAVQ)。EAVQ引入主从拥塞尺度和期望链路利用比的概念,以输入速率为主要拥塞尺度,保留了AVQ响应速度较快、低队列时延、高链路利用率等优点;同时,以期望链路利用比为辅助拥塞准则,设计了一种基于速率的期望链路利用比自适应机制,解决了AVQ存在着参数设定困难、队列抗干扰能力较弱及存在一定的链路损失等缺点,在改善系统动态性能的同时保证了链路容量的充分利用。在线性化基础上给出了一般网络结构下TCP/EAVQ系统的局部稳定条件。通过仿真验证了EAVQ具有极高的链路利用率,极低的分组丢弃率,受控的队列长度、快速的动态响应和对网络参数具有鲁棒性等优点。
     (5)对一类原始-对偶拥塞控制算法在无时延和考虑时延两种情形下分析了系统的稳定性。基于优化理论框架,提出了一个带边界限制的原始-对偶统一拥塞控制模型,应用该模型
The development of Internet has been encumbered with the congestion problem caused by the unbalance distribution of the network resources and the network flows since its naissance. The network congestion becomes more and more serious because of the increasingly expansion of Internet scale and the rapid growth of applied categories. The success of Internet has already proven that TCP congestion control mechanism based on source nodes is effective in the prevention of congestion collapse, while it also faces many new crises. Therefore, the network itself also has to be participated in congestion control. Currently, the combination of TCP congestion control mechanism based on source nodes and congestion avoidance mechanism based on network nodes has becomes a main approach to resolve the Internet congestion control problem. There has come into being a new investigation for some cross-subjects of computer network, communication, and automatic control and so on.
     Internet congestion control system can be seen as a nonlinear dynamic feedback system with communication delays. This paper emphasized on designs of active queue management (AQM) algorithms in network nodes for Internet congestion control, and stability analysis of network congestion control system. The main research results are as follows:
     (1) A robust nonlinear AQM algorithm is proposed to resolve the time-delays and parameters time-varying influence on the performance in middle or small-scale network, which is based on a first-order time-delays system with parametric interval uncertainty derived from fluid-flow model. The region of the nonlinear controller parameters making the closed-loop system stable is ascertained and the optimal parameters of the controller is obtained using genetic algorithm with the improved integrated time absolute error (ITAE). The edge theorem extended to time-delays systems is used to design a robust nonlinear AQM algorithm. Simulation results show the controller can achieve favorable performances and is robust against parametric interval uncertainties.
     (2) A predictive proportional integral (PPI) algorithm for active queue management is proposed to cope with the large delays in large-scale network. In PPI algorithm, Smith predictor is utilized to deal with large delays and Dahlin principle is employed to design controller to reduce the numbers and interactions of the tuning parameters. At the same time, a classical control method is introduced to analyze the stability of the system and the transients as well as steady-state behaviors of bottleneck queue with link capacity disturbances. The simulation results show PPI algorithm’s advantages through comparisons among random early detection (RED) and proportional integral (PI) algorithms.
     (3) An adaptive mechanism for PPI algorithm is designed to deal with large-scale network parameters immense varying problems. The control parameters are automatically tuned according to on-line estimation of link capacity and traffic load, which makes PPI perform well for a wide-range of network conditions. The local stability of the overall system and the setting principle of adaptive parameters are analyzed using the method of linearization. The simulation results show the APPI algorithm is very robust against network parameters immense variance.
引文
[1] Tanenbaum A S著, 潘爱民译. “计算机网络(第四版)[M],” 北京: 清华大学出版社, 2004.
    [2] Nagle J. “Congestion Control in IP/TCP [DB/OL],” IETF, 1984. http://www.faqs.org/rfcs/rfc896.
    [3] Stevens W R. “TCP/IP illustrated, volume 1: the protocols [M],” Addison-Wesley Press, 1994.
    [4] Mahdavi J, and Floyd S. “TCP-friendly unicast rate-based flow control [DB/OL],” 1997. http://www.psc.edu/networking/papers/tcp-friendly.html.
    [5] Paxson V, Allman M, Dawson S, Fenner V J, et al. “Known TCP implementation problems [DB/OL],” IETF, 1999. http://www.faqs.org/rfcs/rfc2525.
    [6] Low S. “TCP congestion controls: algorithms and models [DB/OL],” Tutorial Slides, 2000. http://netlab.caltech.edu.
    [7] Allman M, Paxson V, Stevens W. “TCP congestion control [DB/OL],” 1999. http://www.faqs.org/rfcs/rfc2581.
    [8] Caserri C, Meo M. “A new approach to model the stationary behavior of TCP connections [C],” IEEE INFOCOM 2000, Tel Aviv, Israel, 2000, CA: IEEE Computer Society.
    [9] Mathis M, Mahdavi J, Floyd S, and Romanow A. “TCP selective acknowledgement options [DB/OL],” IETF, 1996. http://www.faqs.org/rfcs/rfc2018.
    [10] Braden B, Clark D, Crowcroft, et al. “Recommendations on queue management and congestion avoidance in the Internet [DB/OL],” http://www.faqs.org/rfcs/rfc2309, 1998.
    [11] Floyd S, Jacobson V. “Random early detection gateways for congestion avoidance [J],” IEEE/ACM Trans. Networking, 1993, 1(4): 397-413.
