添加BaPbO_3颗粒的铝基复合材料的组织性能与高温变形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对航天领域对材料高比刚度、高比强度、抗辐射和高阻尼性能的需要,本文采用粉末冶金和挤压铸造方法分别制备了BaPbO_3体积百分数为5%的BaPbO_3/2024Al和(Al_(18)B_4O_(33) + BaPbO_3)/Al复合材料,分别简写为BPOp/2024Al和(ABOw+BPOp)/Al。采用DSC、XRD和TEM研究了两种复合材料的微观组织,测试了两种复合材料的室温拉伸性能、辐射防护性能、阻尼性能和热挤压热压缩变形性能,阐述了复合材料辐射防护和阻尼机制,探讨了热挤压热压缩变形机理。
     TEM和DSC分析结果表明,在复合材料制备过程中,BPOp与2024Al及Al基体分别发生化学反应,生成纳米级Pb颗粒和非晶相。在BPOp/2024Al复合材料中,Pb与非晶相以团簇形式分布于2024Al基体中,这一化学反应降低了BPOp/2024Al复合材料的室温拉伸性能;在(ABOw+BPOp)/Al复合材料中,Pb与非晶相以界面层形式分布于ABOw-Al界面处,含Pb界面层降低了界面结合强度,弱化了(ABOw+BPOp)/Al复合材料室温力学性能;ABOw的引入对(ABOw+BPOp)/Al复合材料具有显著补强作用。
     采用TEM首次确定了2024Al合金中复杂金属间化合物Al63.5Mn10.5Cu9.5Fe7.6Si8.9的点阵结构、测量了点阵常数,这一金属间化合物具有有序的体心立方结构,点阵常数大约为1.265nm。系统研究了复杂金属间化合物的形成机理及对BPOp/2024Al复合材料力学性能的影响。
     BPOp的引入明显提高了BPOp/2024Al和(ABOw+BPOp)/Al复合材料的辐射防护性能和阻尼性能。BPOp中含有重金属元素Ba、Pb,从而提高了复合材料的辐射防护性能。辐射防护计算结果与试验结果的吻合显示,制备过程中的化学反应不影响复合材料的辐射防护性能。BPOp/2024Al复合材料的阻尼能力明显依赖于Pb相的本征阻尼。(ABOw+BPOp)/Al复合材料阻尼性能明显依赖于Pb相的本征阻尼以及弱的界面结合引起的界面阻尼。
     BPOp/2024Al复合材料的热挤压和热压缩变形结果显示,随变形温度升高复合材料变形抗力降低,在Pb熔点以上变形时,热变形抗力明显降低。首先,温度升高,BPOp/2024Al复合材料基体发生回复、再结晶,基体软化;其次, Pb液相出现后,有效松弛了变形引起的局部应力集中,降低了BPOp/2024Al复合材料基体位错密度;另外,Pb液相力学性能极低,液相出现明显降低BPOp/2024Al复合材料力学性能,导致复合材料变形抗力降低。
     (ABOw+BPOp)/Al复合材料热挤压变形结果显示,(ABOw+BPOp)/Al复合材料热挤压变形抗力较ABOw/Al明显降低。一方面,含Pb界面层能有效的松弛变形过程中晶须附近的应力集中,减少晶须附近基体的变形位错;另一方面,液相Pb有利于界面滑动、晶须转动。(ABOw+BPOp)/Al复合材料热压缩变形表现出明显脆性材料压缩变形特征,主要是由于高温变形时,界面层弱化了ABOw-Al间界面结合强度,在剪切应力作用下,晶须大量拔出,导致沿与压缩方向呈45°平面脆性断裂。所以,(ABOw+BPOp)/Al复合材料热变形更适合于存在三向应力状态的热挤压变形。
In order to meet the requirements of high specific stiffness, high specific strength, anti-radiation property and high damping capacity in the space area, the BaPbO_3/2024Al (Abbreviated by BPOp/2024Al) and (Al_(18)B_4O_(33) + BaPbO_3)/Al (Abbreviated by (ABOw+BPOp)/Al) composites were fabricated by powder metallurgy and squeeze casting, respectively. The volume fraction of the BPOp is 5% in both composites, and that of ABOw in (ABOw+BPOp)/Al composite is 20%.
     The microstructure of both composites were analysed by DSC, XRD and TEM. The tensile mechanical properties at room temperature, radiation protection properties and damping properties were measured. The mechanisms for radiation protections, damping behavior and hot deformation including hot extrusion and hot compression were analysed in detail.
