三七三醇皂苷对脑梗死后不同恢复时点Nogo-A表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     通过研究三七三醇皂苷对脑梗死后不同恢复时点神经行为学及Nogo-A蛋白、Nogo-A mRNA和NgR mRNA表达的影响,并观察相应阶段突触结构特点,探讨三七三醇皂苷在脑缺血恢复期对功能重塑、重建的作用机制。
     方法
     健康雄性SD大鼠,体重300±20g。采用改良的EZ Longa方法建立大鼠大脑中动脉阻塞(MCAO)模型,待手术清醒后进行EZ Longa评分。根据EZ Longa评分随机分为模型组(MCAO手术+生理盐水)、三七三醇皂苷组(MCAO手术+三七舒通胶囊)和尼莫地平组(MCAO手术+尼莫地平)。术后麻醉清醒当天开始灌胃给药。术后5h进行神经行为学评分并做脑组织TTC染色,评价模型制做。并持续观察行为学变化至术后72h。各组于术后3d、7d和28d分别处死,迅速取左侧脑组织,通过Wester Blot方法观察Nogo-A蛋白表达变化,RT-PCR方法观察Nogo-A mRNA和NgR mRNA表达变化,透射电子显微镜观察同时间点突触结构变化。
     结果
     1.MCAO模型的制备及神经行为学评分
     模型组动物神经行为学评分随缺血时间延长逐渐降低,三七三醇皂苷组和尼莫地平组在各时间点均显著低于同期模型组。
     手术组动物神经行为学评分均在1-3分之间。入选后5 h随机取脑组织TTC染色结果示,正常组脑片红染,无白色梗死灶形成。手术组脑片有大片白色梗死灶形成,提示模型制做成功。
     2.三七三醇皂苷对MCAO大鼠不同恢复时点Nogo-A蛋白表达的影响
     脑缺血后模型组3d的Nogo-A蛋白表达较正常组增高,术后7d增加更加显著,三七三醇皂苷组和尼莫地平组在各时间点均显著低于同期模型组。
     3.三七三醇皂苷对MCAO大鼠不同恢复时点Nogo-A mRNA和NgR mRNA表达的影响
     MCAO术后模型组Nogo-A mRNA和NgR mRNA随缺血时间的延长,逐渐增高;三七三醇皂苷组和尼莫地平组缺血早期稍高,随缺血时间的延长,均显著低于同期模型组。
     4.三七三醇皂苷对MCAO大鼠不同恢复时点突触结构变化的影响
     随脑缺血时间的延长可诱导神经细胞核固缩、染色质有轻度凝聚变化,部分核膜模糊不清,线粒体明显减少、肿胀和线立体嵴断裂、突触结构发生变化。三七三醇皂苷和尼莫地平能下调轴突生长抑制因子Nogo-A的表达,起到脑保护作用,其作用在电子显微结构表现为神经细胞胞浆丰富,常染色质多;突触结构清晰,电子密度均匀;髓鞘排列紧密。
     结论
     1.三七三醇皂苷可以促进动物脑缺血后缺损神经功能的恢复(降低Longa分值)
     2.三七三醇皂苷可以下调脑梗死后不同恢复时点Nogo-A蛋白水平表达
     3.三七三醇皂苷可以下调脑梗死后不同恢复时点Nogo-A mRNA和NgR mRNA的表达
     4.三七三醇皂苷可以促进脑梗死后不同恢复时点突触结构的恢复即突触的重塑、重建。
     5.三七三醇皂苷在脑血管病不同恢复时点,促进大脑功能重塑、重建中的部分作用机制可能为:下调Nogo-A蛋白,下调Nogo-A mRNA和NgR mRNA,促进突触结构的恢复。
Objective
     In rat MCAO (middle cerebral artery occlusion) model, we observed the effect of PTS on neuroethology and the protein level of Nogo-A, mRNA level of Nogo-A and NgR in MCAO rat brain tissue at different time point after operation. Using electron microscope, we observed eneurosynaptic structure at the same time points. Through these experiments, we aimed to explore the mechanism of injured neurons remodeling by PTS during cerebral ischemia recovery.