    [12] Hollot C V, Misra V, Towsley D, Gong W. “On designing improved controllers for AQM routers supporting TCP flows [C],” IEEE INFOCOM'01, 2001. 1726-1734.
    [13] Hollot C V, Misra V, Towsley D, Gong W. “Analysis and design of controllers for AQM routers supporting TCP flows [J],” IEEE Trans. Automatic Control, 2002, 47(6): 945-959.
    [14] Athuraliya S, Li V, Low S, et al. “REM: Active Queue Management [J],” IEEE Network Magazine, 2001, 15(3): 48-53.
    [15] Kunniyur S S, Srikant R, “An Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management [J],” IEEE/ACM Trans. Networking, 2004, 12(2): 286-299.
    [16] Feng W, Shin K, Kandlur D, Saha D. “The BLUE Active Queue Management Algorithms [J],” IEEE/ACM Trans. Networking, 2002, 10(4): 513-528.
    [17] Ryu S, Rump C, Qiao C. “Advances in Internet Congestion Control [J],” IEEE Communications Surveys & Tutorials, 2003, 5(1): 28-39.
    [18] Bertsekas D. “Nonlinear Programming, 2nd [M],” Belmont, MA: Athena Scientific, 1999.
    [19] 胡寿松. “自动控制原理 (第3版) [M],” 北京: 国防工业出版社, 1994.
    [20] UCN/LBL/VINT. Network simulator-ns2. 1995, http://www.isi.edu/nsnam/ns/.
    [1] Tanenbaum A S. “Computer networks (3rd edition) [M],” Prentice Hall International, Inc. 1996.
    [2] Jain R. “Congestion control in computer networks: issues and trends [J],” IEEE Network Magazine, 1990, 4(3): 24-30.
    [3] 谢希仁编著. “计算机网络 (第三版)[M],” 大连:大连理工大学出版社, 2000.
    [4] Jacobson V. “Congestion avoidance and control [J],” ACM Computer Communication Review, 1988, 18(4): 314-329.
    [5] Peterson L L, and Davis B S. “Computer networks: a system approach [M],” Morgan Publishers, 2000.
    [6] Balakrishnan H. “Computer Networks [DB/OL],” Tutorial Slides, M.I.T.6.899, 2000. http://nms.lcs.mit.edu/6.899/.
    [7] 章淼. “互联网端到端拥塞控制的研究 [博士学位论文] ,” 北京:清华大学计算机科学与技术系, 2004.
    [8] 汪小帆, 孙金生, 王执铨. “控制理论在Internet拥塞控制中的应用 [J],” 控制与决策, 2002, 17(2): 129-134.
    [9] Saltzer J, Reed D, Clark D. “End-to-end arguments in system design [J],” ACM Trans. Computer Systems, 1984, 2(4): 195-206.
    [10] Kalampoukas L. “Congestion management in highspeed networks [Ph.D. Thesis],” UCSC, 1997.
    [11] Jaffe J M. “Bottleneck flow control [J],” IEEE Trans. Communication, 1981, 29(7): 954-962.
    [12] Chiu Dah-Ming, Jain R. “Analysis of the increase and decrease algorithms for congestion avoidance in computer networks [J],” Computer Networks and ISDN Systems, 1989, 17(1): 1-14.
    [13] Kelly F, Maulloo A, and Tan D. “Rate control in communication networks: Shadow prices, proportional fairness and stability [J],” J. Oper. Res. Soc., 1998, 49: 237-252.
    [14] Stevens W R. “TCP/IP illustrated, volume 1: the protocols [M],” Addison-Wesley Press, 1994.
    [15] Allman M, Paxson V, Stevens W. “TCP congestion control [DB/OL],” 1999. http://www.faqs.org/rfcs/rfc2581.
    [16] Braden B, Clark D, Crowcroft, et al. “Recommendations on queue management and congestion avoidance in the Internet [DB/OL],” http://www.faqs.org/rfcs/rfc2309, 1998.
    [17] 任丰原, 林闯, 刘卫东. “IP网络中的拥塞控制 [J],” 计算机学报, 2003, 26(9): 1025-1034.
    [18] Stevens W. “TCP slow start, congestion avoidance, fast retransmit, and fast recovery algorithms [DB/OL],” 1997. http://www.faqs.org/rfcs/rfc2001.
    [19] Floyd S, and Henderson T. “The NewReno modification to TCP’s fast recovery algorithm [DB/OL],” 1999. http: //www.faqs.org/rfcs/rfc2582.
    [20] Mathis M, Mahdavi J, Floyd S, and Romanow A. “TCP selective acknowledgement options [DB/OL],” 1996. http://www.faqs.org/rfcs/rfc2018.
    [21] Brakmo L S, Peterson L L. “TCP Vegas: End-to-end congestion avoidance on a global Internet [J],” IEEE Journal on Selected Areas in Communications, 1995, 13(8): 1465-1480.
    [22] 秦凯运, 杨煌普, 谢剑英. “面向宽带IP网络的拥塞控制研究进展 [J],” 通信学报, 2004, 25(11): 119-127.
    [23] Floyd S. “HighSpeed TCP for large congestion windows [DB/OL],” 2003. http://www.faqs.org/rfcs/rfc3649.
