黄土丘陵区典型流域植被恢复减沙效益研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
退耕还林还草是我国西部地区进行生态恢复与治理的主要措施,在一定程度上有效改善了该地区的生态环境。本研究以黄土丘陵区典型小流域燕沟流域为研究对象,通过对天然坡面径流小区降雨产流产沙、流域把口站径流泥沙的长期观测,结合野外模拟降雨试验结果,分析了不同土地利用方式坡面产流产沙特征,计算了燕沟流域水土保持措施,特别是植被恢复措施的减沙效益;同时对流域输沙变化的影响因子进行了分析,探讨了降雨因素对流域输沙量变化的影响,主要取得如下结论:
     1.分析了坡面不同土地利用方式及坡度特征对产流产沙的影响
     在相同的雨强条件下,不同土地利用方式产沙过程与累计产沙量都明显不同,总体表现为:翻耕小区﹥刈割后的小区﹥有植被覆盖的小区。不同土地利用方式小区30min产沙量与降雨时间关系符合W=at-b的线性方程,与降雨强度之间存在W = aIb的幂函数关系。
     对不同坡度小区产流产沙研究表明,陡坡小区无论产流产沙的强度,还是累计产流产沙量都明显高于缓坡小区,说明大于25°坡耕地要完全退耕这一政策的必要性。
     2.研究了不同退耕方式、不同年限坡面植被产流产沙特征
     退耕以来各类土地利用方式减水减沙效益显著,各小区年产流产沙量大小关系为:坡耕地小区>草地小区>灌丛小区,草地小区径流量较坡耕地小区减少50%~60%,灌丛小区较坡耕地小区径流量减少都在70%以上;各小区减沙量都在90%以上,减沙量大于减流量。说明草灌植被都具有明显的蓄水保土作用;而不同退耕年限灌丛小区的累计产流产沙量都小于草地小区,说明在不同的降雨量及降雨强度条件下,灌丛地的水土保持作用比草地更为明显。
     坡面6种处理小区径流系数大小关系为:坡耕地小区>刈割草地>草地>刈割灌丛地>灌丛地>刺槐林地,随地面植被覆盖度的增加而减少,呈负相关关系。与坡耕地相比,草地、灌丛及刺槐林地小区减流量分别为51.1%、71.4%和90%,减沙量分别为99.3%,99.5%和99.6%,刺槐林地减水减沙作用最为明显,各种土地利用类型减沙作用明显大于减流作用。
     3.比较了草地与灌丛群落的结构特征与减沙机理
     草地与灌丛小区刈割处理前后产沙情况出现较大差异,刈割后草地产沙量大幅增加,而灌丛小区刈割后产沙量增加并不明显,主要原因与二者的植被结构特征有关。经过10年退耕撂荒形成的草地群落,多为一年生草本植物,且生长在近地表层,枯落物较少,容易遭受破坏;灌丛群落出现多年生的山榆、刺槐、胡枝子等多年生灌木,地表枯落物较多,地下植物根系发达,水土保持作用显著。说明处于植被演替初级阶段的近地表层草地植被减沙效益显著,但生态功能仍然比较脆弱,是需要进行封育保护的主要植被群落。
     4.阐明了燕沟流域植被恢复减沙效益
     通过对不同土地利用方式坡面小区产流产沙分析,结合定位小区观测资料,利用水保法计算了治理后的燕沟流域年均输沙模数为737 t/km2?a,减沙效益大于80%;计算输沙模数与流域把口站观测值接近,证明对燕沟流域减沙效益的计算切合实际,并进一步说明燕沟流域的综合治理具有明显的减沙效益。
     5.探讨了降雨变化对燕沟流域输沙量变化的影响
     利用相近小流域观测资料,通过时间与空间相结合的方法,对燕沟流域治理前后降雨及产沙量变化进行了分析,结果表明退耕以后,降雨变化因素造成流域输沙量平均每年减少61228t,占流域输沙量减少的25%左右,即在造成近年来实测流域输沙量减少的两大因素中,降雨变化影响约占25%,综合治理作用约占75%。
Returning sloping field to woods and grass is a main measure to carry through eco-restoration, and has ameliorated the environment in some extent in the west area. As a typical watershed in the Loess Hilly Region, Yangou watershed is totally studied in this research. By observation of rainfall and run-off on the slope plot, runoff at the exit of the watershed, and analysis of the data of field simulated rainfalls, this paper analyzed the characteristics of runoff and sediment on different surface conditions on the slope, calculated the sediment reduction benefits of soil and water conservation measures, especially vegetation restoration measures in Yangou watershed, at the same time, analyzed the factors that can influence the variation of sediment production, and in the end probed into the impact of rainfall on sediment transport in the watershed. Main conclusions are made as follows:
     1. Analyzed the impact of different surface conditions including gradient variation on runoff and sediment production.
     On the condition of same rainfall intensity, the course and amount of sediment yield are different in evidence on different land use forms. Generally speaking, both of these two characteristics take on the following rule: sloping field plot>cradled plot>vegetation covered plot. The relationship between sediment yield amount of any kind of land use in 30 minutes and raining time accord with the linear equation W=at-b, while it follows the power function W = aIb with rainfall intensity.
     Research of runoff and sediment yield on different gradient slope show that both intensity and total amount of runoff and sediment yield on steep slopes higher than they on mild ones obviously, which prove that slope field with higher gradient than 25°must be returned to meadow or woods is necessary.
     2. Studied on runoff and sediment yield characteristics of different returning forms and different years.
     All kinds of retuned slope fields have good benefits on sediment reduction. The amounts of sediment yield in every year have the following relationship: sloping field plot>grass plot>bush plot. Grass plot can reduce 50%~60% runoff of that produced on slope field, while bush plot can reduce more than 70%. Sediment reduction in any plot is more than 90%, which is more than runoff reduction. All account for that both grass and bush plots have the function of soil and water conservation in evidence. But the amount of runoff and sediment yield in bush plot is more than that in grass plot every year shows that bush vegetation have better function on soil and water conservation than grass, in any kind of rainfall condition.
     Runoff coefficients in 6 different treatment plots conform to the following relationship: sloping field plot>cradled grass plot>grass plot>cradled bush plot>bush plot>silver chain plot, all of which decreases with increasing of vegetation coverage, taking on minus correlative relationship with it. Compared with sloping fields plot, grass, shrub and silver chain plots can respectively reduce 51.1%, 71.4% and 90.0% runoff, and 99.3%,99.5% and 99.6% sediment yield. Silver chain has the best sediment and runoff reducing effect. The effect of sediment reduction is more obvious than that of runoff reduction in any kind of land use forms.
     3. Compared the sediment reducing mechanism between grass and shrub lands.
     Sediment yield in grass and shrub plot have clear diversity in comparation of before and after they are cradled. Grassplot community evolved after 10 years returned, are mostly annual herbage plants, close to the slope and with less dead woods and leaves. Elm, acacia and lespedeza appear in shrub community, which has more dead woods and leaves and more roots. Sediment yield obviously increases in cradled grass plots, while not so obvious in cradled shrub plots. That can be mainly explained by their different dimensional structure.
     All show that grassplot community close to the slope ground, which is in its initial stage of vegetation succession, has nice benefit in sediment reduction. However, it is still weak in its ecosystem function. So in conclusion, it is a main type of vegetation that needs essential protection.
     4. Clarified the total effect of vegetation recovery on sediment reduction in Yangou watershed
     Through analysis of the characteristics of runoff and sediment production in different land use plots, and the data observed on long-term fixed plots, we obtain that in Yangou watershed after slope field was returned, the sediment yield modulus is about 737 t/km2·a, more than 80% of its original level. Calculated sediment reduction is very close to that observed at the exit of the watershed, which proves that the whole process of benefit calculation accords to the fact, and all show good benefits of comprehensive management on sediment reduction in evidence.
     5. Discussed the effect of rainfall diversity in years on sediment conveyed in Yangou watershed every year.
     By using the data observed in the watershed near Yangou, associated with time and space, we analyzed the diversity of rainfall and sediment yield across the vegetation recovery. Results show that after the returning of slope field to grass and woods, rainfall diversity leads to about 61228t sediment reduction every year in average, taking up about 25% of the total. That is to say, in the two factors affect the sediment reduction in recent years, rainfall diversity takes up about 25%, comprehensive management takes up about 75%.
