核—壳结构的TiO_2/ZnO纳米材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO2是一种重要的无机功能材料,因其具有湿敏、气敏、光电转换、介电效应、光致变色及优越的光催化等性能,使其在传感器、介电材料、光电材料、自洁材料和催化剂及载体等领域具有广泛的应用前景。
     TiO2纳米管是TiO2的又一种存在形式,由于纳米管具有大的比表面积,因而具有较高的吸附能力,可望提高TiO2的光催化性能,特别是如果能在管中装入更小的无机、有机、金属或磁性纳米粒子组装成复合纳米材料,将会大大改善TiO2的光电、电磁及催化性能。
     纳米TiO2存在太阳能利用率低,光生电子和光生空穴极易复合导致的光催化效率不高这两个主要缺点,极大地限制了TiO2的实际应用。氧化锌为直接带隙半导体,二氧化钛为间接带隙半导体,两者的禁带宽度非常接近,导带底和价带顶能量相差不多,将两者耦合能对其光学性能产生重要影响。
     有研究表明氧化锌的引入可以抑制二氧化钛晶型转变过程和粒子生长,使ZnO-TiO2复合半导体在紫外光、自然光、太阳光照射下的光催化效率都较单一ZnO和TiO2高,且吸收光谱发生红移。
     本文主要研究了ZnO纳米棒、TiO2纳米管、TiO2/ZnO纳米复合材料的制备及相关性能,为上述纳米材料更好和更为广泛的应用提供了理论依据和实验基础。具体内容如下:
     (1)以不同原料和反应条件制得不同形貌、具有六角纤锌矿单晶结构的ZnO纳米棒,且这类ZnO纳米棒分布均匀、无明显团聚现象。
     讨论了原料组成、反应温度、反应时间、醇水比、表面活性剂等因素对ZnO微晶形成的影响,并初步分析了其形成机理。以0.04M的Zn(NO3)·6H20和0.05M的(NH4)2CO3,在以SDS为表面活性剂辅助下,于体积比2:1的醇/水体系中200℃水热反应10小时制得的ZnO微晶形貌最佳,其平均直径约59nm,长径比达40。采用XRD分析确定所制得的ZnO微晶具有六角纤锌矿结构,尺寸小晶型良好,且XRD数据与TEM结果一致。
     (2)采用电化学阳极氧化法,在F-存在下制得形貌规整、有序、排列紧密的中空Ti02纳米管。
     通过调整制备工艺条件,可知TiO2纳米管的制备受阳极氧化电压、时间、反应液pH值影响。经实验优化得在阳极氧化电压60V、反应液pH值为6、反应9小时的条件下制得的TiO2纳米管的形貌最好。由SEM结果分析知所制得TiO2纳米管管径约100nm,具有高长径比。由XRD分析确定所得TiO2纳米管的晶型良好,且与SEM结果一致。
     (3)采用二步法成功地制备了形貌规整、清晰的核-壳结构的TiO2/ZnO纳米复合材料,由EDS分析确定其元素组成为钛、锌、氧。
     实验证明表面活性剂、锌含量对TiO2/ZnO纳米复合材料的形貌具有较大影响。表面活性剂影响纳米复合材料中氧化锌的尺寸,可能是由表面活性剂的极性导致而成,采用SDS做表面活性剂得到的尺寸比CTAB小一半;锌含量对复合纳米材料表面形貌影响较大,锌含量在0.0002M时制得的TiO2/ZnO纳米复合材料形貌最佳,过多的锌会使钛管被堵塞而见不到孔洞状。
     TiO2/ZnO纳米复合材料的形成是在TiO2纳米管形成的基础上异相成核,最终形成TiO2/ZnO纳米复合材料。
     (4)以甲基橙为目标降解物,自然光为光源,研究TiO2/ZnO纳米光催化剂的光催化活性,结果表明,TiO2/ZnO复合光催化剂能提高对太阳光的利用率,发现在降解液pH值为3,太阳光催化降解5小时,催化剂的降解效果最好,达到90%以上。
TiO2 is an important inorganic functional materials.Because of its humidity, gas, photoelectric conversion, dielectric effects, photochromic and excellent photocatalytic performance. TiO2 has a wide range of application in many fields such as sensor, dielectric materials, optical materials, self-cleaning materials, catalysts and carriers and so on.