    [24] Katabi D. “Decoupling congestion control and bandwidth allocation policy with application to high bandwidth-delay networks [Ph.D. Thesis],” MIT, 2003.
    [25] Mascolo S, Casetti C, et al. “TCP Westwood: End-to-end Bandwidth Estimation for Efficient Transport over Wired and Wireless Networks [C],” Proceedings of ACM Mobicom, RomeItaly, 2001.
    [26] Jin C, Wei D X, Low S H. “TCP fast: motivation, architecture, algorithms, performance [C],” Proceedings of INFOCOM, 2004.
    [27] 章淼, 吴建平, 林闯. ”互联网端到端拥塞控制研究综述 [J],” 软件学报, 2002, 13(3): 354-363.
    [28] Floyd S, and Jacobson V. “On traffic phase effects in packet-switched gateways [J],” Internetworking: Research and Experience, 1992, 3(3): 115-156.
    [29] Christiansen M, Jeffay K, Ott D, Smith F D. “Tuning RED for Web traffic [C],” Proceedings of ACM SIGCOMM 2000, Stockholm, Sweden, 2000. 139-150.
    [30] Floyd S, Jacobson V. “Random early detection gateways for congestion avoidance [J],” IEEE/ACM Trans. Networking, 1993, 1(4): 397-413.
    [31] Hollot C V, Misra V, Towsley D, Gong W. “On designing improved controllers for AQM routers supporting TCP flows [C],” IEEE INFOCOM'01, 2001. 1726-1734.
    [32] Hollot C V, Misra V, Towsley D, Gong W. “Analysis and design of controllers for AQM routers supporting TCP flows [J],” IEEE Trans. Automatic Control, 2002, 47(6): 945-959.
    [33] Kunniyur S S, Srikant R, “An Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management [J],” IEEE/ACM Trans. Networking, 2004, 12(2): 286-299.
    [34] Feng W, Shin K, Kandlur D, Saha D. “The BLUE Active Queue Management Algorithms [J],” IEEE/ACM Trans. Networking, 2002, 10(4): 513-528.
    [35] Athuraliya S, Li V, Low S, et al. “REM: Active Queue Management [J],” IEEE Network Magazine, 2001, 15(3): 48-53.
    [36] Ryu S, Rump C, Qiao C. “Advances in Internet Congestion Control [J],” IEEE Communications Surveys & Tutorials, 2003, 5(1): 28-39.
    [37] Firoiu V, Borden M. “A study of active queue management for congestion control [C],” Proceedings of INFOCOM 2000, Tel Aviv, Israel, 2000. 1435-1444.
    [38] Lin D, Morris R. “Dynamics of random early detection [C],” Proceedings of ACM SIGCOMM 1997, New York, USA, 1997. 127-138.
    [39] Ott T J, Lakshman T V, Wong L H. “SRED: Stabilized RED [C],” Proceedings of INFOCOM 1999, New York, USA, 1999. 1346-1355.
    [40] Floyd S, Gummadi R, Shenker S. “Adaptive RED: an algorithm for increasing the robustness of RED [DB/OL],” 2001. http://www.icir.org/floyd/papers/adaptiveRed.pdf.
    [41] Feng W, Kandlur D, Saha D, and Shin K. “A self-configuring RED gateway [C],” Proceedings of eighteenth annual joint conference of the IEEE computer and communications societies (INFOCOM '99), New York, NY, 1999, 3: 1320-1328.
    [42] Lapsley D, Low S H. “Random early marking for internet congestion control [C],” Proceedings of Globecom ’99, December 1999. 1747-1752.
    [43] Athuraliya S, Lapsley D, Low S H. “An enhanced random early marking algorithm for internet flow control [C],” Proceedings of INFOCOM 2000, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. 2000, 3: 1425-1434.
    [44] Tian Y. “Stability analysis and design of the second-order congestion control for networks with heterogeneous delays [J],” IEEE/ACM Trans. Networking, 2005, 13(5): 1082-1093.
    [45] Floyd S. “TCP and explicit congestion notification [J],” ACM Computer Communication Review, 1994, 24(5): 10-23.
    [46] Ramakrishnan K K, Floyd S. “A proposal to add explicit congestion notification (ECN) to IP [DB/OL],” 1999. http://www.faqs.org/rfcs/rfc2481.
    [47] Ramakrishnan K K, Floyd S, and Black D. “The addition of explicit congestion notification (ECN) to IP [DB/OL],” 2001. http://www.faqs.org/rfcs/rfc3168.
    [48] 杨洪勇. “Internet拥塞控制算法的动力学研究 [博士学位论文] ,” 南京:东南大学自动控制系, 2004.
    [49] 王彬. “TCP/IP网络拥塞控制策略研究 [博士学位论文] ,” 杭州:浙江大学信息科学与工程学院, 2004.
    [50] 龙承念. “高动态异构Internet拥塞控制算法研究 [博士学位论文] ,” 秦皇岛:燕山大学电气工程学院, 2004.
    [51] Misra V, Gong W B, and Towsley D. “Stochastic differential equation modeling and analysis of TCP windowsize behavior [C],” Proceedings of Perfonnance'99, Istanbul, October, 1999.
    [52] Misra V, Gong W B, and Towsley D. 2000. Fluid-based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED [C],” Proceedings of ACM/SIGCOMM'00, 2000. 151-160.
