玻璃基离子交换波导研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在信息时代的今天,信息技术的快速发展给光通信的发展提供了广阔的空间。特别是光纤到户(FTTH)的兴起即将掀起新一轮的光通信网络建设的高潮。玻璃基离子交换技术是大规模制作FTTH中,特别是无源光网络中,功能器件的一个很好的选择。这种技术的优势将在光通信的发展中进一步展示。
     本论文对玻璃基离子交换技术进行了比较深入、全面的研究。在理论分析的基础上,提出了场辅助离子交换波导工艺参数和性能参数之间的数学关系模型。进而进行了大量的实验验证工作并且通过计算给出了这种关系的准确表达。最终给出了一个比较完整的工艺模型。
     本论文还对制作离子交换波导的工艺流程做出了详细的论述,并且分析了实际的工艺制作中可能遇到的一些问题,给出了可行的解决方案。最后对本文的不足之处进行了思考,对于这一技术今后的研究的发展方向提出了几点看法。
In the information age, the rapid development of information technology has provided a broad space to the development of optical communication technology. Especially FTTH will rise to whip up a new round of the optical communication network building to a climax. Glass-based ion exchange technology is a very good choice in fabricating function devices in building FTTH, especially the positives optical network. The superiority of this technology will be further displayed in the development of optical communication technology.
     In this paper, we have a systematical research on the glass based ion-exchanged technology. Based on the theoretical analysis, we have proposed the mathematical relationship between the technology parameters and the waveguide performance parameters in the field assisted ion exchange process. Then a large number of experiments were carried out to prove this relationship and gave an exact expression of this relationship by calculating, by which we proposed a complete model of the field assisted ion exchange technology.
     In this paper, we also discussed the process of fabricating an glass-based ion exchange waveguide. We analyzed some problems may encounter in the actual production process, and some possible solutions were given. Finally, the inadequacies of this paper were discussed and put forward some directions of the development of this technology in the future.
引文
[1]Marman T H. Stimulated optical radiation in ruby laser, Nature,1960,960187:493-497.
    [2]Kao K C, HOCKHAM G A. Dielectric-fibre surface waveguides for optical frequencies. Proc. IEEE,1966,113:1151-1153.
    [3]Jeff Hecht, City of Light:The story of Fiber Optics, New York, Oxford University Press, 1999.
    [4]Miller, S.E., Integrated Optics:An Introduction, Bell Syst. Tech. J.,1969,48:2059-2068.
    [5]Del Giudice, M., F. Bruno, T. Cicinelli, and M. Valli, Structural and Optical Properties of Silicon Oxynitride on Silicon Planar Waveguides, Appl. Opt.,1990,29:3489-3496.
    [6]Robertson, G. R. J., and J. Jessop, Optical Waveguide Laser Using an RF Sputtering Nd: Glass Film, Appl. Opt.,1991,30:276-278.
    [7]Kominato, T., Y. Ohmori, H. Okazaki, and M. Yasu, Very Low-loss GeO-doped Silica Waveguides Fabricated by Flame Hydrolysis Deposition Method, Electron Lett.,1990,26: 327-328.
    [8]Kawachi, M., Silica Waveguides on Silicon and Their Application to Integrated Optic Components, Opt. Quant. Electron.,1990,22:391-416.
    [9]Hanabusa, M., and Y. Fukuda, Single-Step Fabrication of Ridge Type Glass Optical Waveguides by Laser Chemical Vapor Deposition, Appl. Opt.,1989,28:11-12.
    [10]Hewak, D. W., and J. Y. Lit, Fabrication of Tapers and Lenslike Waveguides by Microcontrolled Dip Coating Procedure, Appl. Opt.,1988,27:4562-4564.
    [11]Townsend, P. D., Optical Effects of Ion Implantation, Repts on Prog in Physics,1987,50: 501-558.
    [12]Ashley, P. R., and D. K. Thomas, Low Loss Ion Implanted Ag Waveguides in Glass, Proc. Intergrated and Guided Wave Optics Technical Meeting (IGWO'89),1989:152-155.
    [13]R. V. Ramaswamy, and R. Srivastava, Ion-Exchanged Glass Waveguides:A Review, J. Ligh. Tech.,1988,6.
    [14]Masayuki, Y. and Yoshiyuki, A., Glasses for Photonics, Cambridge University Press,2000: 77.
    [15]Izawa and Nakagome, Optical waveguide formed by electrically induced migration of ions in glass plates, Appl.Phys. Lett.,1972,21:584-586.
    [16]T. Findarkly, Glass waveguides by ion-exchange:A review,Opt. Eng,1985,24:244-249.
