干涉式成像微波辐射计遥感图像的模拟与成像分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经历了近半个世纪的发展,微波辐射测量技术已经取得了显著进步,尤其是上世纪末出现的毫米波相机和干涉式综合孔径辐射计技术,更推动了被动微波遥感领域的迅速扩展。在这种背景下本文主要针对被动微波遥感图像的模拟和干涉式成像微波辐射计的成像问题进行深入研究,所做的主要工作以及得到的研究成果如下:
     1.对微波辐射图像的模拟进行研究,根据射线追踪的思想,提出了亮温追踪的方法,首次研究了辐射亮温的绕射现象,得出了绕射亮温的计算公式,并分析了绕射对图像模拟的影响;分析研究了背景辐射、路径衰减、多次散射、极化旋转、系统响应等影响因素,最终得到了场景微波辐射图像的生成模型;利用此成像模型对虚拟场景和实地场景进行模拟,验证了成像模型的有效性,并利用成像模型的输出结果分析了室外环境微波辐射的一般规律。
     2.对旋转扫描干涉成像辐射计的成像问题进行研究,提出了基于伪极网格的插值成像算法;并借鉴CT领域的成像理论,根据Radon变换提出了加窗反投影成像算法;此外还对Gridding算法以及曲面插值算法在此领域的应用进行了研究和分析,为旋转扫描干涉式成像辐射计的实际应用提供了理论基础。
     3.对时钟扫描干涉式成像辐射计的采样和成像问题进行研究,对步进旋转方式的采样点阵和连续旋转方式的扫描轨迹的规律进行了分析和总结;给出了时钟扫描干涉成像系统的设计方法,并对其各种应用背景的实施参数进行了计算,并以SPORT应用为例进行了成像仿真,证实了时钟扫描成像系统的应用潜力。
     4.对近场干涉成像问题进行了分析和探索,指出了现有的球面天线阵方案的不足;研究了近场成像的数值求解方法,分析了傅立叶算法的近场失真现象;理论推导了近场干涉采样公式,为进一步探索近场成像反演算法提供了理论基础。
     最后对所做的研究工作以及研究成果进行了总结,指出了目前仍然所存在的一些问题,并对后继工作进行了展望。
Since nearly half century, the microwave radiometric surveying technology had made a remarkable progress. The newly emerged sensors, such as millimeter camera and interferometric radiometer, even more promoted the development of technology in passive microwave remote sensing. Under such circumstance, this research focuses on the radiometric image simulation and the imaging technique of synthetic aperture interferometric radiometer. The main works and conclusions are as follows.
     1. The brightness temperature tracing method is proposed for image simulation and a 3-D scene simulation model is present. The essential influencing factors and general requirements are considered such as the rough surface radiation, the sky radiation, the polarization rotation, and the system response. Especially the diffraction of natural radiation by impedance wedge is analyzed, and the antenna temperature calculating formula is achieved by using GTD theory. The model is validated by simulating virtual and real scene, and used to analyze the appeared phenomenology.
     2. The imaging theory of rotary scanning interferometric radiometer is studied, two more accurate new imaging algorithms based on pseudo-polar FFT and back projection theory are developed. Furthermore the Gridding method and cured surfaces interpolation are analyzed and improved for suiting this case.
     3. The newly proposed concept of clock scan is further studied and the common rule of the step rotation and continuous rotation are analyzed and summarized. With the given time and temperature resolution the general designing process of clock scan system is present, based on which the potential applications such as GEO, Balloon based sounding and astronomy observation are explored. As an example the application for SPORT project is simulated, the results confirmed its feasibility.
     4. The near field imaging problem of interferometric radiometer is analyzed, and the limitations and disadvantages of the recently proposed spherical antenna array scheme are point out. Before exploring more feasible imaging method, a limited numerical inverse method is proposed and used for studying the distortions of the conventional imaging method used in near field cases. Furthermore, the sampling formula of near field is deduced, which is identical with the simulation results by numerical method.
     At last, the research results and conclusions are summarized, the existing problems are pointed out and the future work is also prospected.
引文
[1] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing, vol.I: Artech House, Massachusettes, 1986.
    [2] William L, et al. Passive Millimeter Wave Imaging Considerations for Tactical Aircraft. IEEE AESS Systems Magazine. December 2002.11-16.