    [53] Hollot C V, Misra V, Towsley D, Gong W. “A control theoretic analysis of RED [C],” Proceedings of IEEE INFOCOM'00, 2000, 3: 1510-1519.
    [54] Chait Y, Hollot C V, Misra V, et al. “Fixed and adaptive model-based controllers for active queue management [C],” Proceedings of American Control Conference, Arlington, VA, 2001. 2981-2986.
    [55] 尹逊和, 任丰原, 任勇, 等. “鲁棒的主动队列管理新算法 [J],” 计算机学报, 2002, 25(10): 1018-1023.
    [56] 张敬辕, 谢剑英, 傅春. “一种基于模糊逻辑的主动队列管理算法 [J],” 电子学报, 2002, 30(8): 1246-1249.
    [57] Gao Y, Jennifer C. “A state feedback control approach to stabilizing queues for ECN-enabled TCP connections [C],” Proceedings of IEEE INFOCOM, San Francisco, California, USA, 2003, 3: 2301-2311.
    [58] Yan P, Gao Y, and Ozbay H. “Variable structure control in active queue management for TCP with ECN [C],” Proceedings of ISCC 2003, Kemer-Antalya, Turkey, 2003, 2: 1005-1011.
    [59] Ren F, Ren Y, and Shan X. “Design of a fuzzy controller for active queue management [J],” Computer Communications, 2002, 25(9): 874-883.
    [60] Sun J, Ko K T, Chen G, et al. “PD-RED: to improve the performance of RED [J],” IEEE Commun. Lett., 2003, 7(8): 406-408.
    [61] 张鹤颖, 刘宝宏, 窦文华. “一种基于速率和队列长度的主动队列管理机制 [J],” 电子学报, 2003, 31(11): 1743-1746.
    [62] 张顺亮, 叶澄清, 李方敏. “一种加强的主动队列管理算法一EBLUE [J],” 通信学报, 2003, 24(1 I ): 109-115.
    [63] 任丰原, 林闯, 任勇, 等. “大时滞网络中的拥塞控制算法 [J],” 软件学报, 2003, 14(3): 503-511.
    [64] Quet P, and ?zbay H. “On the design of AQM supporting TCP flows using robust control theory [J],” IEEE Trans. Automatic Control, 2004, 49(6): 1031-1036.
    [65] 卢锡城, 张明杰, 朱培栋. “自适应PI主动队列管理算法 [J],” 软件学报, 2005, 16(5): 903-910.
    [66] 张鹤颖, 肖立权. “一种顽健的自校正主动队列管理机制 [J],” 通信学报, 2006, 27(3): 7-14.
    [67] 钱艳平, 李奇, 刁翔. “预测PI时滞网络拥塞控制算法设计及性能分析 [J],” 控制理论与应用, 2006, 23(2): 161-168.
    [68] Paganini F, Doyle J, and Low S. “Scalable laws for stable network congestion control [DB/OL]”. http://www.ee.ucla.edu~paganini.
    [69] Kunniyur S, and Srikant R. “Stable, scalable, fair congestion control and AQM schemes that achieve high utilization in the Internet [J],” IEEE/ACM Trans. Automatic Control, 2003, 48(11): 2024–2029.
    [70] Kunniyur S, and Srikant R. “A time-scale decomposition approach to adaptive ECN marking [J],” IEEE Trans. Automatic Control, 2002, 47(6): 882-894.
    [71] 任丰原, 林闯, 王福豹. “RED算法的稳定性: 基于非线性控制理论的分析 [J],” 计算机学报, 2002, 25(12): 1302-1307.
    [72] Low S H, Paganini F, Wang J, et al. “Linear stability of TCP/RED and a scalable control [J],” Computer Networks, 2003, 34(5): 633-647.
    [73] Han H, Hollot C V, Chait Y, et al. “TCP networks stabilized by buffer-based AQMs [C],” Proceedings of IEEE INFOCOM, Hongkong, 2004.
    [74] Bertsekas D. “Nonlinear Programming, 2nd [M],” Belmont, MA: Athena Scientific, 1999.
    [75] Low S and Lapsley D. “Optimization flow control, I: basic algorithm and convergence [J],” IEEE/ACM Trans. Networking, 1999, 6(6): 861–875.
    [76] Low S. “A duality model of TCP and queue management algorithms [J],” IEEE/ACM Trans. Networking, 2003, 11(4): 527–536.
    [77] Paganini F, Wang H, Doyle J, and Low S. “Congestion Control for High Performance, Stability, and Fairness in General Networks [J],” IEEE/ACM Trans. Networking, 2005, 13(1): 43–56.
    [78] Wen J, and Arcak M. “A unifying passivity framework for network flow control [J],” IEEE Trans. Automatic Control, 2004, 49(2): 162–174.
    [79] Alpcan T, and Basar T. “A globally stable adaptive congestion control scheme for internet-style networks with delay [J],” IEEE/ACM Trans. Networking, 2005, 13(6): 1261–1274.
    [80] Alpcan T, Basar T. “A game-theoretic framework for networking flow control in general topology networks [C],” Proceedings of the 41th IEEE conference on decision and control, Las Vegas, 2002.
    [81] Low S, and Srikant R. “A mathematical framework for designing a low-loss, low-delay Internet [DB/OL],” 2003. http://comm.csl.uiuc.edu/~srikant/pub.html.