     TiO2 nanotubes are another form of TiO2 materials. As nanotubes with a large surface area and has a high adsorption capacity, is expected to enhance the photocatalytic properties of TiO2, especially if a smaller inorganic, organic, metallic or magnetic nanoparticles assembled into TiO2 nanotubes, to assemble composite nanomaterials. It will greatly improve the photovoltaic, electromagnetic and catalytic properties of TiO2.
     Titanium dioxide exist two main shortcomings that is low solar energy utilization, photo-electronic and photo-generated hole can easily composite. The two main shortcomings greatly limits the practical application of TiO2 due to its low photocatalytic efficiency. Zinc oxide is a direct band-gap semiconductors, titanium dioxide is the indirect band-gap semiconductors. The band gap between the two materials is very close. Energy from the end of the conduction band to the top of valence band is very similar. To couple the two can have a major impact on their optical properties.
     Studies have shown that the introduction of zinc oxide can inhibit the process of crystalline transformation of titanium dioxide and particle growth. As a result ZnO-TiO2 semiconductor showed higher photocatalysis efficiency compared with single ZnO and TiO2 under ultraviolet, natural light and sunlight. What's more the absorption spectrum red shift occurs.
     This paper mainly studies the preparation and related properties of ZnO nanorods, TiO2 nanotubes, TiO2/ZnO nano-composites. In this paper we provide theoretical basis and experimental foundation for the nano-materials above-mentioned to expand more extensive applications. Details are as follows:
     (1) ZnO nanorods with different morphologies are obtained with different raw materials and reaction conditions. These ZnO nanorods have hexagonal wurtzite crystal structure, dispersed uniform and obvious agglomeration unobserved.
     Discussed the effect of raw materials composition, reaction temperature, reaction time, alcohol-water ratio, surfactant on the formation of ZnO. Preliminary analyze the formation mechanism of ZnO. ZnO crystallite obtained the best morphology With 0.04M of Zn(NO3)·6H2O, and 0.05M of (NH4) 2CO3, used SDS as assisted surfactant, at 2:1 volume ratio of alcohol/water system, at 200℃hydrothermal reaction 10 hours. The ZnO nanorods with an average diameter of about 59nm and aspect ratio up to 40. We make use of XRD to identify obtained ZnO crystallite with a hexagonal wurtzite structure, small size, well crystalline, and the results are in accordance with TEM.
     (2)Electrochemical anodic oxidation method is adopted. In the presence of F-, TiO2 nanotubes with orderly, tightly arranged hollow tubes are obtained.
     By adjusting the process of preparation conditions, we can see the TiO2 nanotubes are influenced by anodization voltage, reaction time, pH value. We optimized The technology on the preparation of TiO2 nanotubes. We obtained the best anode voltage of 60V, pH value of 6, and reaction time of 9 hours. The results from SEM analysis we observed the average diameter of TiO2 nanotubes are about 100nm with a high aspect ratio. Confirmed by XRD analysis we identified the crystalline structure of TiO2 nanotubes.They have well crystalline structure and the results are consistent with the SEM.
     (3) Using a two-step method successfully prepared TiO2/ZnO nano-composite with regular and clear core- shell structure. Using EDS analysis to certificate the elemental composition ofthecomposites, which are made up of titanium, zinc, and oxygen.
     Experiments prove that the surfactant, zinc content have great impact on morphology of TiO2/ZnO nanocomposite. Surfactant affects the size of zinc oxide in nanocomposite materials, which may be caused by the polarity of surfactant. Using SDS as surfactant can get nearly a half smaller size than CTAB. Zinc content concluded in nanocomposites has effect on surface morphology of composite. We obtained the best morphology of TiO2/ZnO nanocomposites when the zinc content in the composites is up to 0.00002M. Too much zinc conten will block titanium tubes and cover titanium tube-shaped holes.
     TiO2/ZnO nano-composite materials formed on the basis of the formation of TiO2 nanotubes. By heterogeneous nucleation, TiO2/ZnO nanocomposites formed.