     Methods
     Create MCAO model: male SD rat (weight=300±20 g) were used in this study, apply Longa method cause middle cerebral artery occlusion. The neurological deficit grades of cerebral infarction were estimated by Longa method. After operation, rats were randomly divided to 3 groups: model group (treat with N.S), traditional Chinese medicine (TCM) group (treat with PTS) and Western medicine group (treat with nimodipine), according to Longa. N.S, PTS and nimodipine were intragastric administration once day and lasted for 3d, 7d and 28d. Nogo-A protein, Nogo-A mRNA, NgR mRNA and synaptic structure in cortex were observed by Wester Blot, RT-PCR and TEM (transmission electron microscopy) and the changes of neurological behaviour in rats with cerebral ischemia.
     Results:
     1. Production of middle cerebral artery occlusion in rats and result of grade of neuroethology
     Compared with the normal group, the grade of neuroethology was significant drop at the model group with ischemic time extension. PTS group and nimodipine group in the same period were lower than model group at different time point. Scores of neurological behaviour in rats treated with MCAO were from 1 to
     3. TTC staining of the brain 5 h after operation demonstrated that tissue with normal blood perfusion stained red and ischemia tissue stained white, which indicated that the rat MCAO model was made successfully.
     2. Effect of PTS on expression of Nogo-A protein at different time after MCAO:
     The experimental result show that the expression of Nogo-A of model group significantly increased at 3d, and more significantly at 7d. PTS group and nimodipine group were lower than model group at the 3 different time point.
     3. Effect of PTS on expression of Nogo-A mRNA and NgR mRNA at different time after MCAO:
     The expression of Nogo-A mRNA and NgR mRNA of model group gradually increased with ischemic time extension. PTS group and nimodipine group were lower than model group at the 3 different time point,beiside of the early ischemic.
     4. Effect of PTS on expression of synaptic structure at different time after MCAO:
     With ischemic time extension,nerve cells were leaded to karyopycnosis, chromatin mild rally, part of the nuclear membrane unclear, mitochondrial obviously decreased, mitochondrial swelling and rupture ridge and synaptic structure had changed. PTS and nimodipine can be down-regulate the expression of Nogo-A, Nogo-A mRNA and NgR mRNA, which play a role in brain protection. Under the electron microscope showed cytoplasm rich, more often chromatin, synaptic structure clear, electron density and closely myelin.
     Conclusion:
     1. PTS can reduce the neurologic deficiency in rats after MCAO.
     2. PTS can be down-regulate the expression of Nogo-A at different time after MCAO.
     3. PTS can be down-regulate the expression of Nogo-A mRNA and NgR mRNA at different time after MCAO.
     4. PTS can enhance the synaptic remodeling at different time after MCAO.
     5. PTS can decrease the expression of Nogo-A、Nogo-A mRNA and NgR mRNA and enhance the synaptic remodeling at different time in rat brain after middle cerebral artery occlusion, which may be the one of remodeling mechanisms of PTS.
引文
[1] Chen MS, Huber AB, Schwab ME, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1[J]. Nature, 2000, 403(6768); 434-439.
    [2] Prinjha R, Moore SE, Vinson M, et al. Inhibitor of neurite outgrowth in humans[J]. Nature, 2000, 403(6768); 383-384.
    [3] Grandpre T, Nakamura F, Vartanian T, et al. Identification of, the Nogo inhibitor of axon regeneration as a Reticulon Protein[J]. Nature, 2000, 403(6768); 439-444.
    [4] Caroni P, Schwab ME. Two membrane protein factions from rat central myelin with inhibitory properties for neurite growth and fibroblast soreading[J]. J Cell Biol, 1988, 106(4); 1281-1288.
    [5] Taketo miM, Kinoshita N, Kimura k, et al. Nogo-A expression in mature oligodendrocytes of rat spinal cord in association with specific molecules[J]. Neurosci lett, 2002, 332(1); 37-40.
    [6] Oertle T. Huber C .van der putten H, et al. Genomic structure and functional characterisation of the promoters of human and mouse nogo/rtn4[J]. J Mol Biol, 2003, 325(2); 299-323.
    [7] Jin WL, Liu YY, Liu HL, et al. Intraneuronal localization of Nogo-A in the rat[J]. J Comp Neurol, 2003, 458(1); 1-10.
    [8] Satoh JI, Kuroda Y. Cytokines and neurotrophic factors fail to affect Nogo-A mRNA expression in differentiated human neurons; implications for inflammation-related axonal regeneration in the central nervous system[J]. Neuropathol Appl Neurobiol, 2002, 28(2); 95-106.
    [9] Fournier AE, Grandpre T, Strittmatter SM. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration[J]. Nature, 2001, 409(6818); 341-346.