    [82] Low S, Paganini F, and Doyle J. “Internet congestion control [J],” IEEE Control Systems Magazine, 2002, 22: 28–43.
    [83] Kelly F. “Fairness and stability of end-to-end congestion control for the Internet [DB/OL],” 2003. http://www.statslab.cam.ac.uk/~frank/papers/fse2ecc.html.
    [84] Srikant R, “The Mathematics of Internet Congestion Control [M],” Boston, MA: Birkh?user, 2004.
    [85] Johari R, and Tan D. “End-to-end congestion control for the Internet: delays and stability [J],” IEEE/ACM Trans. Networking, 2001, 9(6): 818–832.
    [86] Vinnicombe G. “On the stability of end-to-end congestion control for the Internet [DB/OL],” University of Cambridge Tech. Report CUED/F-INFENG/TR.398, 2001. http://www.eng.cam.ac.uk/~gv.
    [87] Massoulié L. “Stability of distributed congestion control with heterogeneous feedback delays [J],” IEEE Trans. Automatic Control, 2002, 47(6): 895–902.
    [88] Tian Y, Yang H. “Stability of the Internet congestion control with diverse delays [J],” Automatica, 2004, 40: 1533-1541.
    [89] Liu S, Basar T, and Srikant R. “Exponential-RED: a stabilizing AQM scheme for low- and high-speed TCP protocols [J],” IEEE/ACM Trans. Networking, 2005, 13(5): 1068–1081.
    [90] Tian Y. “A general stability criterion for congestion control with diverse communication delays [J],” Automatica, 2005, 41: 1255-1262.
    [91] Ying L, Dullerud G, and Srikant R. “Global stability of Internet congestion controllers with heterogeneous delays [C],” Proceedings of the American Control Conference 2004, Boston, MA, 2004.
    [92] Deb S, and Srikant R. “Global stability of congestion controllers for the Internet [J],” IEEE Trans. Automatic Control, 2003, 48(6): 1055–1060.
    [93] Ranjan P, La R, and Abed E. “Global stability conditions for rate control with arbitrary communication delays [J],” IEEE/ACM Trans. Networking, 2006, 14(1): 94–107.
    [94] Paganini F. “A global stability result in network flow control [J],” Systems & Control Letters, 2002, 46(3): 165-172.
    [1] Allman M, Paxson V, Stevens W. “TCP congestion control [DB/OL],” RFC2581, IETF, 1999. http://www.faqs.org/rfcs/rfc2581.
    [2] Braden B, Clark D, Crowcroft, etal. “Recommendations on queue management and congestion avoidance in the Internet [DB/OL],” RFC2309, IETF, 1998. http://www.faqs.org/rfcs/rfc2309.
    [3] Floyd S, Jacobson V. “Random early detection gateways for congestion avoidance [J],” IEEE/ACM Trans. Networking, 1993, 1(4): 397-413.
    [4] Hollot C V, Misra V, Towsley D, Gong W. “Analysis and design of controllers for AQM routers supporting TCP flows [J],” IEEE Trans. Automatic Control, 2002, 47(6): 945-959.
    [5] Kunniyur S S, Srikant R. “An Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management [J],” IEEE/ACM Trans. Networking, 2004, 12(2): 286-299.
    [6] Ryu R, Cheney D, Braun H W. “Internet flow characterization: adaptive timeout strategy and statistical modeling [C],” Proceedings of passive and active measurement workshop, Amsterdam, Netherlands, 2001: 94-105.
    [7] 任丰原, 林闯, 任勇, 山秀明. “大时滞网络中的拥塞控制算法 [J],” 软件学报, 2003, 14(3): 503-511.
    [8] Ren Fengyuan, Lin Chuang, Wei Bo. “Design a robust controller for active queue management in large delay networks [C],” Proceedings of Ninth International Symposium on Computers and Communications, 2004 (ISCC 2004), Alexandria, Egypt, 2004, 2: 748-754.
    [9] Misra V, Towsley D, Gong W. “Fluid-Based analysis of a network of AQM routers supporting TCP flows with an application to RED [C],” Proceedings of the ACM/SIGCOMM 2000. Stockholm, 2001.
    [10] Silva G J, Datta A, Bhattacharyya S P. “PI stabilization of frst-order systems with time delay [J].” Automatica. 2001, 37(12): 2025-2031.
    [11] Silva G J, Datta A, Bhattacharyya S P. “New result on the synthesis of PID controllers [J],” IEEE Trans. Automatic Control, 2002, 47(2): 241-252.
    [12] Homayoun S. “A new class of nonlinear PID controllers with robotic applications [J],” J. Robotic Systems, 1998, 15(3): 161-181.
    [13] 苏玉鑫, 段宝岩. “一种新型非线性PID控制器 [J],” 控制与决策, 2003, 18(1): 126-128.
    [14] 韩华, 罗安, 杨勇. “一种基于遗传算法的非线性PID控制器 [J],” 控制与决策, 2005, 20(4): 448-450.
    [15] 陈国良, 王煦法, 庄镇泉, 等. “遗传算法及其应用 [M],” 北京: 人民邮电出版社, 1996.
    [16] 周明, 孙树栋. “遗传算法原理及应用 [M],” 北京: 国防工业出版社, 1999.