     According to TEM and DSC results, during the fabrication process, BPOp reacted with 2024Al and Al in both composites to produce nanosized Pb particles and amophous phases, respectively. In BPOp/2024Al composite, reaction products, Pb and amorphous phase were distributed in the matrix of the composite in the form of cluster. And the reaction between BPOp and 2024Al reduced tensile properties of BPOp/2024Al composite. In (ABOw+BPOp)/Al composite, reaction products, Pb and amorphous phase formed a interfacial layer at the interface between Al and ABOw, which weakened the bonding strength between Al and ABOw, as a result, decreasing the mechanical property of the composite at room temperature. The introduction of ABOw plays a significant reinforcing role in (ABOw+BPOp)/Al composite.
     The crystal structure and lattice parametre of complex intermetallic Al63.5Mn10.5Cu9.5Fe7.6Si8.9 in 2024Al were determined by TEM for the first time. The intermetallic has an ordered body center cubic lattic with a lattice parameter of 1.265nm. The formation mechanism and the effect of the intermetallic on mechanical property of BPOp/2024Al were studied.
     The radiation protection properties and damping capacities of both composites were improved by the addition of BPOp. The increase of radiation protection property in both composites should be attributed to the heavy elements, Ba and Pb in BPOp. The theoretical results of radiation protection property is in good agreement with experimental results, which shows that the reaction between BPOp and matrix will not influence the radiation protection property of the composites according to the theoretical calculations. The damping capacity of BPOp/2024Al composite is dependent on the intrinsic damping of nanosied Pb. The improved damping capacity of (ABOw+BPOp)/Al composite was explained by the intrinsic damping of Pb and weak interfacial bonding between ABOw and Al due to the existence of interfacial layer.
     According to hot extrusion and hot compression tests of BPOp/2024Al composte, the hot deformation resistance reduced with increasing deformation temperature, especially, depressed sharply when the deformation temperature is above the melting point of Pb. Firstly, the matrix of BPOp/2024Al composte will recover, recrystallize and even soften as increasing the temperature; secondly, liquid Pb will release deformation stress concentration, therefore, decrease the dislocation density of the matrix; finally, liquid Pb with extremely low mechanical propery will lower significantly the mechanical property of BPOp/2024Al composte, and reduce the deformation resistance.
     Hot extrusion experiments show that the extrusion resistance of (ABOw+BPOp)/Al composite is lower than that of ABOw/Al composite. It can be explained by two ways: firstly, interfacial layer can release stress concentration and decrease deformation dislocation around whiskers; sencondly, liquid Pb can favor the glide and rotation of whiskers. Hot compression of (ABOw+BPOp)/Al composite exhibits a brittle fracture characteristic, which is caused by weak interfacial bonding under shear stress at high temperature. Therefore, (ABOw+BPOp)/Al should be deformed by hot extrusion with three-dimensional stress state.
引文
1 K.U. Kainer. Metal Matrix Composites. Wiley-Vch Verlag GmbH & Co, 2006, KGaA, Weihheim.
    2 W.G. Zhang, M. Zhang, S.J. Ochiai, M.Y. Gu. Experimental and Simulation Investagations of Tensile Response of (Al2O3f/Al)w/2024Al Composite. Materials Science and Engineering A. 2008, 497: 44~50.
    3 Y. Uematsu, K. Tokaji, M. Kawamura. Fatigue Behavior of SiC-particulate-reinforced Aluminum Alloy Composites with Different Particle Sizes at Elevated Temperatures. Composites Science and Technology. 2008, 68 (13): 2785~2791.
    4 V.A. Romanova, R.R. Balokhonov, S. Schmauder. The Influence of the Reinforcing Particle Shape and Interface Strength on the Fracture Behavior of A Metal Matrix Composite. Acta Materialia. 2008, In press.
    5 R. Fernandez, G.G. Doncel. Creep Fracture and Load Transfer in Metal-matrix Composite. Scripta Materialia. 2008, 59: 1135~1138.
    6 Y. Wang, R.S. Mishra, T.J. Watson. Mechanical Behavior of Devitrified Ultrafine-grained Al-4.0Y-4.0Ni-0.9Co Matrix Composite. Scripta Materialia. 2008, 59: 1079~1082.
    7 T. Okabe, M. Nishikawa, N. Takeda, H. Sekine. Effect of Matrix Hardening on the Tential Strength of Aluminia Fiber-reinforced Aluminum Matrix Composites. Acta Materialia. 2006, 54: 2557~2566.
    8 R.A. Karnesky, L. Meng, D.C. Dunand. Strengthening Mechanisms in Aluminum Containing Coherent Al3Sc Precipitates and Incoherent Al2O3 Dispersoids. Acta Materialia. 2007, 55: 1299~1308.
    9 Z.J. Li, W.D. Fei, H.Y. Yue, L.D. Wang. Hot Deformation Behaviors of Bi2O3-coated Al18B4O33 Whisker Reinforced Aluminum Matrix Composite with High Formability. Composite Science and Technology. 2007, 67(6): 963~973.
    10 H.Y. Yue, W.D. Fei, L.D. Wang, Z.J. Li. An Aluminum Borate Whisker-reinforced Aluminum Matrix Composite with High Plasticity. MaterialsScience and Engineering A. 2006, 430: 260~265.