     (4) Using methyl orange as the goal of degradation, natural light as the light source to study the activity of TiO2/ZnO nano-photocatalytic. Results showed that, TiO2/ZnO composite photocatalyst can improve the utilization of the sunlight. It is found that the best degradation of catalytic is observed to reach 90% when the solution pH value equals 3, in sunlight degradation 5 hours.
引文
[1]R. P. Feynman. There's Plenty of Room at the Bottom [J]. Engineering and Science (California Institute of Technology),1960,22-36.
    [2]张立德,牟季美.纳米材料科学[M].沈阳,辽宁科学技术出版社,1994,76-88.
    [3]J. H. Fendler. Photochemical solar energy conversion an assessment of scientific accomplishments [J]. Phys. Chem.,1985,89:2730-2735.
    [4]杨剑.一维半导体纳米材料溶剂热合成机制探讨[D].中国科学技术大学博士学位论文,2001,1.
    [5]M. Borghesi, A. J. MacKinnon, L. Barringer, R. Gaillard, L.A. Gizzi, C. Meyer, O. Willi, A. Pukhov, J. MeyerterVehn. Relativistic channeling of a picosecond laser pulse in a nearcritical preformed plasma[J]. Phys. Rev. Lett.,1997,78: 879-882.
    [6]R. A. Webb. Observation of h/e a haronov-Bohm Oscillations in Normal-Metal Rings [J]. Phys. Rev. Lett.,1985,54,2696-2699.
    [7]H. W. Kroto, J. R Heath, S. C O'Brien, et al. C60:Buckminsterfullerene [J]. Nature,1985,318 (60421):62-163.
    [8]G. A. Ozin. Nanochemistry: Synthesis in Diminishing Dimensions [J]. Adv. Mater.,1992,4:612-649.
    [9]严东生.纳米材料的合成与制备[J].无机材料学报,1995,10(1):1-6.
    [10]吴莉莉.纳米氧化锌的制备及其光学性能研究[D].山东大学博士学位论文,2005,1.
    [11]F. Fievet, F. F. Vincent, J. P. Lagier, B. Dumont and M. Figlarz. Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process [J]. J. Mater. Chem.,1993,3:627-633.
    [12]陶向明,劳燕锋,叶全林等.楔形A1薄膜的物理特性[J].物理学报,2001,50(10):1991-1995.
    [13]F. Fievet, J. P. Lagier, M. Figlarz. Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Polyol Process [J]. Mater. Res. Bull.,1989,24:29-34.
    [14](a)C.N.R. Rao, M. Nath. Inorganic nanotubes[J]. Dalton Trans.,2003,1: 1-24. (b) L. Dloczik, R. Engelhardt, K. Ernst, et al. Hexagonal nanotubes of ZnS by chemical conversion of monocrystalline ZnO columns[J]. Appl. Phys. Lett.,2001,78:3687-3689.
    [15]J. Q. Hu, Q. Y. Lu, K. B. Tang, et al. Low Temperature Synthesis of Nanocrystalline Titanium Nitride via a Benzene 150 Thermal Route[J]. J. Am. Ceram. Soc.,2000,83:430-432.
    [16]B. H. Hong, S. C. Bae, C. W. Lee, et al. Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase [J]. Science,2001,294: 348-351.
    [17]C. Mirkin, T. Taton. Semiconductors meet biology [J]. Nature,2000,405: 626-627.
    [18]T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M.A. El-Sayed. Shape Controlled Synthesis of Colloidal Platinum [J]. Nanoparticles Science,1996,272: 1924-1926.
    [19]X. Qian, J. Yin, S. Feng, S. Liu, Z. Zhu. Preparation And Characterization of Polyvinylpyrrolidone Films Containing Solver Sulfide Nanoparticles[J]. J. Mater. Chem.,2001,11:2504-2506.
    [20]V. Vollath, K. E. Sickafus. Synthesis of Ceramics Oxides Powders By Microwave Plasma Pyrolysis [J]. J. Mater. Sci.,1993,28:5943-5948.
    [21]陶向明,劳燕锋,叶全林等.楔形Al薄膜的物理特性[J].物理学报,2001,50(10):1991-1995.
    [22]F. Fievet, J. P. Lagier, M. Figlarz. Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Polyol Process [J]. Mater. Res. Bull.,1989,24:29-34.