    [10] Grandpre T, Li S, Strittmatter SM. Nogo-66 receptor antagonist peptide promotes axonal regeneration[J]. Nature, 2002, 417(6888); 547-551.
    [11] Wang X, Chun SJ, Treloar H, et al. Localization of Nogo-A and Nogo-66 receptorproteins at sites of axon-myelin and synaptic contact[J]. J Neurosci, 2002, 22(13); 5505-5515.
    [12] Hunt D, Mason MR, Campbell G, et al. Nogo receptor mRNA expression in intact and regenerating CNS neurons[J]. Mol Cell Neurosci, 2002, 20(4); 537-552.
    [13] Madura T. Yamashita T, Kubo T, et al. Activation of Rho in the injured axons following spinal cord injury[J]. EMBO Rep, 2004, 5(4); 412-417.
    [14] Satoh J, Tabunoki H, Yamamura T, et al. TROY and LINGO-1 expression in astrocytes and macrophages/microglia in multiple sclerosis lesions[J]. Neuropathol Appl Neurobiol, 2007, 33(1); 99-107.
    [15] Park JB, Yiu G, Kaneko S, et al. A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors[J]. Neuron, 2005, 45(3); 345-351.
    [16] Ng CE, Tang BL. Nogos and the Nogo-66 receptor; factors inhibiting CNS neuron regeneration [J]. J Neurosci Res, 2002, 67(5); 559-565.
    [17] Skaper SD, Moore SE, Walsh FS. Cell signaling cascades regulating neuronal growth-promoting and inhibitory cues[J]. Prog Neurobiol, 2001, 65(6); 593-608.
    [18] Neumann S, Bradke F, Tessier-Lavigne M, et al. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation[J]. Neuron, 2002, 34(6); 885-893.
    [19] Cai D, Deng K, Mellado W, et al. Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro[J]. Neuron, 2002, 35(4); 711-719.
    [20] 熊南翔, 赵洪洋, 张方成, 等. 钙离子参与 Nogo-A 抑制轴突生长的作用. 解剖学报, 2005, 36(6); 582-585.
    [21] Freund P, Wannier T, Schmidlin E, et al. Anti-Nogo-A antibody treatment enhances sprouting of corticospinal axons rostral to a unilateral cervical spinal cord lesion in adult macaque monkey[J]. J Comp Neurol, 2007, 502(4); 644–659.
    [22] Xiong L, Rouleau GA, Delisi LE, et al. CAA insertion polymorphism in the 3'UTR of Nogo gene on2p14 is not associated with schizophrenia[J]. Brain Res Mol Brain Res, 2005, 133(1); 153-156.
    [23] Satoh J, Onoue H, Arima K, et al. Nogo–A and nogo receptor expression in demyelinating lesions of multiple sclerosis[J]. J Neuropathol Exp Neurol, 2005, 64(2); 129-138.
    [24] Simonen M, Pedersen V, Weinmann O, et al. Systemic delection of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury[J]. Neuron, 2003, 38(2); 201-211.
    [25] 常丽英、殷小平、李罗清等, 脑室注射反义寡核苷酸对大鼠 Nogo-A mRNA 及其蛋白表达的影响.卒中与神经疾病, 2006, 13(1); 6-9.
    [26] Zheng B, Ho C, Li S, et al. Lack of enhanced spinal regeneration in Nogo-deficient mice[J]. Neuron, 2003, 38(2); 213-224.
    [27] Jurewicz A, Matysiak M, Raine CS, et al. Soluble Nogo-A,an inhibitor of axonal regeneration,as a biomarker for multiple sclerosis[J]. Neurology, 2007, 68(4); 283-287.
    [28] Pastrana E, Moreno-Flores MT, Avila J, et al. BDNF production by olfactory ensheathing cells contributes to axonal regeneration of cultured adult CNS neurons[J]. Neurochem Int, 2007, 50(3); 491-498.
    [29] Pettigrew DB, LiYO, Kuntz C 4th, et al. Global expression of NGF promotes sympathetic axonal growth in CNS white matter but does not alter its parallel orientation[J]. Exp Neurol, 2007, 203(1); 95-109.
    [30] 李强,刘媛,李民,等.神经生长因子与睫状神经营养因子促进感觉和运动前卫再生的差异性研究. 中华整形外科杂志, 2006, 22(5); 371-374.
    [31] Won SJ, Xie L, Kim SH, et al. Influence of age on the response to fibroblast growth factor-2 treatment in a rat model of stroke[J]. Brain Res,2006, 1123(1); 237-244.