引文
[1]吴钦孝,赵鸿雁,韩冰.黄土丘陵区草灌植被的减沙效益及其特征.草地学报[J].2003(11):23-26.
    [2]袁希平,雷廷武.水土保持措施及其减水减沙效益分析.农业工程学报[J]. 2004(20):296-300.
    [3]琚彤军,刘普灵等.黄土丘陵区生态恢复重建过程中流域降雨及其水沙变化特征研究[J].水土保持学报.Vo1.19 No.2 2005,57-60.
    [4]罗利芳,李双才,叶芝菡.黄土高原生物措施减水减沙效益动态分析.地理与地理信息科学[J]. 2004(20):78-81.
    [5]申震洲,刘普灵,谢永生等.不同下垫面径流小区土壤水蚀特征试验研究.水土保持通报[J].2006(4): 5-9.
    [6]尹国康.黄河中游多沙粗沙区水沙变化原因分析[J].地理学报.1998(53)2:174-183.
    [7]徐乾坤.黄土高原坡耕地退耕还草效益分析——以安塞县为例[J].矿业科学技术.2005(2) :31-34.
    [8]陈雷.中国的水土保持[J].中国水土保持.2002(7):4—6.
    [9]刘昌明等.黄河下游断流的径流序列分析[J],地理学报,2000(3):257-265.
    [10]程义.延河洪水输沙特征分析[J],水土保持学报, 1992,6(2):35~40.
    [11]张胜利.略论黄河中游水沙变化及水土保持减沙效益,水土保持通报[J],1994,14(3):8~10.
    [12]刘德夫,于一鸣.80年代黄河泥沙减少原因分析[J].中国水土保持.1994(1):15-17.
    [13]熊贵枢,支俊峰等.1919—1989年黄河的水沙变化分析[J].水土保持学报. 1992(6)2:1-6.
    [14]彭梅香,赵莹莉.近十年气候变化对黄河中上游水沙影响分析[J].人民黄河. 1997(7):28-31.
    [15]傅伯杰,邱扬等.黄土丘陵小流域土地利用变化对水土流失的影响,地理学报,2002,57(6):718-721.
    [16]李秀彬.全球环境变化研究的核心领域-土地利用/土地覆盖变化国际研究动向[J].地理学报,1995,51(6):553-558.
    [17]柳长顺,齐实,史明昌.土地利用变化与土壤侵蚀关系的研究进展.水土保持学报[J],2001,15(5):11-13.
    [18]贾绍凤,梁季阳.黄土高原、径流、产沙相互关系的研究[J].水土保持学报,1992,6(3):42~47.
    [19]王坤平.黄河流域水土保持基本资料[M].西安:黄河中上游管理局出版,2001.303-304.
    [20]徐学选.黄河中游水土保持措施对径流的影响[J].人民黄河,2000,22(7):36-37.
    [21]冉大川.黄河中游河龙区间水沙变化研究综述[J].泥沙研究,2000,(3):72-81.
    [22]赵业安,潘贤娣,申冠卿.80年代黄河水沙基本情况及特点[J].人民黄河, 1992,(4):11-20.
    [23]许炯心.黄河中游多沙粗沙区水土保持减沙的近期趋势及其成因[J].泥沙研究,2004,(2):5-10.
    [24]Braud, I., Vich, A.I.J., Zuluaga, J., Fornero, L., Pedrani, A.. Vegetation influence on runoff and sediment yield in the Andes region: observation and modelling. Journal of Hydrology. 2001, 254: 124–144.
    [25]B. T. Lukey, J. Sheffield, J. C. Bathurst etc. Simulating the Effect of Vegetation Cover on the Sediment Yield of Mediterranean Catchments Using SHETRAN. Phys. Chem. Earth, 1995,Vol.20, No. 3-4, pp. 427-432.
    [26]Coker, R.J., Fahey, B.D. and Payne, J.J. . Fine Sediment Production from Truck Traffic, Queen Charlotte Forest, Marlborough Sounds, New Zealand. Journal of Hydrology, 1993, 31(1): 56–64.