    [3] Yutaka Aoka, Yasuyuki Miyake, and Koichi Hoshino,Passive millimeter-wave imaging system for automobile applications, Proc. of SPIE 2005, vol.5989, pp.1-12
    [4] G.N.Sinclair, R. Appleby, and P.R.Coward, Passive millimeter-wave imaging in security scanning, Proceedings of the SPIE - The International Society for Optical Engineering, 2000, vol.4032: pp.40-45.
    [5] G.N.Sinclair, R.N.Anderton, and R.Appleby, Passive millimeter-wave concealed weapon detection, Proceedings of the SPIE-The International Society for Optical Engineering, 2001, vol.4232, pp.142-151.
    [6] M. Case, C. Pobanz, and S. Weinrab, Low-Cost, High Performance W-band LNA MMICs for Millimeter-Wave Imaging, SPIE Proceedings, Passive Millimeter-WaveImaging Technology IV, 2000, vol.4032, pp.89-96.
    [7] A.R.Thompson, et al., Interferometry and Synthesis Radio Astronomy. John Wiley & Sons, NewYork. 1986.
    [8] C. S. Ruf, C. T. Swift, A. B. Tanner, and D. M. Le Vine, Interferometric synthetic aperture microwave radiometry for the remote sensing of the earth, IEEE Trans. Geosci. Remote Sensing, vol. 26, pp. 597–611, Sept. 1988.
    [9] M. Martin-Neira and J. M. Goutoule, A two-dimensional aperture synthesis radiometer for soil moisture and ocean salinity observations, ESA Bulletin, No. 92, November, pp. 95-104, 1997.
    [10] M. Martin Neira, Y. Menard, J. M. Goutoule, and U. Kraft, MIRAS, a two-dimensional aperture synthesis radiometer, in Proc. IGARSS, Vol.3, 1994, pp.1323-1325.
    [11] 吴季,刘浩,孙伟英,姜景山, 综合孔径微波辐射计的技术发展及其应用展望, 遥感技术与应用,vol.20, No.2, 2005, pp.24-29.
    [12] 吴季,刘浩,何宝宇,孙伟英,自旋式子母卫星被动微波干涉成像系统, 中国专利, 申请号:200520132760.4, 2005.
    [13] Ji Wu, Hao Liu, Weiying Sun, Chi Wang, and Shengcai Shi, Application of Synthetic Aperture Radiometer Technology in Solar Wind Remote Sensing, Proceedings of PIERS 2005, Hangzhou, pp.23-26, August 2005.
    [14] 吴季 , 张成 , 刘浩 , 一种双速旋转扫描干涉式辐射成像系统 , 中国专利 , 申请号 : 200720103722.5, 2007.
    [15] Markus Peichl, Helmut Sü?, Stephan Dill, High resolution passive millimetre-wave imaging technologies for reconnaissance and surveillance,Proceedings of SPIE Vol. 5077, 2003, pp.77-87.
    [16] Alan B. Tanner and Calvin T. Swift, Calibration of a Synthetic Aperture Radiometer, IEEE Transactions on Geoscience and Remote Sensing, Vol. 31, No.1, 1993, pp.257-267.
    [17] D. M. Levine, A. J. Griffis, C. T. Swift, and T. J. Jackson, ESTAR: A synthetic aperturemicrowave radiometer for remote sensing applications, Proceedings of the IEEE, Vol.82, No.12, 1994, pp.1787-1801.
    [18] D. M. Le Vine, T. J. Jackson, C. T. Swift, et al., ESTAR Measurements During the Southern Great Plains Experiment (SGP99). IEEE Trans GRS, 2001, Vol.39, No.8, pp.1680-1685.
    [19] A. Guha, J. M. Jacobs, T. J. Jackson, et al., Soil Moisture Mapping Using ESTAR Under Dry Conditions from the Southern Great Plains Experiment (SGP99). IEEE Trans GRS, 2003, Vol. 41, No.10, pp.2392-2397.
    [20] D. M. Le Vine, C. Koblinsky, S. Howden, et al. Salinity Measurements During the Gulf Stream Experiment. IGARSS, 2000, Vol.6, pp.2537-2539.