    [17] 王小平, 曹立明. “遗传算法-理论、应用与软件实现 [M],” 西安: 西安交通大学出版社, 2002.
    [18] Houck C, Joines J, Kay M. “A genetic algorithm for function optimization: a matlab implementation [DB/OL],” NCSU-IE TR 95-09, USA: North Carolina State University, 1995.
    [19] Silva, G J, Datta A, Bhattacharyya S P. “On the stability and controller robustness of some popular PID tuning rules [J],” IEEE Trans. Automatic Control, 2003, 48(9): 1638-1641.
    [20] Ziegler J, Nichols N, “Optimum settings for automatic controllers [J],” Trans. Amer. Soc. Mech. Eng., 1942, 64: 759–768.
    [21] 刘金琨. “先进PID控制MATLAB仿真(第二版) [M],” 北京: 电子工业出版社, 2004.
    [22] Holland J H. “Adaptation in natural and artificial systems [M],” Ann Arbor, MI: Univ. MichiEAn Press, 1975, 20-45.
    [23] Srinivas M, Patnaik L M. “Adaptive probabilities of crossover and mutation in genetic algorithms [J],” IEEE Trans. Systems, Man and Cybernetics, 1994, 24(4): 656-667.
    [24] Fu M Y, Olbrot A W, Polis M P. “Robust stability for time-delay systems: the edge theorem and graphical tests [J]”, IEEE Trans. Automatic Control, 1989, 34(8): 813-820.
    [25] 李银伢, 盛安东, 王远钢. “参数不确定时滞系统的鲁棒PID控制 [J],” 控制与决策, 2004, 19(10): 1178-1182.
    [26] Hollot C, Misra V, Gong W. “A Control Theoretic Analysis of RED [C],” Proceedings of the INFOCOM2001, Anchorage, AK, 2001. 1510-1519.
    [27] 王晓曦, 王永吉, 周津慧, 等. “基于改进网络模型的大时滞网络拥塞控制算法 [J],” 电子学报, 2005, 33(5): 842-846.
    [28] 龚晓峰, 高衿畅, 周春晖. “时滞系统PID控制器内模整定方法的扩展 [J],” 控制与决策, 1998, 11(4): 337-341.
    [29] Marquardt D W. “An algorithm for least-squares estimation of nonlinear parameters [J],” J. Soc. Indust. Appl. Math, 1963, 11(2): 431-441.
    [30] Xu H, Datta A, Bhattacharyya S P. “PID stabilization of LTI plants with time-delay [C],” Proceedings of 42nd IEEE Conference on Decision and Control, Maui Hawaii, USA, 2003(Vol.4): 4038–4043.
    [31] 胡寿松. “自动控制原理(第3版) [M],” 北京: 国防工业出版社, 1994.
    [1] 任丰原, 林闯, 任勇, 等. “大时滞网络中的拥塞控制算法[J],” 软件学报, 2003, 14(3): 503–511.
    [2] Barakat C. “TCP/IP modeling and validation [J],” IEEE Network, 2001, 15(3): 38–47.
    [3] Floyd S, Jacobson V. “Random early detection gateways for congestion avoidance [J],” IEEE/ACM Trans. Networking, 1993, 1(4): 397-413.
    [4] Hollot C, Misra V, Towsley D, Gong W. “On designing improved controllers for AQM routers supporting TCP flows [J],” Proceedings of twentieth annual joint conferece of th IEEE computer and communications societies (INFOCOM 2001), 2001, 3: 1726-1734.
    [5] Hollot C, Misra V, Towsley D, Gong W. “Analysis and design of controllers for AQM routers supporting TCP flows [J],” IEEE Trans. Automatic Control, 2002, 47(6): 945–959.
    [6] Athuraliya S, Low S, Li V, et al. “REM: active queue management [J],” IEEE Network, 2001, 15(3): 48-53.
    [7] Mascolo S. “Congestion control in high-speed communication networks using the Smith principle [J],” Automatica, 1999, 35(12): 1921–1935.
    [8] 邵惠鹤. “工业过程高级控制 [M] ,” 上海: 上海交通大学出版社, 1997.
    [9] Diot C, Iannaccone G, May M. “Aggregate Traffic Performance with Active Queue Management and Drop from Tail [J],” ACM SIGCOMM Computer Communication Review, 2001, 31: 4-13.
    [10] May M, Diot C, Lyles B, Bolot I. “Reasons not to deploy RED [C],” Proceedings of 7th international workshop on quality of service, 1999.
    [11] Feng W, Kandlur D, Saha D, and Shin K. “A self-configuring RED gateway [C],” Proceedings of eighteenth annual joint conference of the IEEE computer and communications societies (INFOCOM '99), New York, NY, 1999, 3: 1320-1328.
    [12] Floyd S, Gummadi R, Shenker S. “Adaptive RED: an algorithm for increasing the robustness of RED [DB/OL],” 2001. http://www.icir.org/floyd/papers/adaptiveRed.pdf.
    [13] Wu W, Ren Y, Shan X. “A self-configuring proportional-integral controller for AQM routers supporting TCP-like flows,” Proceedings of Asia-Pacific Conference on Communications (APCC), Session T53, Tokyo, Japan, 2001.
    [14] 卢锡城, 张明杰, 朱培栋. “自适应PI主动队列管理算法 [J],” 软件学报, 2005, 16(5): 903-910.