    [27] Ziegler, A.D. and Thomas, W.G. . Hydrologic change and accelerated erosion in northern Thai–land[EB/OL]. http://www2.hawaii.edu/~seassa/explorations/v1n1/art3/v1n1-art3.html, 2006–3–9.
    [28]郭百平等.暴雨条件下沙棘林减水减沙效益研究[J].人民黄河,1997,(2):26~28,26-29.
    [29]Wu Qinxiao, Liang Y. M., Tang K.L., Hou X.L. Study on aerial souing of trees and herbs and its benifits to soil and water conservation in Loess Hilly Region of China.Journal of Sediment Research, 1998 , 6.
    [30]侯喜禄,曹清玉.陕北黄土丘陵区植被减沙效益研究[J].水土保持通报,1990,10(2):33-42.
    [31]焦菊英、王万中.人工草地在黄土高原水土保持中的减水减沙效益与有效盖度[J].草地学报,2001,9(3):176-182.
    [32]卢宗凡,苏敏,李够霞,等.黄土丘壑区水土保持生物和耕作措施的研究[J].水土保持学报,1988,2(1):37-48.
    [33]罗利芳等.黄土高原生物措施减水减沙效益动态分析[J].地理与地理信息科学,2004,20(3),78-81.
    [34]董翠云、黄明斌、郑世清.流域尺度水土保持生物措施减沙效益研究.应用生态学报.2002,13(5),635-637.
    [35]陈浩、蔡强国.坡面植被恢复对沟道侵蚀产沙的影响[J].地理科学,2006,36(1):69-80.
    [36]Gert Verstraeten. Regional scale modelling of hillslope sediment delivery with RTM elevation data. Geomorphology, 2006 (81):128–140.
    [37]Chengzhong Pan, Zhouping Shangguan. Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. Journal of Hydrology(2006) 331, 178– 185.
    [38]Abrahams, A.D., Parsons, A.J., Wainwright, J. . Resistance to overland flow on semiarid grassland and shrubland hillslopes, Walnut Gulch, southern Arizona. Journal of Hydrology, 1994, 156: 431–446.
    [39]Abrahams, A.D., Parsons, A.J., Luk, S.H.. Hydrologic and sediment responses to simulated rainfall on desert hillslopes in southern Arizona. Catena. 1988.15: 103–117.
    [40]J. M. Garcia-Ruiz, T. Lasanta, C. Martl etc. Changes in Runoff and Erosion as a Consequence of Land-Use Changes in the Central Spanish Pyrenees. Phys. Chem. Earth, 1995, 20(3-4): 301-307.
    [41]Garcfa-Ruiz, J.M. & T. Lasanta. Land-use changes in the Spanish Pyrenees. Mountain Research and Development, 1990, 10(3): 267-279.
    [42]Ortigosa, L., J.M. Garcia-Ruiz and E. Gil. Land reclamation by reforestation in the Central Pyrenees. Mountain Research and evelopment, 1990, 10(3):281-288.
    [43] Poesen, J., F. Ingelmo-S~inchez and H. Mticher. The hydrological response of soil surfaces to rainfall as affectdd by cover and position of rock fragments in the top-layer. Earth Surface Processes and Landforms, 1990,15:653-671.
    [44]Ruiz-Flafio, P., J.M. Garcla-Ruiz, and L. Ortigosa. The diversity of sediment yield from abandoned fields of the Central Spanish Pyrenees. IAHS Publ., 1991,203: 103-110.
    [45]Lal, R..Deforestation effects on soil degradation and rehabilitation in western Nigeria. IV. Hydrology and water quality. Land Degradation and Development ,1997,8: 95–126.
    [46]Ziegler, A.D., Giambelluca, T.W.. Influence of revegetation efforts on hydrologic response and erosion, Kaho’olawe island, Hawai’i. Land Degradation and Development , 1998,9: 189– 206.
    [47]Erosion Sediment Yield and Land–Use Patterns in the Upper Konto Watershed, East Java, Indonesia, Part III: Results of the 1989 -1990 Measuring Campaign [Z]. Project Communication No.18, Konto River Project, Kingdom of the Netherlands, Ministry of Foreign Affairs, Director General of International Cooperation, 1991.