    [21] D. M. Le Vine, Synthetic aperture radiometer systems, IEEE Trans. Microwave Theory and Techniques, Vol.47,No.12,1999,pp.2228-2236
    [22] D. M. Le Vine, et al., Development of a two dimensional synthetic Aperture radiometer at L-band, Proc. Internat. Geosci. Remote Sens. Symp., IGARSS-2000, Honolulu, HA, July, 2000.
    [23] D. M. Le Vine, M.Haken, and C. T. Swift, Development of the Synthetic Aperture Radiometer ESTAR and the Next Generation. IGARSS, 2004, Vol.2, pp.1260-1263.
    [24] K. Rautiainen, H. Valmu, P. Jukkala, et al., Four two-element Prototype of the HUT Interferometric Radiometer. IGARSS, 1999, Vol.1, pp.234-236.
    [25] Y. Kerr, J. Font, P. Waldteufel, A. Camps, J. Bara, I. Corbella, F. Torres, N. Duffo, M. Vallilossera, and G. Caudal, New radiometers: SMOS-a dual pol L-band 2D aperture synthesis radiometer, IEEE Aerospace Conference Proceedings, Vol.5, March, 2000, pp.119-128.
    [26] M. Mart′?n Neira, Y. Menard, J. M. Goutoule, and U. Kraft, MIRAS, a two-dimensional aperture synthesis radiometer, in Proc. IGARSS 1994, pp.1323–1325.
    [27] B. Lambrigtsen, W. Wilson, A. Tanner, T. Gaier, C. Ruf, and J. Piepmeier, GeoSTAR - a microwave sounder for geostationary satellites , IEEE Proceedings IGARSS '04, Vol. 2, pp. 777-780, 2004.
    [28] A. Tanner, W. Wilson, B. Lambrigsten, S. Dinardo, S. Brown, P. Kangaslahti, T. Gaier, C. Ruf, S. Gross, B. Lim, S. Musko, S. Rogacki, Initial results of the Geosynchronous Synthetic Thinned Array Radiometer (GeoSTAR), IGARSS 2006, Denver, USA, pp.3968-3971.
    [29] 卢军, 林士杰, 张祖荫. 星载合成孔径微波辐射计的反演公式. 微波学报, 1994, No.4, pp.20-27.
    [30] 卢军,张祖荫,林士杰,黄铁侠. 利用合成孔径微波辐射计输出反演地物亮温分布. 电子学报, 1997, No.3, pp.91-94.
    [31] Xiao long Dong, JiWu, Suyun Zhu, et al. The Design and Implementation of CAS C-band Interferometric Synthetic Aperture Radiometer. IGARSS, 2000, Vol.2, pp.866-868.
    [32] Hao Liu, Ji Wu, Shouzheng Ban, Jie Lu, Jingye Yan, Suyun Zhu, Shifeng Zheng, Changhong Jiang, and Qiong Wu, The CAS airborne X-band synthetic aperture radiometer: system configuration and experimental Results, Proceedings of IGARSS’04, Vol.3, Sept. 2004, pp.2230-2233.
    [33] Ji Wu, Hao Liu, Shouzheng Ban, Xiaolong Dong, and Jingshan Jiang, Research Activity on Synthetic Aperture radiometry in CSSAR/CAS, PIERS Online, Vol.1, No.5, 2005, pp.538-542.
    [34] N. A. Salmon, Polarimetric scene simulation in millimeter wave radiometric imaging. Proceedings of SPIE, 2004, Vol.5410, pp.260–269.
    [35] N. A. Salmon, Polarimetric passive millimeter-wave imaging scene simulation includingmultiple reflections of subjects and their backgrounds. Proceedings of SPIE, 2005, Vol. 5989, pp. 354–358.
    [36] L. Yujiri, M. Shoucri, and P. Moffa, Passive millimeter wave imaging. IEEE Microwave Magazine, 2003, Vo.4, No.3, pp.39–50.
    [37] B.J.choudhury, T.J.Schmugge, R.W.Newton and A.Chang. Effect of surface roughness of the microwave emission from soils. J. Geophys. Res. (S0148-0227), 1979, Vol.84, pp.5699-5706
    [38] K. Fung. Microwave Scattering and Emission Models and Their Applications [M]. Norwood, MA: Artech House, 1994.