    [15] Kunniyur S, Srikant R. “An adaptive virtual queue (AVQ) algorithm for active queue management [J],” IEEE/ACM Trans. Networking, 2004, 12(2): 286-299.
    [16] Zhang H, Hollot C V, Towsley D, et al. “A self-tuning structure for adaptation in TCP/AQM Network [C],” Proceedings of GLOBECOM ‘03. San Francisco, 2003. 3641-3646.
    [17] 朱晓东, 王军, 万红. ”基于Smith预估的纯滞后系统的控制 [J],” 郑州大学学报(工学版), 2004, 25(1): 77–81.
    [18] Misra V, Towsley D, Gong W. “Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED [C],” Proceedings of ACM SIGCOMM 2000. Stockholm, Swed, 2000. 151-160.
    [19] Hollot C V, Misra V, Towsley D, Gong W. “A control theoretic analysis of RED [C],” Proceedings of the INFOCOMM 2001, Anchorage, AK, 2001, 3: 1510–1519.
    [20] Franklin G, Powell J, Workman M. “Digital control of dynamic system (3rd edition) [M],” Addison-Wesley, 1998.
    [21] UCN/LBL/VINT. Network simulator-ns2. 1995, http://www.isi.edu/nsnam/ns/.
    [22] 胡寿松. “自动控制原理 (第3版) [M],” 北京: 国防工业出版社, 1994.
    [23] Niculescu S. “Delay effects on stability: a robust control approach [M],” Berlin: Springer Press, 2001.
    [24] Hagglund T. “A predictive PI controller for processed with long dead times [J],” IEEE Control Systems Magazine, 1992, 12(1): 57–60.
    [25] Hagglund T, Astroem K. “Industrial adaptive controllers based on frequency response techniques [J],” Automatica, 1991, 27(4): 599–609.
    [26] Johari R, and Tan D. “End-to-end congestion control for the Internet: Delays and stability [J],” IEEE/ACM Trans. Networking, 2001, 9: 818-832.
    [1] Allman M, Paxson V, Stevens W. “TCP congestion control [DB/OL],” RFC2581, IETF, 1999. http://www.faqs.org/rfcs/rfc2581.
    [2] Braden B, Clark D, Crowcroft, et al. “Recommendations on queue management and congestion avoidance in the Internet [DB/OL],” RFC2309, IETF, 1998. http://www.faqs.org/rfcs/rfc2309.
    [3] Floyd S, Jacobson V. “Random early detection gateways for congestion avoidance [J],” IEEE/ACM Trans. Networking, 1993, 1(4): 397-413.
    [4] Hollot C V, Misra V, Towsley D, Gong W. “Analysis and design of controllers for AQM routers supporting TCP flows [J],” IEEE Trans. Automatic Control, 2002, 47(6): 945-959.
    [5] Kunniyur S S, Srikant R, “An adaptive virtual queue (AVQ) algorithm for active queue management [J],” IEEE/ACM Trans. Networking, 2004, 12(2): 286-299.
    [6] Feng W, Shin K, Kandlur D, Saha D. “The BLUE active queue management algorithms [J],” IEEE/ACM Trans. Networking, 2002, 10(4): 513-528.
    [7] Athuraliya S, Li V, Low S, et al. “REM: active queue management [J],” IEEE Network Magazine, 2001, 15(3): 48-53.
    [8] Park E, Lim H, Park K, et al. “Analysis and design of the virtual rate control algorithm for stabilizing queues in TCP networks [J],” Computer Networks, 2004, 44(1): 17-41.
    [9] Ryu S, Rump C, Qiao C. “Advances in Internet congestion control [J],” IEEE Communications Surveys & Tutorials, 2003, 5(1): 28-39.
    [10] Kelly F, Maulloo A, and Tan D. “Rate control in communication networks: Shadow prices, proportional fairness and stability [J],” J. Oper. Res. Soc., 1998, 49: 237-252.
    [11] Paganini F, Wang H, Doyle J, and Low S. “Congestion control for high performance, stability, and fairness in general networks [J],” IEEE/ACM Trans. Networking, 2005, 13(1): 43-56.
    [12] Wen J, and Arcak M. “A unifying passivity framework for network flow control [J],” IEEE Trans. Automatic Control, 2004, 49(2): 162-174.
    [13] Johari R, and Tan D. “End-to-end congestion control for the Internet: delays and stability [J],” IEEE/ACM Trans. Networking, 2001, 9: 818-832.
    [14] Liu S, Basar T, and Srikant R. “Exponential-RED: a stabilizing AQM scheme for low- and high-speed TCP protocols [J],” IEEE/ACM Trans. Networking, 2005, 13(5): 1068-1081.
    [15] Kunniyur S, and Srikant R “End-to-end congestion control schemes: utility functions, random losses and ECN marks [J],” IEEE/ACM Trans. Networking, 2003, 11(5): 689-702.
    [16] Tian Y. “A general stability criterion for congestion control with diverse communication delays [J],” Automatica, 2005, 41: 1255-1262.
    [17] Vinnicombe G. “On the stability of end-to-end congestion control for the Internet [DB/OL],” technical report CUED/F-INFENG/TR. no. 398, 2000. http://www-control.eng.cam.ac.uk/gv/internet.
    [18] Desoer C A, and Yang Y T. “On the generalized Nyquist stability criterion [J],” IEEE Trans. Automatic Control, 1980, 25: 187–196.