    [23]N. Klinger, E.L. Strauss, K.L. Komarek. Reactions between Silica and Graphite [J]. J.Am. Ceram. Soc.,1966,49(7):369-375.
    [24]李景国,高濂,张青红.纳米氮化钛粉体的制备及其影响因素[J].无机材料学报,2003,18:765-771.
    [25]Naoto Kikuchi, Hideo Hosono, Hiroshi Kawazoe, Kaiji Oyoshi, Shunichi Hishita, Transparent. Conducting, Amorphous Oxides:Effect of Chemical Composition on Electrical and Optical Properties of Cadmium Germanates [J]. J. Am.Ceram. Soc.,1997,80:22-27.
    [26]R. A. Caruso, M. Antonietti, M. Giersig, H. P. Hentze, J. Jia. Structural Control of TiO2 Networks Using Polymer Gel Templates [J]. Chem. Mater.2001,13(3): 1114-1123.
    [27]D. K. Yi, D.Y. Kim. Novel Approach to the Fabrication of Macroporous Polymers and Their Use as a Template for Crystalline Titania Nanorings [J]. Nano Lett.,2003,3:207-211.
    [28]Y. D. Li, H. Liao, Y. Ding, Y. Fan, Y. Zhang, Y. Qian. Novel Solvothermal Synthesis of CdE (E= S, Se, Te) Semiconductor Nanorod [J]. Inorg. Chem., 1999,38(7):1382-1387.
    [29]A. A. Bol, A. Meijerink. Doped semiconductor nanoparticles-a new class of luminescent materials [J]. J. Lumin.,2000,315:87-89.
    [30]E.R. Leite, I.T. Weber, E. Longo, J.A. Varela. A new Method to Control Particle Size and Particle Size Distribution of SnO2 Nanoparticles for Gas Sensor Application [J]. Adv. Mater.,2000,12:965-968.
    [31]余保龙,顾玉宗,毛艳丽等.具有表面修饰的Sn02纳米微晶的光学性质研究[J].光学学报,2000,20:1575-1579.
    [32]张克从.近代晶体学基础[M].科学出版社,1998.
    [33]H. L. Ma, D. H. Zhang, S. Z. Win, et al. Electrical and optical properties of F-doped textured SnO2 films deposited by APCVD [J]. Solar Energy and Solar Cells,1996,40:371-380.
    [34]N. Tanjew, H. Markus. Wet-Chemical Synthesis of Doped Nanoparticles:Optical Properties of Oxygen-Deficient and Antimony-Doped Colloidal SnO2 [J]. J. Phys. Chem. B,2000,104:8430-8437.
    [35]张立德,牟季美.纳米材料科学[M].沈阳:辽宁科技出版社,1994.
    [36]Gleiter H.纳米材料[M].北京:原子能出版社,1993.
    [37]Crowen A J. Barry S. Magnetic phase transitions in nanocrystalling erbium [J]. Journal of Applied Physics,1987,61:3317-3319.
    [38]Weissmǖller J, Jing J, Kramer A, et al. Noncrystalline solids prepared by compacting nanometer-sized particles[J]. Material Research Society Symposium Process,1990,195:617-621.
    [39]卢柯,周飞.纳米晶体材料的研究现状[J].金属学报,1997,33:99-106.
    [40]Hagfeldt, A., Gratzel, M.. Light-induced redox reactions in nanocrystalline systems [J]. Chem. Rev.,1995,95:49-68.
    [41]K.J.Klabunde, J. Stark, O. Koper, C. Mohs, D.G. Park, S. Decker, Y. Jiang, I. Lagadic, D. Zhang. Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry [J]. Journal of Physical Chemistry,1996,100:12142-12153.
    [42]A. Henglein. Precursor can be successfully used in a variety of co-ordinating [J]. Chem. Rev.,1989,89:1861-1873.
    [43]A. Nitzan, L.E. Brus. Can photochemistry be enhanced on rough surfaces [J]. J. Chem. Phys.,1981,74:5321-5322.
    [44]L. Brus. Electronic wave functions in semiconductor clusters:experiment and theory [J]. J. Phys. Chem.,1986,90(12):2555-2560.