    [39] J. W. McKown and R. L. Hamilton, Ray-tracing as a design tool for radio networks. IEEE Network Magazine, 1991, Vol.5, No.11, pp.27–30.
    [40] K. Rizk and J. Wagen, Two-dimensional ray-tracing modeling for propagation prediction in microcellular environments. IEEE Trans. Veh. Tech, 1997, Vol.46, No.2, pp.508–517.
    [41] S. M. Rubin and T. Whitted, A three-dimensional representation for fast rendering of complex scenes. Computer Graphics, 1980, Vol.14, No.3, pp.110–116.
    [42] A. Fujimoto, T. Tanaka, and K. Iwata, ARTS: Accelerated Ray-Tracing System. IEEE Computer Graphics & Applications, 1986, Vol.6, No.4, pp.16–26.
    [43] A. S. Glassner, Space subdivision for fast ray tracing. IEEE Computer Graphics & Applications, 1984, Vol.4, No.10, pp.15–22.
    [44] 阮颖铮编著. 电磁射线理论基础. 成都电讯工程学院出版社, 1989.
    [45] 汪茂光. 几何绕射理论. 西北电讯工程学院出版社,1985.
    [46] J.B.Keller, et al., A symptotic solution of some diffraction problems. Comm. Pure and Appl. Math., 1956, Vol.9, pp.207-265.
    [47] J.B.Keller, Geometrical theory of diffraction, J. Opt. Soc. Amer., vol.52,1962, pp.116-130.
    [48] R. G. Kouyoumjian and P. H. Pathak, A Uniform Geometrical Theory of Diffraction for an Edge in a Perfectly Conducting Surface, Proc. IEEE, Vol.62, 1974, pp.1448-1461.
    [49] R. J. Luebbers, Finite conductivity uniform GTD versus knife edge diffraction in perdiction of propagation path loss, IEEE Trans. Ant. Prop., Vol.Ap-32, 1984, pp.70-76
    [50] P. D. Holm, A new heuristic UTD diffraction coefficient for nonperfectly conducting wedges, IEEE Trans. Antennas Propagat., vol. 48, Aug. 2000, pp.1211-1219.
    [51] R. Harry, Anderson, Building Corner Diffraction Measurements and Predictions Using UTD, IEEE Trans. Ant. Prop., Vol.46, 1998, pp.292-293
    [52] F. Sagnard, C. Vignat, V. Montcourtois, et al., Microwave measurements of the complex permittivity of construction materials using Fresnel reflection coefficients and reflection ellipsometry, IEEE Antennas and Propagation Society International Symposium. vol.1, 2001, pp.626-629
    [53] L. Tsang, J. A. Kong, and R. T. Shin, Theory of microwave remote sensing. New York: Wiley, 1999: chap.2.
    [54] L. Yujiri, S. Fornaca, et al., 140GHz Passive millimeter wave video camera. Passive Millimeter Wave Imaging Technology, Proceedings of SPIE, 1999, Vol.3703, pp.20–27.
    [55] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave remote sensing Vol.Ⅱ. Massachusettes: Artech House, 1986.
    [56] A. R. Thompson, et al., Interferometry and Synthesis Radio Astronomy. John Wiley & Sons, NewYork. 1986.
    [57] I. Corbella, N. Duffo, M. Vall-llossera, and A. Camps, The Visibility Function inInterferometric Aperture Synthesis Radiometry, IEEE Trans. Geosci. Remote Sensing, Vol.42, No.8, 2004, pp.1677-1682
    [58] J. Bará, A. Camps, F. Torres, and I. Corbella, Angular Resolution of two-dimensional hexagonally sampled interferometric radiometers, Radio Science, Vol.33, No.5, Septiembre- October 1998, pp.1459-1473.
    [59] E.Anterrieu and B. Picard, A strip adaptive processing approach for the SMOS space mission, Proceeding of IGRASS'04, pp.1922-1925.
    [60] B.Picard and E. Anterrieu, Improved windowing functions for Y-shaped synthetic aperture imaging radiometers, Proceeding of IGRASS'03, pp.2756-2758.
    [61] S. Ribó, Research on Image Validation and Signal Processing of Aperture Synthesis Radiometry, Internal ESTEC Working Paper, No.2182, January, 14th, 2003, pp.81-92.