    [19] UCN/LBL/VINT. Network simulator-NS2 [DB/OL], 1995. http://www.isi.edu/nsnam/ns/.
    [20] Floyd S. “TCP and explicit congestion notification [J],” Comput. Commun. Rev., 1994, 24: 10-23.
    [1] Bertsekas D. “Nonlinear Programming, 2nd [M],” Belmont, MA: Athena Scientific, 1999.
    [2] Kelly F, Maulloo A, Tan D. “Rate control in communication networks: Shadow prices, proportional fairness and stability [J],” J. Oper. Res. Soc., 1998, 49: 237–252.
    [3] Low S, Lapsley D. “Optimization flow control, I: basic algorithm and convergence [J],” IEEE/ACM Trans. Networking, 1999, 6(6): 861–875.
    [4] Paganini F, Wang H, Doyle J, Low S. “Congestion control for high performance, stability, and fairness in general networks [J],” IEEE/ACM Trans. Networking, 2005, 13(1): 43–56.
    [5] Wen J, Arcak M. “A unifying passivity framework for network flow control [J],” IEEE Trans. Automatic Control, 2004, 49(2): 162–174.
    [6] Alpcan T, Basar T. “A globally stable adaptive congestion control scheme for internet-style networks with delay [J],” IEEE/ACM Trans. Networking, 2005, 13(6): 1261–1274.
    [7] Alpcan T, Basar T. “A game-theoretic framework for networking flow control in general topology networks [C],” Proceedings of the 41th IEEE conference on decision and control, Las Vegas, Nevada, 2002.
    [8] Low S. “A duality model of TCP and queue management algorithms [J],” IEEE/ACM Trans. Networking, 2003, 11(4): 527–536.
    [9] Low S, Srikant R. “A mathematical framework for designing a low-loss, low-delay Internet [DB/OL],” 2003. http://comm.csl.uiuc.edu/~srikant/pub.html.
    [10] Massoulié L, Roberts J. “Bandwidth sharing: objectives and algorithms [J],” IEEE/ACM Trans. Networking, 2002, 10(3): 320-328.
    [11] Low S, Paganini F, Doyle J. “Internet congestion control [J],” IEEE Control Systems Magazine, 2002, 22: 28–43.
    [12] Kelly F. “Fairness and stability of end-to-end congestion control for the Internet [DB/OL],” 2003. http://www.statslab.cam.ac.uk/~frank/papers/fse2ecc.html.
    [13] Srikant R, “The Mathematics of Internet Congestion Control [M],” Boston, MA: Birkh?user, 2004.
    [14] Johari R, Tan D. “End-to-end congestion control for the Internet: delays and stability [J],” IEEE/ACM Trans. Networking, 2001, 9(6): 818–832.
    [15] Vinnicombe G. “On the stability of end-to-end congestion control for the Internet [DB/OL],” University of Cambridge Tech. Report CUED/F-INFENG/TR.398, 2001. http://www.eng.cam.ac.uk/~gv.
    [16] Massoulié L. “Stability of distributed congestion control with heterogeneous feedback delays [J],” IEEE Trans. Automatic Control, 2002, 47(6): 895–902.
    [17] Tian Y, Yang H. “Stability of the Internet congestion control with diverse delays [J],” Automatica, 2004, 40: 1533-1541.
    [18] Ying L, Dullerud G, Srikant R. “Global stability of Internet congestion controllers with heterogeneous delays [C],” Proceedings of the American Control Conf., Boston, MA, 2004.
    [19] Deb S, Srikant R. “Global stability of congestion controllers for the Internet [J],” IEEE Trans. Automatic Control, 2003, 48(6): 1055–1060.
    [20] Ranjan P, La R, Abed E. “Global stability conditions for rate control with arbitrary communication delays [J],” IEEE/ACM Trans. Networking, 2006, 14(1): 94–107.
    [21] Liu S, Basar T, Srikant R. “Exponential-RED: a stabilizing AQM scheme for low- and high-speed TCP protocols [J],” IEEE/ACM Trans. Networking, 2005, 13(5): 1068–1081.
    [22] Kunniyur S S, Srikant R. “An adaptive virtual queue (AVQ) algorithm for active queue management [J],” IEEE/ACM Trans. Networking, 2004, 12(2): 286-299.
    [23] Athuraliya S, Li V, Low S, et al. “REM: active queue management [J],” IEEE Network Magazine, 2001, 15(3): 48-53.
    [24] Tian Y. “A general stability criterion for congestion control with diverse communication delays [J],” Automatica, 2005, 41: 1255-1262.
    [25] Kelly F. “Modele for a self-managed Internet [J],” Pilosoph. Trans. Royal Soc., London, 2000, 358: 2335-2348.
    [26] Fendick F, Rodrigues M, Weiss A. “Analysis of a rate-based feedback control strategy for long haul data transport [J],” Perform. Eval. 1992, 16: 67-84.
    [27] Kelly F. “Charging and rate control for elastic traffic,” Eur. Trans. Telecommun., 1997, 8: 33-37.
    [28] Kunniyur S, Srikant R “End-to-end congestion control schemes: utility functions, random losses and ECN marks [J],” IEEE/ACM Trans. Networking, 2003, 11(5): 689–702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700