    [17]J. Viljanen and M. Leppihalme, Planar optical coupling elements for multimode fibers with two-step ion migration process, Appl.Phys.Lett.,1981,24:61-63.
    [18]Tetsuo Miya, Toshihito Hosaka, Yukio Terunuma and Tadashi Miyashita, Ultra low loss single-mode fibers at 1.55μm, Rev. Electrical Commun. Lab.,1979,27:497-506.
    [19]R.J.Mears, L. Reekie, I. M. Jauncey and D. N. Payne, Low-noise erbium-dopedfiber amplifier operating at 1.55μm, Electron.Lett.,1987,23:1026-1028.
    [20]T. T. Charles, Optical couplers volume up but competition cuts prices, Phot.Spec.,1999,3: 123-152.
    [21]Miliou, H.Zhenguang, H. C. Cheng, et al, Fiber-compatable K+-Na+ion-exchanged channel waveguides:fabrication and characterization, IEEE J. Quantum Electronics,1989, 25:1889-1897.
    [22]宋金声.光纤无源器件的技术概况和发展趋势,电子元件与材料,1998,4:19-22.
    [23]Akira Himeno, Kuniharu Kato and Tetsuo Miya, Silica-based planar lightwave circuits, IEEE J. Selected Topics Quant. Electron.,1998,4:913-924.
    [24]Ming Zhou, Low-loss polymeric materials for passive waveguide component in fiber optical telecommunication, Opt.Eng.,2002,41:1631-1643.
    [25]Luoay Eldada, Polymer integrated optics:Promise vs. practicality, Proc. SPIE,2002,4642: 11-22.
    [26]Hyun-Chae Song,et al., Flexible low-voltage electro-optic polymer modulators, Appl. Phys. Lett.,2003,82:4432-4434.
    [27]Jin-Ha Kim, Lin sun, Chiou-Hung Jang, Chul-Chae Choi, and Ray T. Chen. Polymer-based thermo-optic waveguide beam deflector with novel dual foldedthin-strip heating electrodes, Opt.Eng.,2003,42:620-624.
    [28]Chiou-Hung Jang and Ray T. Chen, Polymer-based 1×6 thermooptic switch incorporating an elliptic TIR waveguide mirror, J.Lightwave Technol.,2003,21:1053-1058.
    [29]Sean M. Garner and Steve Caracci, Variable optical attenuator for large-scale integration, IEEE. Photon. Technol. Lett.,2002,14:1560-1562.
    [30]E. Borsella, G. De Marchi etc; Silver cluster formation in ion-exchanged waveguides:processing technique and phenomenological model, Journal of Non-Crystalline Solids,1999,253:261-267.
    [31]Vyacheslav N. Romanov, Formation and spectral properties of silver clusters in sintered glass composites, Journal of Non-Crystalline Solids,2005,351:2433-2439. D. Manikandan, S. Mohanc, K.G.M. Nair, Absorption and luminescence of silver nanocomposite soda-lime glass formed by Ag+-Na+ion-exchange, Materials Research Bulletin,2003,38:1545-1550.
    [32]G DelLa. Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange, ELECTRONICS LETTERS 2006,25.
    [33]Ya Chena, Janne Jaakolaa, Yanling Ge. In situ fabrication of waveguide-compatible glass-embedded silver nanoparticle patterns by masked ion-exchange process Journal of Non-Crystalline Solids,2009.355:2224-2227.
    [34]Kitato I, Koizumi K. Comment on the Expression of a Distributeed Index, Appl. Opt,1982, 21:988-993.
    [35]Iga K, Misawa S. Evaluation and reduction of aberrations in distributed-index lenses:a review, Appl. Opt,1982,6:1024-1029.
    [36]Yang X C, Dubiel M, Brunsch S, et al. X-ray absorption spectroscopy analysis of formation and structure of Ag nanoparticales in soda21ime silicate glass. J Non-Cryst Solids,2003.
    [37]杜天伦,杨修春等.离子交换法制备金属纳米颗粒玻璃复合材料的研究进展,材料导报,2006,20:52-55.
    [38]S. F. Wong, E. Y. B. Pun, and P. S. Chung. Er3+-Yb3+Codoped Phosphate Glass Waveguide Amplifier Using Ag+-Li+Ion Exchange,IEEE PHOTONICS TECHNOLOGY LETTERS, 2002,14:80-82.
    [39]Baoyu Chen, Shilong Zhao,Lili Hu and Zhonghong Jiang. Characterization of Er3+doped Na2O-WO3-TeO2 glass for ion-exchanged waveguide amplifiers and lasers, CHINESE OPTICS LETTERS,2005,3:472-472.