    [62] A.T.Moffet, Minimum redundancy linear arrys, IEEE Trans, Antennas Progpagat., Vol.16, 1968: 172-175.
    [63] M. Ishiguro, Minimum redudancy linear arrays for a large number of antennas, Radio Sci., vol.15, 1980, pp.1163-1170.
    [64] S. R. Christopher, Numerical Annealing of Low-Redundancy Linear arrays, IEEE Trans Antennas and Propagation, Vol.41 , January, 1993, pp.85-90.
    [65] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science, vol.220, No.4598, 1983, pp.671-680.
    [66] A. Camps, J. Bar′a, I. Corbella, and F. Torres, Visibility Inversion Algorithms over Hexagonal Sampling Grids, Soil Moisture and Ocean Salinity Measurements and Radiometer Techniques, WPP-87, ESA-ESTEC, Noordwijk, The Netherlands, April 20–22, 1995, pp. 109–114.
    [67] J. E. Baldwin, M. G. Beckett, R. C. Boysen, et al., The first images from an optical aperture synthesis array: mapping of Capella with COAST at two epochs. A. and A., 1996, Vol.306, pp.13-16.
    [68] Baoyu He and Ji Wu, Two Dimensional Least Redundant Array For Interferometric Synthetic Aperture Radiometer, IGASS’03, pp.4371-4373.
    [69] Sun Weiying, He Baoyu, and Wu Ji. Optimization of fourier plane coverage of antenna arrays for SPORT, Progress in Electromagnetic Research Symposium 2005, vol.1, No.5, pp.533-537.
    [70] C. S. Ruf, Numerical Annealing of Low-Redundancy Linear arrays, IEEE Trans Antennas and Propagation, Vol. 41, January, 1993, pp.85-90.
    [71] A. B. Tanner, and C. T. Swift, Calibration of a Synthetic Aperture Radiometer, IEEE Transactions on Geoscience and Remote Sensing,, Vol. 31, No.1, JANUARY 1993, pp.257-267.
    [72] F. Torres, A. Camps, et al., on-Board Phase and Modulus Calibration of Large Aperture Synthesis radiometers: Study Applied to MIRAS, IEEE Transactions on Geoscience and Remote Sensing, Vol.34, No.4, JULY 1996.
    [73] A. Camps, J. Bar′a, I. Corbella, and F. Torres, Visibility Inversion Algorithms over Hexagonal Sampling Grids, Soil Moisture and Ocean Salinity Measurements and Radiometer Techniques, WPP-87, ESA-ESTEC, Noordwijk, The Netherlands, April 20–22, 1995, pp.109–114.
    [74] A. Camps, J. Bar′a, I. Corbella, and F. Torres, The Processing of Hexagonally Sampled Signals with Standard Rectangular Techniques: Application to Aperture Synthesis Interferometer Radiometer, IEEE Transactions on Geosc. and Remote Sensing, Vol.35, January,1997, pp.183–190.
    [75] A.B.Tanner and C.T Swift, Calibration of a synthetic aperture radiometer. IEEE Trans GRS, 1993, Vol.31. No.1, pp.257-267.
    [76] 刘浩,吴季,吴琼, 综合孔径微波辐射计信道误差分析与标定, 电子学报,vol.33, No.5, 2005, pp.402-406.
    [77] G. Backus and F. Gilbert, Uniqueness in the inversion of inaccurate gross earth data, Philos. Trans. R. Soc. London, 1970, pp.123–129.
    [78] M. A. Goodberlet, Improved Image Reconstruction Techniques for Synthetic Aperture Radiometers, IEEE Transactions on Geoscience and Remote Sensing, Vol.38, No. 3, May, 2000, pp.1362–1366.
    [79] J. H?gbom, Aperture synthesis with a non-regulardistribution of interferometer baselines, Astrophys. J. Suppl. Ser., Vol.15, 1974, pp.417-426.
    [80] U. J. Schwarz, Mathematical-statistical description of the iterative beam removing technique (method CLEAN), Astron. Astrophys, Vol.65, 1978, pp.345-356.
    [81] U. J. Schwarz, The method CLEAN-use, misuse and variations, in Image Formation from Coherence Functions in Astronomy, C. van Schooneveld, Ed., D. Reidel (Dordrecht, Holland), 1979, pp.261-275.