    [32] Leker PR. Regeneration after ischemia in the cerebral cortex[J]. Stroke, 2007, 38(1); 153-161.
    [33] Xiao M, Niu YP, Dozmoriv M,et al.Compar- ing fluctuations of synaptic responses mediated via AMPA and NMDA receptor channels-implications for synaptic plasticity[J].Biosystems,2001, 62(1-3); 45~56
    [34] Pickard L, noel J, Duckworth JK,et al. Transient synaptic activation of NMDA receptors leads to the insertion ofnative AMPA receptors at hippocampal neuronal plasma me m- branes[J].Neuropharmacology, 2001, 41(6); 700~713.
    [35] 高放,刘世文.突触传递可塑性分子水平的机理研究[J].中国康复医学志,2003,18(9); 572~575.
    [36] Hu F, Liu BP, Budel S, et al. Nogo-A interacts with the Nogo-66 receptor through multiple sites to create an isoform-selective subnanomolar agonist[J]. J Neurosci, 2005, 25(22); 5298-5304.
    [37] Pastrana E, Moreno-Flores MT, Avila J, et al. BDNF production by olfactory ensheathing cells contributes to axonal regeneration of cultured adult CNS neurons. Neurochem Int, 2007, 50(3); 491-498.
    [38] Pettigrew DB, LiYO, Kuntz C 4th, et al. Global expression of NGF promotes sympathetic axonal growth in CNS white matter but does not alter its parallel orientation. Exp Neurol, 2007, 203(1); 95-109.
    [39] 李强, 刘媛, 李民, 等. 神经生长因子与睫状神经营养因子促进感觉和运动前卫再生的差异性研究. 中华整形外科杂志, 2006, 22(5); 371-374.
    [40] Won SJ, Xie L, Kim SH, et al. Influence of age on the response to fibroblast growth factor-2 treatment in a rat model of stroke. Brain Res, 2006, 1123(1); 237-244.
    [41] Leker PR. Regeneration after ischemia in the cerebral cortex. Stroke, 2007, 38(1); 153-161.
    [1] 杨志刚, 陈阿琴, 俞颂东, 等. 三七药理研究新进展[J]. 上海中医药杂志, 2005, 3(1); 33-37.
    [2] Liu JH, Ji FY, Wang T, et al. Study on protective effects of panax notoginseng saponins onbrain ischemic reperfusion damage[J]. Chin J Clin Neuroscinences, 2002, 10(1); 90.
    [3] 张剑峰, 张丹参. 三七总皂苷药理作用研究进展[J]. 中医中药, 2007, 13( 6); 472- 474.
    [4] 胡晓松, 周东, 周德明. 三七三醇皂苷对脑缺血再灌注大鼠的保护作用[J]. 中风与神经疾病杂志, 2004, 21( 4); 354-357.
    [5] 赵湛, 余剑, 熊丽, 等. 三七三醇皂苷配合抗高血压治疗预防高血压性脑卒中[J]. 高血压杂志, 2006, 14 (7); 527-530.
    [6] 王频, 毕建忠. 三七皂甙治疗脑血管病的研究进展[J]. 中国老年学杂志, 2006, 26(2); 275-277.
    [7] 刘宗超, 周官恩, 赵克建, 等. 三七三醇皂苷对大鼠脑缺血再灌注脑损伤保护作用的实验研究[J]. 中风与神经疾病杂志, 2007, 24( 1); 38- 40.
    [8] 王永炎.关于提高脑血管疾病疗效难点的思考[J]. 中国中西医结合杂志, 1997, 17(2); 195.
    [9] 王永炎.关于提高脑血管疾病疗效难点的思考[J]. 中国中西医结合杂志, 1997, 17(4); 196.
    [10] 马仁强, 朱邦豪, 陈健文, 等. 赤芍总苷注射液对大鼠局灶性脑缺血的保护作用和脑血流量的影响[J]. 中成药, 2006, 28( 6); 835- 838.
    [11] Friedman LK, Ginsberg MD, Belayev L, et al. Intraischemic but not postischemic hypothermia prevents non-selective hippocampal downregulation of AMPA and NMDA receptor gene expression after global ischemia[J]. Brain Res Mol Brain Res, 2001, 86(1-2); 34-47.
    [12] Nikam SS, Kornberg BE. AMPA receptor antagonists[J]. Curr Med Chem, 2001, 8 (2); 155-170.