    [45]A.I. Ekimov, A.A. Onushchenko. Size quantization of the electron energy spectrum in a microscopic semiconductor crystal [J]. JEPT. Lett.,1984,40: 1136-1139.
    [46]Y. Wang, N. Herron. Nanometer-sized semiconductor clusters:materials synthesis, quantum size effects, and photophysical properties [J]. J. Phys. Chem.,1991,95(2):525-532.
    [47]H. Weller. Chemie im ǖbergangsbereich zwischen Festkrper und Molekul[J]. Angew. Chem. Int. Ed. Engl.,1993,105:43, Int. Ed. Engl.1993,32, 41-55.
    [48]H. Weller, A. Fojtik, A. Henglein. Photochemistry of Semiconductor Colloids Properties of Extremly small Particles of Cd3P2 and Zn3 P2 [J]. Chem. Phys. Lett., 1985,117:485-488.
    [49]D. D. Awschalsom, M. A. McCord, G. Grinstein. Observation of macroscopic spin phenomena in nanometer-scale magnets [J]. Phys. Rev. Lett.,1990,65: 783-786.
    [50]L. Yiping, G.C. Hdjipanayis, C.M. Sorensenk, K.J. Klabunde. Magnetic properties of fine cobalt particles prepared by metal atom reduction [J]. J. Appl. Phys.,1990,67(9):4502-4504.
    [51]施尔畏,夏长泰,王步国等.水热法的应用与发展[J].无机材料学报,1996,11:193-206.
    [52]覃爱苗.硫族纳米材料的水热合成及表征[D].广州:中山大学博士学位论文,2005.
    [53]李汶霞,殷声.低温燃烧合成陶瓷微粉[J].硅酸盐学报,1999,27(1):72—78·
    [54]苏言杰,张德,徐建梅等.柠檬酸盐凝胶自燃烧法合成超细粉体[J].材料导报,2006,20(6):142—144.
    [55]Maggie Paulose, Gopal K Mor, Karthik Shankar et al. Journal of Photochemistry and Photobiology A:Chemistry [J].2006,178:8.
    [56]Wang Baoyu, Zhang Jinghui, Liu Zhanjun. Fine Chemicals[J].2003,20(6): 333.
    [57]Hofmann M. R., Martin S. T., Choi W., et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews,1995,95(1):69-96.
    [58]Sakthivela S,Neppolianb B,Shankarb M V,etal. Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and TiO2[J]. Solar Energy Mater Solar Cells,2003,77(1):65-82.
    [59]刘亮,王小华,宋卫坤,林雨.ZnO-TiO2在三相光催化反应器中降解酸性大红的研究[J].环境科学与技术,2008,31(2):31-34.
    [60]Jijun Qiu,Weidong Yu,Xiangdong Gao. Controlled growth of ZnO nanorod templates and TiO2 nanotube arrays by using porous TiO2 film as mask[J]. Sol-Gel Sci Technol (2008) 47:187-193.
    [61]N. Labus, S. Stevanovic, M. M. Ristic. sintering of mechanically activated ZnO-TiO2 powders[J]. Powder metallurgy and metal ceramics,2007, 47(459):55-62.
    [62]W.Wu, Y-W.Cai, J-F. Chen. Preparation and properties of composite particles made by nano zinc oxide coated with titanium dioxide [J]. Mater Sci (2006) 41:5845-5850.
    [63]王小健,乔学亮,陈建国等.无机抗菌剂的研究现状及发展趋势[J].陶瓷学报,2003,24(4):239-244.
    [64]段志刚,朱忠其,张瑾等.掺银二氧化硅抗菌陶瓷的烧结热性质研究[J].云南大学学报:自然科学版,2002,24(1A):112-113.
    [65]段志刚,朱忠其,张瑾等.新型可见光激发解水材料的研究进展[J].云南大学学报:自然科学版,2006,28(S1):293-297.
    [66]Yinhua Jiang, Min Wu a, Xiaojuan Wu. Low-temperature hydrothermal synthesis of flower-like ZnO microstructure and nanorod array on nanoporous TiO2 film[J]. Materials Letters 63 (2009):275-278.