    [82] B. G. Clark, An efficient implementation of the algorithm CLEAN, Astron. Astrophys., Vol.89, 1980, pp.377-378.
    [83] T. J. Cornwell, A simple method of stabilizing the clean algorithm, Astron. Astrophys., Vol.121, 1983, 281-285.
    [84] R. Narayan and R. Nityananda, Maximum entropy--flexibility versus fundamentalism, in Indirect Imaging, J. A. Roberts, Ed., Cambridge University Press (Cambridge, England), 1984, pp. 281-290.
    [85] R. Narayan and R. Nityananda, Maximum entropy image restoration in astronomy, Ann. Rev. Astron. Astrophys., Vol.24, 1986, pp.127-170.
    [86] N.Wu, A revised Gull-Daniell algorithm in the maximum entropy method, Astron.Astrophys. Vol.139, 1984, pp.555-557.
    [87] T. J. Cornwell and K. F. Evans, A simple maximum entropy deconvolution algorithm, Astron. Astrophys., Vol.143, 1985, pp.77-83.
    [88] A.Camps, J.Bara, F.torres and I.Corbella, extension of the Clean technique to the microwave imaging of continuous thermal sources by means of aperture synthesis radiometers,Progress In Electromagnetics Research (PIER),1998, Vol.18, pp.67-83..
    [89] J. Skilling and R. K. Bryan, Maximum entropy image reconstruction: general algorithm, Mon. Not. Roy. Astr. Soc., Vol.211, 1984, pp.111-124.
    [90] D. S. Briggs, High Fidelity Deconvolution of Moderately Resolved Radio Sources, Ph.D. thesis, New Mexico Inst. of Mining & Technology, 1995.
    [91] N. C. Mathur, A pseudodynamic programming technique for the design of correlator supersynthesis arrays, Radio Sci., vol. 4, No.3, 1969, pp.235-244.
    [92] D. E. Hogg, G. H. MacDonald, R. G. Conway, and C. M. Wade, Synthesis of brightness distribution in radio sources. Astronom. J., vol. 74, No.10, 1969, pp.1206-1213.
    [93] W. N. Brouw, Aperture synthesis, in Merhods in Computational Physics, Vol.14, B. Alder, S. Fembach, and M. Rotenberg, Eds. New York: Academic, 1975, pp. 131-175.
    [94] R. Thompson and R. N. Bracewell, “Interpolation and Fourier transformation of fringe visibilities,” Asrronom. J., Vol.79, No.1, 1974, pp.11-24.
    [95] J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, Selection of a Convolution Function for Fourier Inversion Using Gridding, IEEE Trans. Medical Imaging, Vol.10, No.3, 1991, pp.473-478.
    [96] J. D. O’Sullivan, A Fast Sinc Function Gridding Algorithm for Fourier Inversion in Computer Tomography, IEEE Transactions on Medical Imaging, vol.MI-4, No.4, ,1985, pp.200-207.
    [97] F. J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transfrom, Proc.IEEE, Vol.66, 1978, pp.51-83.
    [98] F. Wajer, E. Woudenberg, R. de Beer, M. Fuderer, A. Mehlkopf, and D. Van Ormondt, Simple equation for optimal gridding parameters, in Proc. 7th Ann. Meeting of ISMRM, Philadelphia, PA, 1999, p.663.
    [99] P. J. Beatty, D. G. Nishimura, and J. M. Pauly, Rapid Gridding Reconstruction with a miminal oversampling ratio, IEEE Trans. on Medical imaging. Vol.24, No.6, 2005, pp.799- 808.
    [100] Sarty GE, Bennet R, Cox RW. Direct reconstruction of non-Cartesian k-space data using a nonuniform fast Fourier transform. Magn Reson Med 2001, Vol.45, pp.908-915.
    [101] A. Dutt, V. Rokhlin, Fast Fourier transforms of nonequispaced data. SIAM J Sci Comput Vol.14, 1993, pp.1368-1383.
    [102] J. G. Pipe and P. Menon, Sampling Density Compensation in MRI: Rationale and an Iterative Numerical Solution, J. Magn. Reson. Imaging, Vol.41, 1999, pp.179-186.