    [13] 韦羡萍. 中药干预脑缺血后炎症反应的临床研究进展[J]. 中西医结合心脑血管病杂志, 2006, 4(4); 337-339.
    [14] 元小冬, 侯秋霞, 吴寿岭, 等. 炎症细胞因子改变与脑梗死的相关性研究[J]. 中国神经免疫学和神经病学杂志, 2004, 1(3); 185-186.
    [15] 张剑峰, 张丹参. 三七总皂苷药理作用研究进展[J]. 中医中药, 2007, 13(6); 472-474.
    [16] 王平. 三七对血液系统作用的研究进展[J]. 中国野生植物资源, 2000, 19(1); 10.
    [17] 许军, 王阶, 温林军. 三七总皂苷干预血栓形成研究概况[J]. 云南中医中药杂志, 2003, 24(5); 46-47.
    [18] 钱越洲, 刘宇, 顾仁樾. 三七有效成分 Rx 对离体心脏缺血再灌注损伤的影响[J]. 上海中医药大学学报, 2005, 19(1); 50-52.
    [19] 顾国熔, 黄培志, 童朝阳, 等. 血塞通预处理对心肌缺血再灌注损伤的早期保护作用[J]. 中国危重病急救医学, 2005, 25(4); 264-266.
    [20] 方志峰, 黄 林, 李庆华, 等. 三七菊花茶冲剂辅助治疗高血压效果观察[J]. 广西预防医学, 2004, 10 (3); 174-175.
    [21] 张书生. 人参三七琥珀胶囊治疗难治性心衰 60 例[J]. 陕西中医, 2006, 27 (7); 774-775.
    [22] 李亚萍. 三七总甙对心肌缺血再灌注的保护效应[J]. 药物研究, 2005, 10 (17); 72-73.
    [23] 杨华, 张娟. 血塞通注射液治疗急性脑梗死 38 例临床观察[J]. 实用医技杂志, 2005, 6(12); 1445-1446.
    [24] 呙登俊, 杨万同, 田峻等. 中药三七对脑缺血再灌注损伤后神经可塑性的影响[J]. 中国康复, 2005, 3(18); 132-134.
    [25] 元文勇, 叶启发, 姜文泉等. 三七总皂苷对大鼠肝脏缺血再灌注损伤肝细胞线粒体的自由基的清除作用[J]. 中国现代医学杂志, 2005, 15(20); 3076-3078。
    [26] 钟振国, 刘泰, 陆晖. 三七总皂甙对老年性痴呆模型作用的研究[J]. 第五次全国中西医结合养生学与康复医学学术研讨会论文集, 厦门, 2006; 349-355.
    [27] 赵鹏, 姚思宇, 李彬等. 皂苷对乙醇性肝损伤的保护作用[J]. 中国临床康复, 2004, 8(30); 6686-6687.
    [28] 石小枫, 刘纪, 刘林, 等. 三七总苷抗实验性肝纤维化的研究[J]. 中药药理与临床, 2004, 20 (1); 12-14.
    [29] 余万桂, 张恒文, 宴年春, 等. 三七总皂甙对肝纤维化小鼠血清酶学及 NO 的影响[J]. 中药药理与临床, 2005, 21(5); 22-24.
    [30] 李远明, 叶启发, 张毅, 等. 三七总皂甙对大鼠移植肝缺血再灌注损伤的保护作用[J]. 中国普通外科杂志, 2006, 15(7); 508-511.
    [31] 朱陵群, 范吉平, 黄启福, 等. 三七总皂苷抗缺氧缺糖再给氧诱导大鼠海马神经细胞凋亡的研究[J]. 中国中药杂志, 2003, 28(1); 52.
    [32] 李巾伟, 朱培纯, 许红, 等. 脑出血大鼠前脑抑凋亡基因-2 的表达及三七总皂苷的影响[J]. 中医药学刊, 2003, 21(1); 48.
    [33] 李巾伟, 朱培纯, 司银楚, 等. 三七总皂苷对脑出血大鼠前脑促凋亡基因-3 影响的研究[J]. 北京中医药大学学报, 2003, 26(2); 22.
    [34] 郭建一, 王文亮. 脑梗死急性期患者血清 NO 含量的变化及三七总皂苷对其影响[J]. 临床神经病学杂志, 2001, 14(5); 294.