    11 D.E. Beutler, W. Beezhold, J.S. Browing, D.M. Fleetwood, N.E. Counts, D.P. Knott, C.L. Freshman, M.P. Conners. Comparison of Photocurrent Enhancement and Upset Enhancement in CMOS Devices in a Medium-energy X-ray Environment. Nuclear Science IEEE Transactions. 1990, 37(4): 1541~1547.
    12 J.M. Benedetto, H.E. Boesch, T.R. Oldham, G.A. Brown. Measurement of Low-energy X-ray Enhancement in MOS Devices with Metal Silicide Gates. Nuclear Science IEEE Transations. 1987, 34(6): 1540~1543.
    13赵稼祥.加强发展军用功能材料.材料工程. 1995, 3: 3~11.
    14 I. G. Ritchie and Z. L. Pan. High Damping Metals and Alloys. Metall. Trans. A. 1991, 22A: 607~616.
    15 I. G. Ritchie, Z. L. Pan, and F. E. Goodwin. Characterization of the Damping Properties of Die Cast Zinc-Aluminum Alloys. Metall. Trans. A. 1991, 22A: 617~622.
    16 Z.J. Li, L.D. Wang, W.D. Fei. Effect of Interfacial Bi2O3 Coating on Compressive Deformation Behavior of Aluminum Borate of Whisker-reinforced Aluminum Composite at Elevated Temperature. Materials Science and Engingeering A. 2007, 447: 314~318.
    17 J.W. Wilson, J.L. Shinn, R.K. Tripathi, R.C. Singleterry, M.S. Clowdsley. Issues in Deep Space Radiation Protection. Acta Astronautic. 2001, 49(3~10): 289~312.
    18 E.M. Henley, J.P. Schiffer. Nuclear Physics at the End of the Century. Review of Modern Physics. 1999, 71(2): 5205~5309.
    19 D.B. Williams, C.B. Carter. Transmission Electronic Microscopy- A Textbook for Materials Science. Plenum Press Corporation. 1996, New York.
    20祈章年著.载人航天的辐射防护与检测.国防工业出版社, 2003: 11~12.
    21方杰编.辐射防护导论.原子能出版社, 1988: 136~137.
    22 S.S. Amritphale, A. Anshul, N. Chandra, N. Ramakrishnan. A Novel Process for Making Radiopaque Materials Using Bauxite-Red Mud. Journal of European Ceramic Society. 2007, 27: 1945~1951.
    23 G. Sharma, K. Singh, Manupriya, S. Mohan, H. Singh, S. Bindra. Effect of Gamma Irradiation on Optical and Structural Properties of PbO-Bi2O3-B2O3 Glasses. Radiation Physics and Chemistry. 2006, 75: 959~966.
    24安骏,吴海燕,辛寅昌.防高能辐射的树脂/纳米铅复合材料的制备及研究.工程塑料应用. 2004, 32(12): 56~60.
    25安骏,刘吉华,辛寅昌.树脂纳米铈防辐射复合材料的制备及其性能研究.工程塑料应用. 2006, 34(8): 34~37.
    26 L. Quan, B. Yang, J. Li. Synthesis, Characterization and Property Studies of Pb2+- containing Optical Resins. Polymer. 2000, 41: 8305~8309.
    27 E.Grossman, I.Gouzman, Space Environment Effects on Polymers in Low Earth Orbit. Nuclear Instruments and Methods in Physics Research B. 2003, 208: 48~57.
    28 A. Schmidt, S. Babin, K. Bohmer, H.W.P. Koops. Comparative Study of the Chracteristics of Octavinylsilsesquioxane Dry Resist in Ultraviolet-, Electro Beam and X-ray Exposure. Microelectronic Engineering. 1997, 35: 129~132.
    29 B.S. Berry. Review of Internal Friction Due to Point Deffects. Acta Materialia. 1962, 10: 271~280.
    30 J.M. Zhang, R.J. Perez, C.R. Wong, E.J. Lavernia. The Effect of Secondary Phase of the Damping Behavior of Metals, Alloys and Metal Metrix Composites. Materials Science and Engineering R. 1994, 13: 325~390.
    31 E. C. Morelli, S.E. Urreta, R. Schaller. Mechanical Spectroscopy of Thermal Stress Relaxation at Metal-ceramic Interfaces in Aluminum-based Composites. Acta Materialia. 2000, 48: 4725~4733.
    32 J. Zhang, R.J. Perez, E.J. Lavernia. Effect of SiC and Graphite Particulates on the Damping Behavior of Metal Matrix Composites. Acta Materialia. 1994, 42(2): 395~409.
    33 E.J. Lavernia, R.J. Perez, J. Zhang. Damping Behavior of Discontinously Reinforced Al Alloy Metal-matrix Composites. Metallurgical and Materials Transactions A. 1995, 26: 2803~2818.