    [67]Masanori Hirano, Mikimasa Imai, and Michio Inagaki. Preparation of ZnGa2O4 Spinel Fine Particles by the Hydrothermal Method[J]. J. Am. Ceram. Soc.,2000, 83 [4]:977-79.
    [68]Sakthivela S,Neppolianb B,Shankarb M V,et al. Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and TiO2 [J]. Solar Energy Mater Solar Cells,2003,77(1):65-82.
    [69]杨咏东,李剑平,张俊.氧化铝模板二步法制备工艺的改进[J].机械工程材料,2007,31(4):66-69.
    [70]李春明,刘会冲,徐华芯.纳米ZnO材料的制备与应用研究进展[J].材料导报,2003,17:39-41.
    [71]谌小斑,贺英,张文飞.ZnO纳米线及其器件研究进展[J].纳米材料与结构,2008,15(10):590-596.
    [72]Keis K, Bauer C, Boschlo G, et al. Nanostructured ZnO Electrodes for Dye-sensitized Solar Cell Applications[J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,148(1-3):57.
    [73]Jeong W J, Kim S K, Park G. C. Preparation and Characteristic of ZnO Thin Film with High and Low Resistivity for an Application of Solar Cell [J]. Thin Solid Films,2006,506-507:180-183.
    [74]Sahu D R, Huang Jow-Lay. Design of ZnO/Ag/ZnO Muhilayer Transparent Conductive film[J]. Material Science and Engineering B,2006, 130(1-3):295-299.
    [75]Matsubara K, Fons P, lwata K, et al. ZnO Transparent Conducting Films . Deposited by Pulsed Laser Deposition for Solar Cell Applications[J]. in Solid Films,2003, (431-432):369-372.
    [76]Baik D G, Cho S M. Application of Sol-gel Derived Films for ZnO/n-Si Junction Solar Cells[J]. Thin Solid Films,1999,354(1-2):227-231.
    [77]Song D Y, Aberle A G., Xia J. Optimisation of ZnO:A1 Films by Change of Sputter Gas Pressure for Solar Cell Application[J]. Applied Surface Science, 2002,195(1-4):291-296.
    [78]Powell D A, Kalantar-zadeh K, Wlodarski W. Numerical Calculation of SAW Sensitivity:Application to ZnO/LiTaO3 Transducers[J]. Sensors and Actuators A:Physical,2004,115(2-3):456-461.
    [79]Lee J B, Lee H J, Seo SH, et al. Characterization of Undoped and Cu-doped ZnO Films for Surface Acoustic Wave Applications[J]. Thin Solid Films,2001, 398-399:641-646.
    [80]Chu S Y, Chen T Y, Water W. The Investigation of Preferred Orientation Growth of ZnO Films on the Pb TiO3-based Ceramics an d Its Application for SAW Devices[J]. Journal of Crystal Growth,2003,257(3-4):280-285.
    [81]韦志仁,李军,刘超等.水热法合成Sn02金红相纳米柱晶体[J].人工晶体学报,2006,35(1):107-109.
    [82]Purica M, Budianu E, Rusu E. ZnO thin Films on Semiconductor Substrate for Large Area Photodetector Applications[J]. Thin Solid Films,2001,383(1-2): 284-286.
    [83]Keis K, Vayssieres L, Lindquist SE, et al. Nanostructured ZnO Electrodes for Photovoltaic Applications[J]. Nanostructured Materials,1999,12(1-4):487-490.
    [84]Hui K C,Lai C W, Ong H C. Electron-beam-induced Optical Memory Effect in Metallized ZnO Thin Films for the Application of Optical Storage[J]. Thin Solid Films,2005,483(1-2):222-225.
    [85]付三玲,蔡淑珍,张晓军等.水热法制备ZnO晶体及纳米材料研究进展[J].人工晶体学报,2006,35(5):1016-1021.
    [86]吕伟,吴莉莉,朱红梅等.水热法制备氧化锌纳米棒[J].山东大学学报,2005,35:2.
    [87]YAMAMOTO K, NAGASAWA K, OHMORI T. Preparation and characterization of ZnO nanowires [J]. Physical:E,2004,24 (1-2):129-132.