    [48]傅博杰、邱扬等.黄土丘陵小流域土地利用变化对水土流失的影响[J].地理学报,2002,57(6):717-722.
    [49]彭文英、张科利等.黄土高原坡耕地退耕还草的水沙变化特征[J].地理科学,2002,(4):397-402.
    [50]徐乾坤.黄土高原坡耕地退耕还草效益分析[J].矿业科学研究,2005,(2):31-34.
    [51]Carroll C, L. Merton, P.Burger. Impact of vegetation cover and slope on runoff, erosion, and water quality for field plots on a range of soil and spoil materials on central Qweenlands coalmines. Aust. J.Soil Res, 2000,38:313~327.
    [52]徐勇、田均良、刘普灵.黄土丘陵区“梯田退耕”生态重建规划方法[J].自然资源学报,2004,19(5):637-646 .
    [53]袁再健、蔡强国等.鹤鸣观小流域不同土地利用方式的产流产沙特征[J].资源科学,2006,28(1):70-74 .
    [54]Shi H, Tian J L, Liu P L. A Study on sediment sources in a small watershed by using REE tracer method. Science in China(Series E), 1997,40(1): 12-20.
    [55]Liu P L, Tian J L, Zhou P H, Yang M Y, Shi H. Stable rear earth element tracers to evaluate soil erosion, Soil & Tillige Research, 2004, 76:147-155.
    [56]卢金发.黄河中游流域产沙量随降雨变化的区域分异[J].水土保持学报,2001,15(3):27-30 .
    [57]孙飞达、蒋志荣、王立.不同降雨强度下农地的产流产沙研究[J].甘肃科学学报,2005,17(1):53-56 .
    [58]彭文英、张科利.不同土地利用产流产沙与降雨特征的关系[J].水土保持通报,2001,21(4):25-29 .
    [59]Benito, E., Santiago, J.L., De Blas, E., Varela, M.E., 2003. Deforestation of water-repellent soils in Galicia (NW Spain): Effects on surface runoff and erosion under simulated rainfall. Earth Surface Processes and Landforms 28, 145–155.
    [60]Chatterjea, K., 1998. The impact of tropical rainstorms on sediment and runoff generation from bare and grass-covered surfaces: a plot study from Singapore. Land Degradation and Development 9 (2), 143–157.
    [61]Tracey H. Goodwin, Andrew R. Young, Matthew G.R. Holmes etc. The temporal and spatial variability of sediment transport andyields within the Bradford Beck catchment, West Yorkshire[j]. The Science of the Total Environment 2003: 314–316 ,475–494.
    [62]张岩、刘宝元等.黄土高原土壤侵蚀作物覆盖因子计算[J].生态学报,2001,21(7):1050-1056.
    [63]Jiang, Z. S., Z.W. Jia, X. L. Hou and Z. Liu. 1991. Monitoring of soil loss and reseaches results from the Ansai experiment station. Research Report of the Ansai Ecological Station, Northwestern Inst. of Soil and Water Conservation. Chinese Academy of Sciences and Ministry of Water Resources. Yangling Shaanxi, China.
    [64]Renard KG,Foster GR,Weeies GA.1997,Predicting soil erosion by water:A guide to conservation planning with the revised universa1 soil loss equation(RUSLE).U.S. Department of Agriculture. Agriculture Handbook,703.
    [65]Wischmeier W H,Sm ith DD.1965.Predicting rainfall—erosion 1osses from cropland east ofthe Rocky Mountains:A guide for selection of practices for soi1 and water conservation. U.S. Department of Agriculture,Agriculture Handb0ok.282.
    [66]Wischmeier W. H. Cropping-management factor evaluations for a universal soil-loss equation. Soil Sci.Soc.Am.Proc.1960,24:322-326.
    [67]张宪奎,许靖华,卢秀琴.等黑龙江省土壤流失方程的研究[J].水土保持通报,1992,12(4):1-9,18.
    [68]杨子生.滇东北山区坡耕地土壤侵蚀的作物经营因子[J].山地学报,1999,17(增):9-21.
    [69]牟金泽,孟庆枚.降雨侵蚀土壤流失预报方程的初步研究[J].中国水土保持,1983(6):23-27.