    34 E. Plenard, H.D. Merchant. Recent Research on Cast Iron. Gordon and Breach. 1968, New York.
    35 J. Zhang, M.N. Gungor, E.J. Lavernia. The Effect of Porosity on the Microstuctural Damping Response of 6061 Aluminum Alloy. Journal of Materials Science. 1993, 28: 1515~1524.
    36 L.S. Cook, R.S. Lakes. Damping at High Homologous Temperature in Pure Cd, In, Pb and Sn. Scripta Metallugical et Materialia. 1995, 32(5): 773~777.
    37 T.S. Ke. Grain Boundaries Relaxation and the Mechanism of Embrittlement of Copper by Bismuch. Journal of Applied Physics. 1994, 20: 1226~1231.
    38 T. Sakaki. Damping Character of a Body Containing a Soft Inclusion. Scripta Metallurgica. 1974, 8: 189~196.
    39胡小石.热处理和变形对镁合金低频阻尼性能的影响及机理研究.哈尔滨工业大学工学博士学位论文. 2007: 7~10.
    40 A.K. Malhotra, D.C. Vanaken. Experimental and Theoretical Aspects of Internal Friction Associated with the Melting of Embedded Particles. Acta Materialia. 1993, 41(5): 1337~1346.
    41 J.Hu, X.F.Wang, S.W. Tang. A Study of Damping Capacity in Pure Aluminum Matrix Composites Reinforced with SnO2-coated and Uncoated Alumina Borate Whiskers. Composites Science and Technology. 2008, 68: 2297~2299.
    42 L. Parrini, R. Schaller. Thermal Stress in Metal Matrix Composites Studied by Internal Friction. Acta Materialia. 1996, 44(12): 4881~4888.
    43 J. Zhang, R.J. Perez, E.J. Lavernia. Dislocation-induced Damping in Metal Matrix Composites. Journal of Materials Science. 1993, 28: 835~846.
    44 M. Vogelsang, R.J. Arsenault, R.M. Fisher. An in situ HVEM Study of Dislocation Generation at Al/SiC Interface of Metal Matrix Composites. Metallurgical Transactions A. 1986, 17(3): 379~389.
    45 C.S. Kang, K. Maeda, K.J. Wang, K. Wakashima. Dynamic Young,s Modulus and Internal Friction in Particulate SiC/Al Composites. Acta Materialia. 1998, 46(4): 1209~1220.
    46 Y.J. Zhang, N.H. Ma, H.W. Wang, Y.K. Le, S.C. Li. Effect of Ti on the Damping Behavior of Aluminum Composites Reinforced with in situ TiB2 Particulates. Scripta Materialia. 2005, 53: 1171~1174.
    47 N. Srikanth, M. Gupta. Estimation of Elasto-thermodynamic Damping in theAl/SiC Systeme Using a Finte Element Approach. Acta Materialia. 2006, 54: 4553~4563.
    48 K.F. Tam, S.C. Tjong. Internal Friction and Dynamic Young,s Modulus of Aluminum Composites Reinforced in situ with TiB2 and Al2O3 Particulates. Materials Science and Technology. 2004, 20: 1055~1058.
    49 S. Durieux, C. Esnouf, E. Maire, J.P. Fondere, R. Fougeres, G. Lormand, A. Vincent. On Internal Damping in Metal Matrix Composites– Role of Particle-Matrix Interfacial Region. Scripta Materialia. 1997, 32(2): 189~193.
    50 C. Wang, Z.G. Zhu. Internal Friction at Medium Temperature in an Al Matrix Composite reinforced by SiC Particles. Scripta Materialia. 1998, 38(12): 1739~1745.
    51 M.I.F. Zamora, I.E. Guel, J.G. Hernández, M.M. Yoshida, R.M. Sánchez. Aluminum-graphite Composite Produced by Mechanical Milling and Hot Extrusion. Journal of Alloys and Compounds. 2007, 434~435: 518~521.
    52 S.H. Hong, K.H. Chung, C.H. Lee. Effects of Hot Extrusion Parameters on the Tensile Properties and Microstructures of SiCw-2124Al Composites. Materials Science and Engineering A. 1996, 206: 225~232.
    53 C.A. Stanford-Beale. Extrusion and High-Temperature Deformation of Fibre-Reinforced Aluminum. Composites Science and Technology. 1989, 35: 121~157.
    54 Z.H. Zhang, B.Q. Han, D. Witkin, L. Ajdelsztajn, E.J. Laverna. Synthesis of Nanocrystalline Aluninum Matrix Composites Reinforced with in situ Devitrified Al-Ni-La Amorphous Particles. Scripta Materialia. 2006, 54: 869~874.
    55 U. Cocen, K. Onel. Ductility and Strenth of Extruded SiCp/aluminum-alloy Composites. Composites Science and Technology. 2002, 62(2): 275~282.