    [88]Uekawa N, Iahii S, Kojima T, et al. Formation of porous sphercal aggregated structure of ZnO nanoparticle by low temperature heating of Zn(OH)2 in diol solution[J]. Mater Letters,2007,61:1729.
    [89]Du Tianbao, Song Hongwei, Olusegun J. Sol-gel derived ZnO/PVP nanocomposite thin film for superoxide radical sensor[J]. Mater Sci Eng,2007, 27:414.
    [90]天津大学物理化学教研室.物理化学(下册),第四版[M].北京,高等教育出版社,2001,152.
    [91]饶兴堂,王萍萍,李珍,靳福江.表面活性剂、pH对ZnO光致发光及光催化性能的影响[J].材料导报(网刊),2008年5月第3卷第3期:19-22.
    [92]王保玉,张景会,刘湛望.TiO2纳米管的制备[J].精细化工,2003,20(6):333—336.
    [93]郭孟狮,杨靖华,周心艳.TiO2纳米管的研究进展[J].材料导报,2006,11(20):108-110.
    [94]Michailowski A, Aimawlawi D, Cheng Guo-sheng et al. Highly regular anatase nanotubule arrays fabricated in porous anodic templates[J]. Chemical Physics Letters,2001,349:125.
    [95]Jong H J, Hideki K, Kjeld J C, et al. Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template [J]. Chem Mater,2002,14(4):1445-1447.
    [96]张青红,高濂,郑珊等.制备均一形貌的长二氧化钛纳米管[J].化学学报,2002,60(8):1439-1444.
    [97]王保玉,张景会,刘湛望.TiO2纳米管的制备[J].精细化工,2003,20(6)333-336.
    [98]WANG Wen-zhong, VARGHESE O K, PAULOSE M, et al. A study on the growth and structure of titania nanotubes [J]. J M R,2004,19 (2):417-422.
    [99]赖跃坤,孙岚,左娟等.氧化钛纳米管阵列制备及形成机理[J].物理化学学报,2004,20(9):1063-1066.
    [100]杨娟,戴俊,缪娟.TiO2纳米管阵列的制备及其应用研究进展[J].化工时刊,2008(9):56-60.
    [101]Peng Xiao, Dawei Liu, Betzaida Batalla Garcia. Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases [J]. Sensors and Actuators B,2008,134:367-372.
    [102]Ning Wang,Xinyong Li,Yuxin Wang,Yang Hou, Xuejun Zou, Guohua Chen. Synthesis of ZnO/TiO2 nanotube composite film by a two-step route[J]. Materials Letters 62 (2008) 3691-3693.
    [103]Fujishima A, Honda K. Electrochemical photolysis of water at asemiconductor electrode [J]. Nature,1972,239:37.
    [104]张景臣.纳米二氧化钛光催化剂[J].合成技术及应用,2003,18(3):32.
    [105]阎俊萍,张中太,唐子龙等.半导体基纳米复合材料光催化研究进展[J].无机材料学报,2003,18(5):980.
    [106]彭晓春,陈新庚,黄鹄等.n-TiO2光催化机理及其在环境保护中的应用研究进展[J].环境污染治理技术与设备,2002,3(3):1.
    [107]徐俊.太阳能裂解水制氢,太阳能[J].2004,1:30.
    [108]Carp O, Huisman C L, Relier A. Photoinduced reactivity oftitanium dioxide[J]. Progress Solid State Chem,2004,32:33.
    [109]Pilizzettie E. Fine Particles Science and Technology from Micro Nanoparticles [M]. London: Kluwer, Ltd.1996.
    [110]程刚,周孝德,李艳等.纳米ZnO-TiO2复合半导体的La3+改性及其光催化活性,催化学报[J].2007,28(10):885-889.
    [111]饶兴堂,王萍萍,李珍等.表面活性剂、pH对ZnO光致发光及光催化性能的影响[J].材料导报(网刊)(RAO Xingtang, WANG Pingpig, LI Zhen, JIN Fujiang. Materials Review),2008,3(3):19-22.
    [112]Chen Jian, David F, Wim R H, et al. Kinetic processes of photocatalytic mineralization of alcohols on metallized titanium dioxide[J]. Wat Res,1999, 33(5):1173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700