    [35] 何蔚, 朱遵平. 三七总皂苷对大鼠脑梗死区 ICAM-1 表达和中性粒细胞浸润的影响[J]. 中药材, 2005, 28(5); 403.
    [36] 赵红念, 胡晓松, 周东, 等. 三七三醇皂苷对局灶性脑缺血再灌注大鼠脑组织Nestin 表达的影响[J]. 华西医学, 2005, 20(2); 297.
    [37] 司银楚, 李巾伟, 朱培纯. 三七总皂苷对脑出血大鼠前脑兴奋性氨基酸受体 GluR2表达的作用[J]. 解剖学杂志, 2005, 28(5); 535-551.
    [38] 董晓莉, 牛三元, 许宏冰, 等. 高压氧配合三七总皂甙治疗对缺血性脑血管病患者血液流变学指标的影响[J]. 中国临床康复, 2005, 9(41); 6-7.
    [39] 曾凡钧, 陈宗华, 蒋庆华, 等. 三七提取物并早期康复对脑梗死患者微循环及血液流变学的影响[J]. 中国临床康复, 2004, 8 ( 31); 7078-7080.
    [40] 刘 群, 朱 辉, 范 佳, 等. 脑出血早期应用三七总皂甙治疗的临床观察[J]. 中风与神经疾病杂志, 2004, 21 (2); 144-146.
    [41] 董晓莉, 牛三元, 许宏冰, 等. 高压氧配合三七总皂甙治疗对缺血性脑血管病患者血液流变学指标的影响[J]. 中国临床康复, 2005, 9(41); 6-7.
    [42] 孙晓波, 徐惠波, 纪凤兰, 等. 三七叶提取物对大鼠脑缺血模型的影响[J]. 中药药理与临床, 2004, 20(2); 17.
    [43] 吴兰鸥, 詹合琴, 闫俊岭, 等. 三七皂苷 Rg1 对大鼠脑缺血-再灌注损伤的保护作用及机制探讨[J]. 中草药, 2006, 37(2); 229.
    [44] 何蔚, 朱遵平. 三七总皂苷对大鼠脑缺血再灌注损伤血清 IL-8 的影响[J]. 放射免疫学杂志, 2002, 15(5); 2.
    [45] 程桂玲, 郇瑛, 吕涌涛, 等.三七总皂苷治疗急性脑梗死及对血清血管内皮生长因子的影响[J]. 中国新药与临床杂志, 2003, 22(6); 350.
    [46] 王文安, 周永炜, 程洁, 等. 三七皂苷对局灶性脑缺血再灌注后 MMP-9 表达的影响[J]. 上海第二医科大学学报, 2004, 24(9); 731.
    [47] 钟振国, 屈泽强. 三七总皂苷对大脑基底核损伤动物模型大脑神经元突触素的影响[J]. 中国中药杂志, 2005, 30(12); 913-915.
    [48] 胡晓松, 周东, 周德明. 三七三醇皂苷对脑缺血再灌注大鼠的保护作用[J]. 中风与神经疾病杂志, 2004, 21(4); 354-356.
    [1] 王 伟. 严格控制试验条件, 建立标准化脑缺血动物模型. 中华神经科杂志[J], 1998, 31(5); 261.
    [2] Longa EZ, Weinstein PR. Carlson S. Reversible middle cerebral artery occlusion without craniectomv in rats[J]. Stroke, 1989, 20(1); 84-91.
    [3] 张翠玲, 刘立, 任宇虹, 等. 脑缺血性损伤后的皮层突触再生与运动功能恢复[J]. 第四军医大学学报, 2001, 22(12); 1144-1147.
    [4] 胡晓松, 周德明. 三七三醇皂苷对脑缺血再灌注大鼠的保护作用[J]. 中风与神经疾病杂志, 2004, 21(4); 354-356.
    [5] 刘宗超, 吴官恩, 赵克建, 等. 三七三醇皂苷对大鼠缺血/再灌注脑损伤保护作用的实验研究[J]. 中风与神经疾病杂志, 2007, 24(1); 38-40.
    [6] 吴忧, 贾建平. 脑缺血动物模型的制备及影响因素[J]. 中国脑血管病杂志, 2007, 4(1); 42-46.
    [7] 徐淑云, 卞如濂,陈修.药理实验方法学(第三版)[M]. 人民卫生出版社, 2003, 1067
    [8] Yanaka K, Gamarata PJ, Spellman SR, et al. Antagonism of leukocyte adherence by synthetic fibronection peptide V in a rat model of transientfocal cerebral ischemia[J]. Neurosurgery, 1997, 40(3); 557-563.