    56 A. Samanta, H.J. Fecht, I. Manna, P.P. Chattopadhyay. Development of Amorphous Phase Dispersed Al-rich Composites by Rolling of Mechanically Alloyed Amorpous Al-Ni-Ti Powders with Pure Al. Materials Chemistry and Physics. 2007, 104(2-3): 434~438.
    57 W.D. Fei, Z.J. Li, Y.B. Li. Effect of T4 Treatment on Hot rolling Behavior andTensile Strength of Aluminum Matrix Composite Reinforced by Aluminum Borate Whisker with NiO Coating. Materials Chemistry and Physics. 2006, 97(2-3): 402~409.
    58 K. Euh, S.B. Kang. Effect of Rolling on the Thermo-physical Properties of SiCp/Al Composites Fabricated by Plasma Spraying. Materials Science and Engineering A. 2005, 395: 47~52.
    59 L. Geng, S. Ochiai, J.Q. Hu, C.K. Yao. Compression testing of a SiCw/Al Composite at Temperatures Close to and Above the Solidus of the Metrix Alloy. Materials Science and Engineering A. 1998, 246: 302~305.
    60 M. Guden, I.W. Hall. High Strain-rate Compression Testing of a Short-fiber Reinforced Aluminum Composite. Materials Science And Engineering A. 1997, 232: 1~10.
    61 G. Abouelmagd. Hot Deformation and Wear Resistance of P/M Aluminum Metal Matrix Composites. Journal of Materials Processing Technology. 2004, 155~156: 1395~1401.
    62 C.G. Kang, N.H. Kim, B.M. Kim. The Effect of Die Shape on the Hot Extrudability and Mechanical Properties of 6061Al/Al2O3 Composites. Journal of Processing Technology. 2000, 100: 53~62.
    63 Y.H. Seo, C.G. Kang. Effect of Hot Extrusion through a Curved Die on the Mechanical Properties of SiCp/Al Composites Fabricated by Melt-stirring. Composites Science and Technology. 1999, 59: 643~654.
    64李志军. Bi2O3涂覆Al18B4O33晶须增强铝复合材料的界面反应及高温变形行为.哈尔滨工业大学工学博士学位论文. 2007: 8~11.
    65 N.H. Kim, C.G. Kang, B.M. Kim. Die Design Optimization for Axisymmetric Hot Extrusion of Metal Matrix Composites. International Journal of Mechanical Science. 2001, 43: 1507~1520.
    66 S.H. Hong, K.H. Chung, C.H. Lee. Effect of Hot Extrusion Parameters on the Tensile Properties and Microstructures of SiCw-2124Al Composites. Materials Science and Engineering A. 1996, 206: 225~232.
    67 R.R. Fard, F. Akhlaghi. Effect of Extrusion Temperature on the Microstructure and Porosity of A356-SiCp Composites. Journal of Materials ProcessingTechnology. 2007, 187-188: 433~436.
    68 H.K. Seok, J.C. Lee, H.I. Lee. Extrusion of Spray-formed Al-25Si-X Composites and their Evaluation. Journal of Materials Processing Technology. 2005, 160: 354~360.
    69 C.F. Deng, D.Z. Wang, X.X. Zhang, A.B. Li. Processing and Properties of Carbon Nanotubes Reinforced Aluminum Composites. Materials Science and Engineering A. 2007, 444: 138~145.
    70 S.W. Lee, H.J. Choi, Y. Kim, D.H. Bae. Deformation Behavior of Nanoparticle/Fiber-Reinforced Nanocrystalline Al-matrix Composites. Materials Science and Engineering A. 2007, 449~451: 782~785.
    71 Z.H. Tan, B.J. Pang, D.T. Qin, J.Y. Shi, B.Z. Gai. The Compressive Properties of 2024Al Matrix Composites Reinforced with High Content SiC Particles at Various Strain Rates. Materials Science and Engineering A. 2008, 489: 302~309.
    72 Y. Li, K.T. Ramesh, E.S.C. Chin. Viocoplastic Deformations and Compressive Damage in an A359/SiCp Metal-matrix Composite. Acta Materialias. 2000, 48: 1563~1573.
    73 C.A. Stanford-Beale, T.W. Clyne. Extrusion and High-Temperature Deformation of Fibre-Reinforced Aluminum. Composites Science and Technology. 1989, 35: 121~157.
    74 Z. Xiong, L. Geng. Investigation of High-temperature Deformation Behavior of a SiCw/6061Al Composite. Composites Science and Technology. 1990, 21(2): 127~131.
    75费维栋. SiCw/Al-Ni复合材料高温压缩变形及界面结构的研究.哈尔滨工业大学博士论文. 1993, 51~63.