    [40]A.A. Lipovskii, D.V. Svistunov, D.K. Tagantsev,B.V. Tatarintsev, P.G. Kazansky. Optical waveguides in electrooptical nanophase glass-ceramics, Materials Letters,2004,58:1231— 1233.
    [41]E. M. W. Wonga, H. P. Chana. p Shum, W. A. Gamblinga, H. P. HOC & S. T. Lee. Fabrication of UV-Sensitive Waveguides for Integrated Photonics Applications, Proceedings of SPIE,2000,4110.
    [42]Jarmila Spirkova, Pavlina Tresnakova Nebolova, Martin Mika; Optical waveguides fabricated by transition element ions exchange in some commercial and special optical glasses, Optical Materials,2004,25:101-107.
    [43]C. Gila, M.A. Villegas; Ruby coloured lead glasses by generation of silver nanoparticles'. Materials Chemistry and Physics,2004,88:185-191.
    [44]G. L. Yip and J. Finak. Directional-coupler power divider by two step K+ion exchange, Opt. Lett.,1984,9:423.
    [45]L. Ross and H. J. Lilienhof. Buried waveguides for passive integrated optics by Cs+ ion-exchange, Optical and Optoelectronic Appl. Sci. and Eng.,1986:13-23.
    [46]L. Ross, N. Fabricius, and H. Oeste. Single-mode integrated optical waveguides by ion-exchange in glass, Euro. Fiber Optic Conf,1987.
    [47]L. Ross, H. J. Lilienhof, H. Holscher, H. F. Schlaak, and A. Brandenburg. Improved substrate glass for planar waveguides by Cs-ion exchange, Tech. Dig. Top. Meet. Integrated and Guided-Wave Optics,1986, ThBB2:25-26.
    [48]Katherine Forrest, Stephen J. Pagano, and Walter Viehmann. Channel waveguides in glass via silver-sodium field-assisted ion exchange, J. Lightwave Technol.,1986, LT-4:140-150.
    [49]C. Glnther and D. Jestel, Buried waveguides produced by one-step field-assisted Ag+ ion-exchange in glass, Proc.SPIE,1988,993:2-6.
    [50]S. Honkanen and A. Tervonen. Experimental analysis of Ag+-Na+exchange in glass with Ag film ion sources for planar optical waveguide fabrication, J. Appl. Phys,1988,63:634-639.
    [51]E. Giorgetti, D. Grando, L. Palchetti, and S. Sottini. Thermal annealing of K+-Na+ ion-exchanged waveguides, Opt.Lett.,1995,20:1374-1376.
    [52]Ari Tervonen et al. Examination of two-step fabrication methods for single-mode fiber compatible ion-exchanged glass waveguides, Appl.Opt.,1991,30:338-343.
    [53]Y. Zhou, P. J. R. Laybourn, J. V. Magill, and R. M. De La Rue, Completely buried planar waveguides fabricated in glass using a two-step purely thermal K+and Na+ion-exchange, IEE Proc.J,1992,139:223-227.
    [54]E. Mounier, G. L. Yip, P. C. Noustsios, G. Chartier, and R. Rimet. Improved loss characteristics of buried waveguides, Opt.Lett.,,1993,18:1624-1626.
    [55]M. J. Li, S. Honkanen, W. J. Wang, R. Leonelli, J. Albert, and S. I. Najafi. Potassium and silver ion-exchanged dual-core glass waveguides with gratings. Appl.Phys.Lett.,1991, 58:2607-2609.
    [56]W. J. Wang, S. Honkanen, and S. I. Najafi. Loss characteristics of potassium and silver double-ion-exchanged glass waveguides, J. Appl. Phys.,1993,74:1529-1533.
    [57]Ramu V.Ramaswamy, H. C. Cheng, and Ramakant Srivastava. Process optimization of buried Ag+-Na+ion-exchanged waveguides:theory and experiment, Appl.Opt.,1988,27: 1814-1819.
    [58]Mingcher Chao and Chin C. Lee. Waveguides in BK7 optical glass fabricated by transverse electromigration of silver ions, IEEE Photon. Technol. Lett.,1990.2:409-411.
    [59]K. Liu and E. Y. B. Pun, Buried Ion-Exchanged Glass Waveguides Using Field-Assisted Annealing, IEEE Photonics Technology Letters,2005,17.
    [60]Terai, R., and R. Hayami. Ionic Diffusion in Glasses, J. Non-Cryst. Solids.1975,18: 217-264.