    [9] Elsaesser RS, Zausinger S, Hungerhuber E, et al. A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler Flowmetry[J]. Stroke, 1998, 29(10); 2162-2170.
    [10] Hori T, Miyake T. The mechanism of in vivo vaginal TTC reduction stimulated by estrogen in spayed mice[J]. Endocrinol Jpn, 1965, 12(3); 181-196.
    [11] Ran K, Duan KM, Zou DQ, et al. Effect of isoflurane delayed preconditioning on myocardial ischemia reperfusion injury in rabbits[J]. Zhong Nan Da Xue Bao Yi Xue Ban, 2008, 33(2); 146-150.
    [12] Chen WZ, Zhang Y, Liang CS. Effect of antibody-targeted chemotherapy with pingyangmycin on prostate cancer cells in vitro[J]. Nan Fang Yi Ke Da Xue Xue Bao, 2008, 28(3); 406-408.
    [13] 龚彪,李长清,黄剑. SD 大鼠线栓法局灶性脑缺血/再灌注模型的改进[J]. 重庆医学, 2006, 35(4); 313-315.
    [1] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20 (1); 84-91.
    [2] Chen MS, Huber AB, van der Haar ME, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody In-1[J]. Nature, 2000, 403(6768); 369-370.
    [3] Grandpre T, Nakamura F, Vartanian T, et al.. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein[J]. Nature , 2000, 403(6768); 439- 444.
    [4] Prinjha R, Moore SE, Vinson M, et al. Inhibitor of neurite outgrowth in humans[J]. Nature, 2000, 403(6768); 383- 384.
    [5] 姜文敏, 唐罗生. 视神经再生的相关因素研究[J]. 国际眼科杂志, 2005, 5(3); 543- 546.
    [6] Wetzel M, Li L, Harms KM, et al. Tissue inhibitor of metalloproteinases-3 facilitates Fas-mediated neuronal cell death following mild ischemia[J]. Cell Death Differ, 2008,15(1); 143-151.
    [7] Walmsley AR, Mir AK. Targeting the Nogo-A signaling pathway to promote recovery following actue CNS injury[J]. Curr Pharm Des, 2007, 13(24); 2470-2484.
    [8] Liu BP, Cafferty WB, Budel SO, et al. Extracellular regulators of axonal growth in theadult central nervous system[J]. Philos Trans R Soc Lond B Biol Sci, 2006,361(1473); 1593-1610.
    [9] Jin WL, Liu YY, Liu HL, et al. Intraneuronal localization of Nogo-A in the rat[J]. J Comp Neurol, 2003, 458(1); 1-10.
    [10] Huber AB, Weinmann O, Brosamle C, et al. Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions[J]. J Neurosci, 2002, 22(9); 3553-3567.
    [11] Josephson A, Widenfalk J, Widrner HW, et al. Nogo mRNA expression in adult and fetal human and rat nervous tissue and in weight drop injury[J]. Exp Neurol, 2001, 169(2); 319-328.
    [12] Mckeon RJ, Hoke A, Silver J. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars[J]. Exp Neurol, 1995, 136(1); 32-43.
    [13] 常丽英, 李丹, 张苏明, 等. 大鼠脑缺血再灌注后 Nogo-A 及其受体 mRNA 和蛋白表达的变化[J]. 中华神经医学杂志, 2006, 5(9); 870-874.
    [1] Simonen M , Pedersen V, Weinmann O, et al. Systemic delection of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury[J]. Neuron, 2003, 38(2); 201-211.
    [2] Chen MS , Huber AB , Van der Haar ME , et al . Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1[J]. Nature, 2000, 403 (6768); 434-439.
    [3] Cafferty WB, Strittmatter SM. The Nogo-Nogo receptor pathway limits a spectrum of adult CNS axonal growth[J]. J Neurosci, 2006, 26(47); 12242-12250.
    [4] Niederost B , Oertle T , Fritsche J, et al . Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1[J]. J Neurosci, 2002, 22 (23); 1 0368-1 0376.
    [5] Tang J, Yao YJ, Zhong L. The influence of oxygen and glucose deprivation on the expression of neurite growth inhibitor Nogo-A in oligodendrocyte precursor cell of rat[J]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2007, 38(6); 938-941.