    76 G.S. Wang, L. Geng, Z.Z. Zheng, D.Z. Wang, C.K. Yao. Investigation of Compression of SiCw/6061Al Composites around the Solidus of the Matrix Alloy. Materials Chemistry and Physics. 2001, 70: 164~167.
    77 Z.J. Li, W.D. Fei, L.D. Wang. Hot Compressive Deformation Behavior of Aluminum Matrix Composite Reinforced by Al18B4O33 Whisker Coated with Bi2O3. Materials Science and Engineering A. 2006, 432: 275~280.
    78 M. Mabuchi, K. Higashi. Activation Energy for Superplastic Flow in Aluminum Matrix Composite Exhibiting High-strain-rate Superplasticity. Scripta Materialia. 1996, 34(12): 1893~1897.
    79 J. Huang, L.M. Hsiung, T.G. Nieh. Effect of Strain Rate on the Elevated-temperature Tensile Properties of An Al-Pb Alloy. Scripta Materialia. 1996, 35(8): 919~924.
    80 T.G. Nieh, C.A. Henshall and J. Wadsworth. Superplasticity at High Strain Rates in a SiC Whisker Reinforced Al Alloy. Scripta Materialia. 1984, 18(12): 1405~1408.
    81 K. Higashi, T.G. Nieh, M. Mabuchi, J. Wadsworth. Effect of Liquid Phases on the Tensile Elongation of Superplastic Aluminum Alloys and Composites. Scripta Materialia. 1995, 32(7): 1079~1084.
    82 R. Kaibyshev, F. Musin, D. Gromov, T.G. Nieh, D.R. Lesure. Effect of Liquid Phase on Superplastic Behavior of a Modified 6061 Aluminum Alloy. Scripta Materialia. 2002, 47: 569~575.
    83 A.M. Kliauga, M. Ferrante. Liquid Formation and Microstructural Evolution during Re-heating and Partial Melting of an Extruded A356 Aluminum Alloy. Acta Materialia. 2005, 53: 345~356.
    84 H. Watanabe, T. Mukai, M. Mabuchi, K. Higashi. Superplastic Deformation Mechanism in Powder Metallurgy Magnesium Alloys and Composites. Acta Materialia. 2001, 49: 2027~2037.
    85 H.G. Jeong, K.Hiraga, M.Mabuchi, K. Higashi. The Role of Partial Melting on Superplasticity of Si3N4p/Al-Cu-Mg Composite. Scripta Materialia. 2000, 42: 479~485.
    86 M. Mabuchi, H. Iwasaki, K. Higashi. An Investigation of Shear Deformation in a Semi-solid State of a High Strain Rate Superplastic Si3N4p/Al-Mg-Si Composite. Acta Materialia. 1998, 46(15): 5335~5343.
    87 J. Koike, M. Mabuchi, K. Higashi. In situ Observation of Partial Melting in Superplastic Aluminum Alloy Composites at High Temperatures. Acta Metallurgica and Materialia. 1995, 43(1): 199~206.
    88 M. Mabuchi, K.Higashi. On Accommodation Helper Mechanism forSuperplasticity in Metal Matrix Composites. Acta Materialia. 1999, 47(6): 1915~1922.
    89 G.E. Totten, D.S. Mackenzie. Handbook of Aluminum: Physical Metallurgy and processes. Marcel Dekker, Inc, 2003, New York.
    90 M.I. Petrov, D.A. Balaev, D.M. Gohfeld, S.V. Ospishchev, K.A.Shaihudtinov, K.S. Aleksandrov. Applicability of the Theory based on Andreev Reflection to the Description of Experimental Eurrent–voltage Characteristics of Polycrystalline HTSC + Normal Metal Composites. Physica C. 1999, 314: 51~54.
    91 T. Toyoda, I. Shiozaki. Photoacoustic Spectra of BaBi1-xPbxO3 (x=0.0, 0.65, and 1.0). Materials Science and Engineering B. 1996, 41: 102~104.
    92 U. Hahn, G. Vielsack, W. Weber. Model for the Insulating Behavior of Pb- or K-doped BaBiO3. Physical Review B. 1994, 49(22): 15936~15944.
    93冯玉杰,孙晓君,孙丽欣,蔡伟民,李景云,侯兵. BaPbO3的电子结构与光子吸收性能.无机化学学报. 2002, 18(4): 342~346.
    94 K. Suganuma. Mechanical Properties of Aluminum Borate Whisker Reinforced Aluminum Alloys and Interface Structure. Composites Design, Manufacture, and Application. Proceedings of ICCM/8. 1991: 19D1~19D12.
    95王振华.辐射防护铝基复合材料的制备工艺及性能的研究.哈尔滨工业大学硕士论文. 2005: 39~48.
    96腾凤恩,王煜明,姜小龙. X射线结构分析与材料性能表征.科学出版社. 1997: 158~163.