    [61]R. G. Walker and C. D. W. Wilkinson. Integrated optical waveguiding structures made by silver ion-exchanged in glass.1:The propagation characteristics of stripe ion-exchanged waveguides; a theoretical and experimental investigation, Applied Optics.22:1923-1928.
    [62]Tervonen and S. Honkanen. Model for waveguide fabrication in glass by two-step ion exchange with ionic masking, Optics Letters.1988,13:71-73.
    [63]J. Albert and J. W. Y.Lit. Full modeling of field-assisted ion exchange for graded index buried channel optical waveguides, Applied Optics.1990,29:2798-2804.
    [64]G.L.Yip, P.C.Noutsios, K.Kishioka. Characteristics of optical waveguides made by electric-field-assisted K+-ion exchange, Optics Letters,1990,15(14):789-791.
    [65]A.N.Miliou, R.Srivastava, R.V.Ramaswamy, Modeling of the index change in K+-Na+ ion-exchanged glass, Applied Optics,1991,30(6):674-681.
    [66]P.G.Noutsios, GL.Yip, Characterization and modeling of planar surface and buried glass waveguides made by field-assisted K+ion exchange, Applied Optics,1992,31(25): 5283-5291.
    [67]P.L.Auger, S.I.Najafi, Potassium-and silver-double-ion-exchanged slab glass waveguides: characterization and modeling, Applied Optics,1994,33(16):3333-3337.
    [68]J.A.Frantz, J.T.Carriere, B.R.West, P.Madasamy, S.Honkanen, R.K.Kostuk, Modeling of selectively buried ion-exchanged waveguides using the beam propagation method, Applied Optics, Frontiers in Optics,2003.
    [69]P.Madasamy, B.R.West, M.M.Morrell, D.F.Geraghty, S.Honkanen, N.Peyghambarian, Buried ion-exchanged glass waveguides:burial-depth dependence on waveguide width, 2003,28(13):1132-1134.
    [70]J.A.Frantz, J.T.A.Carriere, R.K.Kostuk, B.R.West, S.K.Honkanen, D.L.Mathine, N.N.Peyghambarian, Finite difference modeling of selectively buried ion-exchanged waveguides in glass, Frontiers in Optics,2004.
    [71]G.Li, K.A.Winick, J.S.Hayden, A Comprehensive Modeling Study of Ag+Ion-Exchange for Channel Waveguide Fabrication, Conference on Lasers and Electro-Optics,2005.
    [72]G.Li, K.A.Winick, H.C.Griffin, J.S.Hayden, Systematic modeling study of channel waveguide fabrication by thermal silver ion exchange, Applied Optics,2006,45(8): 1743-1755.
    [73]X. Prieto, J. Linares, Increasing resistivity effects in field-assisted ion exchange for planar optical waveguide fabrication, Optics Letters. Papers 21,1363-1365 (1996).
    [74]R. H. Doremus, Exchange and diffusion of ions in glass, Journal of physical chemistry. Papers 68,2212-2218 (1964).
    [75]黄腾超,沈亦兵,侯西云,侯昌伦,白剑.离子交换玻璃波导的模型分析,中国激光,2003,30:141-144.
    [76]Shuhang Jiang, Weiwei Zheng. Modification of voltage model for electric-field-assisted ion-exchange method of glass-based waveguide, Proc. SPIE,2010,7847.
    [77]Iga, K; Misawa, S. Distributed-index planar microlens and stacked planar optics:a review of progress, Applied Optics,1986,25(19):3388-3396.
    [78]朱传贵.自聚焦平面微透镜阵列及其光学特性研究,[学位论文],西安,中科院西安光机所,1992.
    [79]梅锁海,刘德森.自聚焦平面微透镜阵列的成像矩阵,高速摄影与光子学,1991,20:233-235.
    [80]Lawtenct G. N, Hwang S H. Beam Propagation in Gradient Refracive-Index Media, Appl. Opt,1992,31(25):5201-5206.
    [81]田中俊一.微小光学技术的现状与将来,光学,1987,16:42.
    [82]郝寅雷,谷金辉,郑伟伟,江舒杭,杨建义,李锡华,周强,江晓清,王明华.电场辅助离子扩散过程中玻璃基片的电导变化,光电子·激光,2010,21:875-879.
    [83]Batchelor S, Oven R,Ashworth D G. Characterisation of electric field assisted diffused potassium ion planar optical waveguide[J]. Electron Lett.,1996,32 (22):2082-2083.
    [84]Xesus Prieto, J esus Linares. Increasing resistivity effects in field-assisted ion exchange for planar optical waveguide fabrication[J]. Opt. Letts.,1996,21 (17):1363-1365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700