    [6] Wiessner C, Bareyre FM, Allegrini PR, et al. Anti-Nogo-A antibody infusion 24 hours after experimental stroke improved be havioural outcome and corticospinal plasticity in normotensive and spontaneously hypertensive rats[J]. J Cereb Blood Flow Metab, 2003, 23 (2); 154-165.
    [7] McKerracher L, David S. Easing the brakes on spinal cord repair[J]. Nat Med, 2004, 10(10); 1052-1053.
    [8] Lee DH, Strittmatter SM, Sah DW. Targeting the Nogo receptor to treat central nervous system injuries[J]. Nat Rew Drug Discov, 2003, 2(11); 872-878.
    [9] Walmsley AR, Mir AK. Targeting the Nogo-A signaling pathway to promote recovery following acute CNS injury[J]. Curr Phaerm Des, 2007, 13(24); 2470-2484.
    [10] Lee JK, Kim JE, Sivula M, et al. Nogo receptor antagonism promotes stroke recovery by enhancing axonal plasticity[J]. J Neurosci, 2004, 24(27); 6209-6217.
    [11] Zhou C, Li Y, Nanda A, et al. HBO suppresses Nogo-A, Ng-R or RhoA expression in the cerebral cortex after global ischemia[J]. Biochem Biophys Res Commun, 2003, 309(2); 368-376.
    [12] Su Y, Wang F, Zhao SG. et al. Axonal regeneration after optic nerve crush in Nogo-A/B/C knockout mice[J]. Mol Vis, 2008, 14(5); 268-273.
    [13] Zhang S, Zhang Q, Zhang JH, et al.NgR acts as an inhibitor to axonal regeneration in adults[J]. Front Biosci, 2008, 13(1); 2030-2040.
    [1] Lee H, Raiker SJ, Venkatesh K. et al. Synaptic function for the Nogo-66 receptor NgR1; regulation of dendritic spine morphology and activity and activity-dependent synaptic strength[J]. J Neurosci, 2008, 28(11); 2753-2765.
    [2] Aloy EM, Weinmann O, Pot C, et al. Synaptic destabilization by neuronal Nogo-A[J]. Brain Cell Biol, 2006, 35(2-3); 137-156.
    [3] 张福康,侯一平,宋焱峰, 等. 剥夺异相睡眠导致大鼠学习记忆的能力下降的机制[J]. 中国临床康复, 2003, 7 ( 28 ); 3798 – 3799.
    [4] 张福康, 侯一平, 宋焱峰, 等. 剥夺异相睡眠对大鼠空间参考记忆的影响[J]. 中国临床康复, 2003, 7 (31); 4216 – 4217.
    [5] Wakita H, Tomimoto H,Akiguchi I. Protective effect of cyclosporin A on white matter changes in the rat brain after chronic cerebral hypoperfusion[J]. Stroke, 1995, 26(8); 1415-1422.
    [6] Sharkey J, Butcher SP. Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischernia[J]. Nature, 1994, 371(6495); 336-339.
    [7] Stridsberg M, Lundgvist G. Development of polyclonal antibodies and evaluation of a sensitive radioimmunoassay for detection and measurement of synaptophysin[J]. Acta Neuropathol(Berl), 1994, 87(6); 635-641.
    [8] Miyazawa T, Bonnekob P, Hossmann KA. Temperature effect on immunostaining of microtubulc-associated protein 2 and synaptophysin after 30 minutes of forebrain ischemia in rats[J]. Acta Neuropathol(Berl), 1993, 85(5); 526-532.
    [9] Revest P, Longstaff A. Mechanism of plasticity. Molecular Neuroscience[J]. New York Springer Verlag, 1998, 1(5); 151 – 90.
    [10] 王慧鹃, 李陈莉, 赵秀丽, 等. 大鼠脑缺血后突触超微结构的变化[J]. 解剖学杂, 2003, 26(6); 587-590.
    [11] Briones TL, Suh E, Jozsa L, et al. Changes in number of synapses and mitochondria in presynaptic terminals in the dentate gyrus following cerebral ischemia and rehabilitation training[J]. Brain Res, 2005, 1033(1); 51-57.
    [12] Briones TL, Suh E, Hattar H, et al. Dentate gyrus neurogenesis after cerebral ischemia and behavioral training[J]. Biol Res Nurs, 2005, 6(3); 167-179.
    [13] Briones TL, Suh E, Jozsa L, et al. Behaviorally- induced ultrastructural plasticity in the hippocampal region after cerebral ischemia[J]. Brain Res, 2004, 997(2); 137-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700