    97 T. Ungar, S.Ott, P.G. Sanders, A. Borbely. Dislocations, Grain Size and Planar Faults in Nanostructured Copper Determined by High Resolution X-ray Diffraction and A New Procedure of Peak Profile Analysis. Acta Materialia. 1998, 46: 3693~3699.
    98 L.T. Jiang, M. Zhao, G.H. Wu, Q. Zhang. Aging Behavior of Sub-micro Al2O3p/2024Al Composites. Materials Science and Engineering A. 2005, 392: 366~372.
    99 G.W. Smith. Precipitation Kinetics in Solutionized Aluminum Alloy 2124: II. Effect of Piror Guinier-Preston Zone Formation. Thermochimica Acta. 1998,323: 123~130.
    100 C. Suryanarayana. Mechanical Alloying and Milling. Progress in Materials Science. 2001, 46: 1~184.
    101 D.B. Witkin, E.J. Lavernia. Synthesis and Mechanical Behavior of Nanostructured Materials via Cryomilling. Progress in Materials Science. 2006, 51: 1~60.
    102 L.T. Jiang, M. Zhao, G.H. Wu, Q. Zhang. Aging Behavior of Sub-micron Al2O3p/2024Al Composites. Materials Science and Engineering A. 2005, 392: 366~372.
    103 N.E. Bekheet, R.M. Gadelrab, M.F. Salah, A.N. Azim. The Effect of Aging on the Hardness and Fatigue Behavior of 2024Al Alloy/SiC Composites. Materials and Design. 2002, 23: 153~159.
    104 J.K. Kim, H.G. Jeong, S.I. Hong, Y.S. Kim, W.J. Kim. Effect of Aging Treatment on Heavily Deformed Microstructure of a 6061 Aluminum Alloy after Equal Channel Angular Pressing. Scripta Materialia. 2001, 45: 901~907.
    105 W.J. Kim, C.S. Chung, D.S. Ma, S.I. Hong, H.K. Kim. Optimization of Strength and ductility of 2024Al by Equal Channel Angular Pressing (ECAP) and Post-ECAP Aging. Scripta Materialia. 2003, 49: 333~338.
    106 H.Y. Yue, W.D. Fei, L.D. Wang, Z.J. Li. An aluminum Borate Whisker-reinforced Aluminum Matrix Composite with High Plasticity. Materials Science and Engineering A. 2006, 430: 260~265.
    107 S.C. Wang, M.J. Starink. Precipitates and Intermetallic Phases in Precipitation Hardening Al–Cu–Mg–(Li) Based Alloys. International Materials Reviews. 2005, 50(4): 193~215.
    108 J.Yu, K. Marke, T. Tuomo. Microstructural Evolution of an Al92Mn6Ce2 Alloy During Mechanical Alloying, Hot Extrusion and Heat-treatments Scripta Materialia. 2000, 42(11): 1017~1023.
    109 S.C. Wang, C.Z. Li, M.G. Yan, W.M. Bian. Microstructure Study of Constituent Phases in 2024Al Series Al Alloys. Acta Metallurgical Sinica (English Edition). 1990, 3(2): 104~109.
    110 C.Z. Nie, J.J. Gu, J.L. Liu, D. Zhang. Investigation on Microstructure andInterface Character of B4C Particles Reinforced 2024Al Matrix Composites Fabricated by Mechanical Alloying. Journal of Alloys and Compounds. 2008, 454: 118~122.
    111 T.T. Sasaki, T. Mukai, K. Hono. A High-strength Bulk Nanocrystalline Al-Fe Alloy Processed by Mechanical Alloying and Spark Plasma Sintering. Scripta Materialia. 2007, 57: 189~192.
    112 F. Turquier, V.D. Cojocaru, M. Stir, R. Nicula, E. Burkel. Synthesis of Single-phase Al-Cu-Fe Quasicrystals Using High-energy Ball-millling. Journal of Non-Crystalline Solids. 2007, 353: 3417~3420.
    113 A.K. Srivastava, V.C. Srivastava, A. Gloter, S.N. Ojha. Microstructure Features Induced by Spray Processing and Hot Extrusion of an Al-18%Si-5%Fe-1.5Cu Alloy. Acta Materialia. 2006, 54: 1741~1748.
    114 L.X. Hu, Z.Y. Liu, E.D. Wang. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Consolidated from Rapidly Solidified Alloy Powders. Materials Science and Engineering A. 2002, 323: 213~217.
    115 K.G. Satyanarayana, S.N. Ojha, D.N.N. Kumar, G.V.S. Sastry. Studies on Spray Casing of Al-alloy and Their Composites. Materials Science and Engineering A. 2001, 304~306: 627~631.
    116 S.J. Savage, D.Eliezer, F.H. Froes. Microstructural Observations and Thermal Stability of A Rapidly Solidified Aluminum-Gadolinium Alloy. Metallurgical and Materials Transaction A. 1987, 18: 1533~1536.