    [103] N. G. Papadakis, C. T. Adrian, and L. D. Hall, An Algorithm for Numerical Calculation of the k-space Data-Weighting for Polarly Sampled Trajectories: Application to Spiral Imaging, J. Magn. Reson. Imaging, Vol.15, No.7, 1997, pp.785-794.
    [104] A. Dutt and V. Rokhlin, Fast Fourier transforms for nonequispaced data II, Appl. Comput.Harmon. Anal. Vol.2, 1995, pp.85-100.
    [105] A. F. Ware, Fast approximate Fourier transform for irregularly spaced data, SIAM Review, Vol.40, No. 4, 1998, pp. 838-856.
    [106] D. Potts, G. Steidl and M. Tasche, Fast Fourier transforms for nonequispaced data: A tutorial,in Modern Sampling Theory: Mathematics and Application by J. J. Benedetto and P. Ferreira, eds., Birkhauser , ch.12, 2000, pp. 253-274.
    [107] A. W. Duijndam and M. A. Schonewille, Nonuniform fast Fourier transform, Geophysics, Vol.64, No.2, 1999, pp.539-551.
    [108] N. Nguyen and Q. H. Liu, The regular Fourier matrices and nonuniform fast Fourier Transforms, SIAM Journal of Scientific Computing, Vol.21, No.1, 1999, pp.283-293.
    [109] J. A. Fessler and B. P. Sutton, Nonuniform Fast Fourier Transforms Using Min-Max Interpolation,IEEE Trans. on Signal Processing, Vol.51, No.2, 2003, pp.560–574.
    [110] R. M. Mersereau and A. V. Oppenheim , Digital reconstruction of multidimensional signals from their projections, Proc. IEEE, Vol.62, No.10, 1974, pp.1319-1338.
    [111] P. Edholm and G. T. Herman, Linograms in image reconstruction from projections, IEEE Trans. Medical Imaging, MI-6, No.4, 1987, pp.301-307.
    [112] W. Lawton, A new polar fourier-transform for computer-aided tomography and spotlight synthetic aperture radar Ieee Transactions On Acoustics Speech And Signal Processing, Vol.36, No.6, June 1988, pp.931-933.
    [113] A. Averbuch, R. Coifman, D.L. Donoho and M. Israeli, Fast Slant Stack: A notion of Radon transform for data in a Cartesian grid which is rapidly computible, algebraically exact, geometrically faithful and invertible, Technical Report, Statistics Department, StanfordUniversity, 2003.
    [114] K. J. Moraski and D. C. Munson Jr.., Fast tomographic reconstruction using chirp-z interpolation, in Proceedings of 25th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 1991, pp.1052-1056.
    [115] H. Choi and D. C. Munson Jr., Direct-Fourier reconstruction in tomography and synthetic aperture radar, Int. J. of Imaging Systems and Tech., Vol.9, No.1, 1998, pp. 1-13.
    [116] Y. Keller, A. Averbuch, and M. Israeli, A pseudoPolar FFT technique for translation, rotation and scale-invariant image registration, IEEE Trans.Image Process, Vol.14, No.1, 2005, pp.12-22.
    [117] D. H. Bailey and P. N. Swarztrauber, The fractional Fourier transform and applications, SIAM Review, Vol.33, No.3, 1991, pp.389-404.
    [118] L. R. Rabiner, R. W. Schafer and C. M. Rader, The Chirp z-Transform algorithm and its application”, Bell System Technical Journal, Vol.48, 1969, pp.1249-1292.
    [119] H. Sark, Sampling theorems in polar coordinates, J.Opt.Soc.Amer., Vol.69, 1979.
    [120] H. Stark and M.Wengrovitz, Comments and Corrections on the use of polar sampling theorems in CT, IEEE Trans on Acoust., Speech, Signal Processing, vol.31, No.5, October, 1983, pp.1329-1331.
    [121] F. N. Fritsch and R. E. Carlson, Monotone Piecewise Cubic Interpolation, SIAM J. Numerical Analysis, Vol.17, 1980, pp.238-246.
    [122] C. De Boor , A Practical Guide to Splines, Springer-Verlag, 1978.