    [70]金争平,赵焕勋,和泰等.皇甫川小流域土壤侵蚀量预报模型方程研究[J].水土保持学报,1991,5(1):8-18.
    [71]林素兰,黄毅、聂振刚等.辽北低山丘陵区坡耕地土壤流失方程的建立[J].土壤通报.1997,23-27.
    [72]于东升,史学正,吕喜玺.低丘红壤区不同土地利用方式C值及可持续性评价[J].土壤侵土壤侵蚀与水土保持学报,1998,4(1):71~76.
    [73]江忠善,王志强、刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996,2(1) .
    [74]Liu Baoyuan,Zhang Keli,Xie Yun.An Empirical Soil Loss Equation. Proceedings 12th International Soil Conservation Organization Conference,Vo1.II:Process of Soil Erosion and Its Environment Effect.Beijing,China:Tsinghua University Press,2002.21~25.
    [75]Liu B Y, Nearing M A, Shi P J, et al. Slope length effects on soil loss for steep slopes. Soil Science Society of America Journal. 2000, 64:1759~1763.
    [76]焦峰,杨勤科,雷会珠.燕儿沟流域土地利用现状及合理利用途径初探[J].水土保持通报.1998,18(7):5-8.
    [77]王洁,胡少伟,周跃.人工模拟降雨装置在水土保持方面的应用[J].水土保持研究,2005,12(4):188~194.
    [78]孙超图,解建宝,李占斌.掺气喷洒式极小雨强降雨装置试验研究[J].水土保持学报,1994,8(4):91—95.
    [79]Meyer LD, McCune DL; Rainfall Simulator for Runoff Plots [M]; Agricultural Engineering, 1958.
    [80]Shelton C. H,Bernuth, R. D. ,v. Rajbhandari S. P.; A Continuous Application Rainfall Simulator [M]; Transactions of the ASAE,1985.
    [81]任树梅,刘洪禄,顾涛.人工模拟降雨技术研究综述[J].中国农村水利水电,2003,(3):73—75.
    [82]岳红光,曲艳杰.用人工降雨法进行土壤侵蚀的研究[J].吉林林学院学报.1998,14(4): 2 08-211.
    [83]丁文荣,王洁,周跃.基于人工模拟降雨的垂直侵蚀研究[J].水土保持研究.2006(04):187-189.
    [84]薛燕妮,徐向舟,王冉冉,程飞.人工模拟降雨的能量相似及其实现[J].中国水土保持科学. 2007,5(6): 102-105 .
    [85]Hancock GR ,and Willgoose GR; An experimental and computer simulation study of erosion on a mine tailings dam wall [M];Earth Surface Processes And Landforms; 2004 .
    [86]陈文亮.组合侧喷式野外人工降雨装置[J].水土保持通报,1984,4(5):43~47.
    [87] De Jong,E.C.,C.M.Begg and R.G.Kachanoski. Estimates of soil erosion and deposition from Saskatchewan soils. Can.J.Soil Sci. 1983,63:607-617.
    [88]郑粉莉,高学田.黄土坡面土壤侵蚀过程与模拟[M].西安:陕西人民出版社,2000.
    [89]蔡强国,王桂平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社,1998,84-86.
    [90]周佩华,王占礼.黄土高原土壤侵蚀暴雨标准[J].水土保持通报,1987,7(1),38-44.
    [91]王占礼,焦菊英.黄土高原长历时暴雨标准初探[J].水土保持通报,1992, 12(3):25~28.
    [92]周佩华,王占礼.黄土高原土壤侵蚀暴雨的研究[J].水土保持学报.1992, (6)3:1~5.
    [93]申震洲,刘普灵,谢永生,等.不同下垫面径流小区土壤水蚀特征试验研究[J].水土保持通报,2006,26(3):6~9,22.
    [94]张光辉,梁一民.植被盖度对水土保持功效影响的研究综述[J]. 1996,3(2):104~109.
    [95]刘万铨.水土保持减沙效益分析计算方法的研究[J].人民黄河.1989(11)3:46-50.
    [96]江忠善,郑粉莉.纸坊沟流域水土流失综合治理减沙效益评价[J].泥沙研究.2004(2):56-61.
    [97]GB/T 15774-1995,水土保持综合治理效益计算方法[S]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700