    117 S. Arakawa, T. Hatayama, K. Matsugi, O. Yanagisawa. Effect of Heterogeneous Precipitation on Age-hardening of Al2O3 particle dispersion Al-4mass%Cu Composite Produced by Mechanical Alloying. Scripta Materialia. 2000, 42: 755~760.
    118 A.H. Feng, Z.Y. Ma. Formation of Cu2FeAl7 Phase in Friction-stir-welded SiCp/Al-Cu-Mg Composite. Scripta Materialia. 2007, 57: 1113~1116.
    119 http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html.
    120 S. Naveer, J.S. Kanwar, S. Kulwant. Gamma-ray Attenuation Studies of PbO–BaO–B2O3 Glass System. Radiation Measurement. 2006, 41: 84~88.
    121 X.N. Zhang, D. Zhang, R.J. Wu, Z.G. Zhu, C. Wang. Mechanical Propertiesand Damping Capacity of (SiCw+B4C)/ZK60 Mg Alloy Matrix Composite. Scritpta Materialia. 1997, 37(11): 1631~1635.
    122 H.W. Sheng, Z.Q. Hu, K. Lu. Melting and Freezing Behaviors of Pb Nanoparticles Embedded in an Al Matrix. Nanostructed Materials. 1997, 9: 661~664.
    123 H.W. Sheng, K. Lu, E. Ma. Melting and Freezing Behavior of Embedded Nanoparticles in Ball-milled Al-10wt% M (M = In, Sn, Bi, Cd, Pb) Mixtures. Acta Materialia. 1998, 46: 5195~5205.
    124 S. Venkataraman, M. Stoica, S. Scudino, T. Gemming, C. Mickel, U. Kunz, K.B. Kim, L. Schultz, J. Eckert. Revisiting the Cu47Ti33Zr11Ni8Si1 Glass-forming Alloy. Scripta Materialia. 2006, 54: 835~840.
    125 P. Villars, A. Prince, H. Okamoto. Handbook of Ternary Alloy Phase Diagrams. CD-Rom, ASM International, Materials Park, OH. 1997.
    126 T.W. Clyne, P.J. Withers. An Introduction to Metal Matrix Composites. Cambridge University Press. 1982: 161~165.
    127 R.J. Arsenault and N. Shi. Dislocation Generation due to Differences between Coefficients of Thermal Expansion. Materials Science and Engineering A. 1986, 81: 173~187.
    128 G. Schoek, E. Bisogni. Internal Friction due to Precipitation. Physica Status Solidi(a). 1969, 32: 651~658.
    129 W.A. Lerderman. The Damping Properties of Composite Materials. Ph.D. Dissertation. The University of Wisconsin-Milwaukee. 1991, 17.
    130 S. Urreta, R. Schaller. Internal Friction in an Aluminium Metal Matrix Composite during Thermal Cycling. Scripta Metallurgical Materialia. 1993, 29: 165~170.
    131 H. Gabrisch, L. Kjeldgaard, E. Johnson, U. Dahmen. Equilibrium Shape and Interface Roughening of Small Liquid Pb Inclusions in Solid Al. Acta Materialia. 2001, 49: 4259~4269.
    132 B.T. Lee, G. Pezzotti, K.J. Hiraga. Microstructure and Fracture Behavior of SiC-Platelet-Reinforced Si3N4 Matrix Composites. Materials Science and Engineering A. 1994, 177: 151~160.
    133 D. Ge, V. Domnich, T. Juliano, E.A. Stach, Y. Gogotsi. Structural Damage in Boron Carbide under Contact Loading. Acta Materialia. 2004, 52: 3921~3927.
    134 F.J. Humphreys, M. Hatherly. Recrystallization and Related Annealing Phenomena. Elesevier Press. 2004, 35~46.
    135 Y. Chino, M. Kobata, H. Iwasaki, M. Mabuchi. An Investigation of Compressive Deformation Behavior for AZ91 Mg Alloy Containing a Small Volume of Liquid. Acta Materialia. 2003, 51: 3309~3318.
    136关德林.晶体的高温塑性变形.大连理工大学出版社. 1989: 26~28.
    137 J. Cadek, H. Oikawa. Threshold Creep Behavior of Discontinuous Aluminum and Aluminum Alloy Matrix Composites: an Overview. Materials Science and Engineering A. 1995, 190: 9~23.
    138 D.R. Askeland, P.P. Phule. Essentials of Materials Science and Engineering. Thomson Learning Press. 2004: 121~122.
    139 Y. Li, F.A. Mohamed. Investigation of Creep Behavior in a SiC-2124Al Composite. Acta Metallurgica. 1997, 4: 4775~4785.
    140 S.X. Song, H. Bei, J. Wadsworth, T.G. Nieh. Flow Serration in a Zr-based Bulk Metallic Glass in Compression at Low Strain Rates. Intermetallics. 2008, 16: 813~818.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700