    [123] J. Radon, über die Bestimmung von Funktionen durch ihre Integralwerte l?ngs gewisser Mannigfaltigkeiten, Ber. Verh. K?nig. S?chs. Ges. Wiss. Leipzig, Math.-Phys. Kl, vol.69, 1917, pp. 262-277.
    [124] D. Ludwig, The Radon transform on Euclidean space, Comm. Pure Appl. Math., Vol.19, 1966, pp.49-81.
    [125] S. R. Deans, The Radon Transform and Some of its Applications. New York: Wiley, 1983.
    [126] G. Hermann, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography. New York: Academic, 1980.
    [127] F. Natterer, The Mathematic of Computerized Tomography. Chicester, U.K.: Wiley, 1986.
    [128] G. N. Ramachandran and A. V. Lakshminarayanan, Three-Dimensional Reconstruction from Radiographs and Electron Micrographs: Application of Convolutions Instead of Fourier Transforms Proc. Natl. Acad. Sci. U.S.A., Vol.68, No.9, pp.2236-2240.
    [129] L. A. Shepp and B. F. Logan, Reconstruction interior head tissue from x ray transmissions. IEEE Transactions on Nuclear Science, 1974,21(1):228-236.
    [130] F. J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform, Proc. IEEE, Vol.66, Jan. 1978, pp.51-83.
    [131] N. C. Ge?kinli and D. Yavuz, Some novel windows and a concise tutorial comparison of window families, IEEE Trans. Acoust., Speech, Signal Processing, Vol.26, 1978, pp. 501-507.
    [132] E. Anterrieu, P.Waldteufel, A. Lannes, Apodization functions for 2-D hexagonally sampled synthetic aperture imaging radiometers IEEE Trans. Geoscience and Remote Sensing, Vol.40, No.12, pp.2531-2542.
    [133] C. L. Dolph, A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level. Proc. IRE, Vol.34,1946, pp.335-348.
    [134] D .F. Waston, Computing the n-Dimensional Delaunay Tessellation with Application to Voronoi Polytopes, The Computer Journal, Vol.24, No.2, 1981, pp.167-171.
    [135] D.T. Lee and B. J. Schachter, Two Algorithms for Constructing a Delaunay Triangulation, Int’J.of Comp. And Info. Sci.vol.9, No.3, 1980, pp.219-242.
    [136] A. Bowyer, Computing Dirichlet tessellations. The Computer J, 1981, Vol.24, No.2, pp.162-166.
    [137] D. T. Sandwell, Biharmonic Spline Interpolation of GEOS-3 and SEASAT Altimeter Data. Geophysical Research Letters, Vol.12, 1987, pp.139–142.
    [138] H. Suess and M. Peichl, Airborne and groundbased passive millimeter-wave imaging at 37 and 90 GHz, Proceedings of SPIE, Passive Millimeter-Wave Imaging Technology, Vol.3064, April 1997, pp.71-78.
    [139] N. Duffo, I. Corbella, F. Torres, A. Camps and M.Vall-llossera, Advantages and drawback of near field characterization of large aperture synthesis radiometers, Microrad 2004. Rome, Italy.
    [140] A. Tanner, B. Lambrigsten, T. Gaier, and F. Torres, Near field characterization of the GeoSTAR demonstrator, IGARSS 2006, Denver, Co, USA, July 2006, pp.2529-2532.
    [141] W. H. Carter, Radio Science, Vol.6, 1988, pp.1085-1093.
    [142] W. H. Carter, On refocusing a radio telescope to image sources in the near field of the antenna array, IEEE-Trans. Antennas and Propagation, Vol.37, No.3, 1989, pp. 314-318.
    [143] K. P. Walsh, B. Schulkin, D.Gary, J.F.Federici, R. Barat, and D. Zimdars, Terahertz near-field interferometric and synthetic aperture imaging, Proc.SPIE, Vol.5411, 2004, pp.1-9
    [144] B. Laursen and N. Skou, Synthetic aperture radiometry evaluated by a two-channel demonstration model, IEEE Transactions on Geoscience and Remote Sensing, Vol.36, No.3, May 1998, pp.822-832.
    [145] A. Camps, I. Corbella, J. Bara, and F. Torres, Radiometric sensitivity computation in aperture synthesis interferometric radiometer, IEEE Trans. G.R.S., Vol.36, No.2, 1998, pp.680-685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700